
Implementing Logical Connectives in Constraint
Programming

Christopher Jefferson†, Neil C.A. Moore†, Peter Nightingale†, Karen E. Petrie*

* School of Computing, University of Dundee, Dundee DD1 4HN, UK
email: kpetrie@computing.dundee.ac.uk

† School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, UK
email: caj@cs.st-andrews.ac.uk, ncam@cs.st-andrews.ac.uk, pn@cs.st-andrews.ac.uk

Abstract

Combining constraints using logical connectives such as disjunction is ubiqui-
tous in constraint programming, because it adds considerable expressive power to
a constraint language. We explore the solver architecture needed to propagate such
combinations of constraints efficiently. In particular we describe two new features
named satisfying sets and constraint trees. We also make use of movable triggers
[1], and with these three complementary features we are able to make considerable
efficiency gains.

A key reason for the success of Boolean Satisfiability (SAT) solvers is their
ability to propagate OR constraints efficiently, making use of movable triggers. We
successfully generalise this approach to an OR of an arbitrary set of constraints,
maintaining the crucial property that at most two constraints are active at any time,
and no computation at all is done on the others. We also give an AND propagator
within our framework, which may be embedded within the OR. Using this ap-
proach, we demonstrate speedups of over 10,000 times in some cases, compared
to traditional constraint programming approaches. We also prove that the OR al-
gorithm enforces generalised arc consistency (GAC) when all its child constraints
have a GAC propagator, and no variables are shared between children. By extend-
ing the OR propagator, we present a propagator for ATLEASTK, which expresses
that at least k of its child constraints are satisfied in any solution.

Some logical expressions (e.g. exclusive-or) cannot be compactly expressed
using AND, OR and ATLEASTK. Therefore we investigate reification of con-
straints. We present a fast generic algorithm for reification using satisfying sets
and movable triggers.

1 Introduction
Problems often consist of choices. Making an optimal choice which is compatible with
all other choices made is difficult. Constraint programming (CP) is a branch of Arti-
ficial Intelligence, where computers help users to make these choices. Constraint pro-
gramming is a multidisciplinary technology combining computer science, operations
research and mathematics. Constraints are a powerful and natural means of knowledge

1

representation and inference in many areas of industry and academia, arising in in de-
sign and configuration; planning and scheduling; diagnosis and testing; and in many
other contexts.

A constraint satisfaction problem (CSP [2]) is a set of decision variables, each with
an associated domain of potential values, and a set of constraints. For example, the
problem might be to fit components (values) to circuit boards (decision variables), sub-
ject to the constraint that no two components can be overlapping. An assignment maps
a variable to a value from its domain. Each constraint specifies allowed combinations
of assignments of values to a subset of the variables. A solution to a CSP is an assign-
ment to all the variables which satisfies all the constraints. In this paper we consider
solving CSPs through backtrack search with an inference step at each node [2].

Modelling is the process of representing a problem as a CSP. To allow natural mod-
elling of some problems, the logical connectives of AND and OR are required be-
tween constraints. For example, in a school timetabling problem you may have either
Teacher1 OR (Teacher2 AND Teacher3) taking a particular class. It is also sometimes
useful to be able to apply NOT to a constraint, this is often done in CSP by means of
reification. The reification of a constraint C produces another constraint Cr, such that
Cr has an extra Boolean variable r in its variable set, and (in any solution) r is set to
true if and only if the original constraint C is satisfied. In this paper we discuss the
neglected area of how to efficiently implement these logical connectives across con-
straints, which are the fundamental building blocks of CSP models [3] (chapter 11).

During the search for a solution of a CSP, constraint propagation algorithms are
used. These propagators make inferences, recorded as domain reductions, based on the
domains of the variables constrained. If at any point these inferences result in any vari-
able having an empty domain then search backtracks and a new branch is considered.
Propagators and generalised arc consistency (GAC) are important concepts in this pa-
per. When considering a single constraint C, GAC is the strongest possible consistency
that a propagation algorithm can enforce. Enforcing GAC removes all domain values
which are not compatible with any solution of C. In [3] (chapter 3), Bessiere defines
GAC and discusses the complexity of enforcing it.

In this paper we consider propagating logical combinations of constraints. For
example, for constraints C1, C2, C3, C4 we may wish to post the following expression
and propagate it efficiently.

(C1 ∧ C2)⇒ (C3 ∨ C4)

It is desirable to make use of existing propagators for C1, C2, C3 and C4 since these
may be highly efficient specialised propagators.

1.1 A Traditional Approach
A traditional approach (probably the most common) is to individually create reified
propagators for the four constraints. These introduce an additional Boolean variable
representing the truth of the constraint (e.g. the reified form of C1 is the constraint
r1 ⇔ C1, so in any solution r1 is TRUE if and only if C1 is satisfied). A logical expres-
sion can be enforced on the additional Boolean variables to obtain the desired combi-

2

nation. The example above translates into the following collection of constraints:1

r1 ⇔ C1, r2 ⇔ C2, r3 ⇔ C3, r4 ⇔ C4, (r1 ∧ r2)⇒ (r3 ∨ r4)

This scheme has three major disadvantages. First, it can be very inefficient because
every reified constraint is propagated all the time. For example consider an OR of a set
of n constraints. As we will demonstrate in Section 4, at most two constraints need to
be actively checked at any time. However, a reification approach will propagate all n
reified constraints at all times. Second, developing reified propagators individually for
each constraint is a major effort. Third, when a variable occurs multiple times in an
expression, the reified decomposition may propagate poorly. In this paper we address
the first two issues but not the third: we achieve the same level of consistency as the
reified decomposition.

1.2 Two Vital Features of a Solver for a New Approach
The key finding of this work is that two vital features of the solver must be combined
to achieve efficient propagation of logical connectives. If either feature is not available,
then the other is of limited benefit. The two features are constraint trees, which allow a
parent constraint to control the propagation of its children, and movable triggers which
allow a constraint to change the events [3] (ch. 14) it is interested in during search.

Consider an OR of n constraints over disjoint variable sets. We will show that at
most two of the constraints need to be considered at any time, because if two of the con-
straints are satisfiable then no propagation can occur. Once two satisfiable constraints
have been identified, all other constraints are presently irrelevant and no computation
time should be wasted on them. This is essential to efficiency when n is large.

Constraint trees allow us to stop checking irrelevant constraints. However, this is
not enough to achieve zero cost for irrelevant constraints: there is a cost to generate
trigger events for the constraints. It is necessary to remove triggers not currently of
interest, hence movable triggers are also required.

The following table summarises the costs caused by irrelevant constraints.
Static Triggers Movable Triggers

Reification All reified constraints All reified constraints
propagated at all times propagated at all times

Constraint Trees Trigger events received for Irrelevant constraints
all constraints at all times cause no cost

Our implementations are in the Minion solver [4], though the presentation is not
specific to Minion.

1.3 Overview
There are a number of solver architecture decisions which impinge on propagating
logical combinations of constraints. In Section 3 we describe three architecture features
which are key to the new algorithms presented in this paper. Satisfying sets (Section

1In some solvers it would be necessary to further decompose (r1 ∧ r2)⇒ (r3 ∨ r4).

3

3.3) are novel to the best of our knowledge. We also provide the first implementation
of constraint trees (Section 3.2). Movable triggers [1] are also described in Section 3.1
to aid understanding of the rest of the paper.

In Section 4, we present a propagator for the constraint ATLEASTK, which ensures
that at least k of a set of constraints are satisfied in any solution. Both AND and
OR are special cases of ATLEASTK. Via the constraint trees framework, ATLEASTK
constraints may be nested to any depth, and also may be reified using the algorithms
given in Section 5. The ATLEASTK propagator maintains the crucial property that only
k+ 1 constraints are checked (or k propagated) at any time — no computation at all is
done on the others. Section 4 also contains experiments on the efficiency of Watched
OR, AND and ATLEASTK, which demonstrate huge speedups in some cases.

In Section 5 we consider reification. Some logical expressions (e.g. exclusive-or)
cannot be compactly expressed using only AND, OR and ATLEASTK, so a more gen-
eral approach is needed. Therefore we investigate the use of satisfying sets, movable
triggers and constraint trees for reification of constraints. To avoid implementing rei-
fied propagators for individual constraints, we developed four generic algorithms which
can be used with any constraint C, provided that there is a propagator for ¬C available.
We compare algorithms which use satisfying sets and movable triggers with alterna-
tives using static triggers, and again we demonstrate huge speedups in some cases.

Finally, the paper is concluded in Section 6.

2 Background

2.1 Preliminaries
A CSP P = 〈X ,D, C〉 is defined as a sequence of n variables X = 〈x1, . . . , xn〉,
a sequence of domains D = 〈D1, . . . , Dn〉 where Di is the finite set of all potential
values of xi, and a set C = {C1, C2, . . . , Ce} of constraints. A literal is a pair 〈xi, di〉,
with xi ∈ X and di ∈ Di. An assignment A is a partial function A : X → Dall such
that A(xi) ∈ Di, where Dall =

⋃
i Di. In a complete assignment A is a total function,

i.e., every xi ∈ X is mapped by A.
Within CSP P = 〈X ,D, C〉, a constraint Ck ∈ C consists of a sequence of r > 0

variablesXk = 〈xk1
, . . . , xkr

〉 (whereXk is the scope of the constraint) with respective
domains Dk = 〈Dk1

, . . . , Dkr
〉 s.t. Xk is a subsequence2 of X and Dk is the corre-

sponding subsequence ofD. Ck has an associated set CS
k ⊆ Dk1

× . . .×Dkr
of tuples

which specify allowed combinations of values for the variables in Xk. A constraint is
satisfied under a complete assignment to the variables iff the assigned values of Xk in
sequence form a tuple in CS

k . A solution to a CSP is a complete assignment which
satisfies all the constraints.

The reified form (rk ⇔ Ck) of a constraint Ck is satisfied iff rk is assigned 1
and Ck is satisfied, or rk is assigned 0 and Ck is not satisfied. The reifyimplied form
(rk ⇒ Ck) of Ck is satisfied iff rk is assigned 0, or rk is assigned 1 and Ck is satisfied.

The AND of a set of constraints is satisfied iff all constraints in the set are satisfied.
The OR of a set of constraints is satisfied iff at least one of the constraints in the set is

2We use subsequence in the sense that 〈1, 3〉 is a subsequence of 〈1, 2, 3, 4〉.

4

satisfied. The ATLEASTK of a set of constraints (with parameter k) is satisfied iff at
least k of the constraints in the set are satisfied.

A subdomain for a variable x is a subset of its initial domain. A subdomain list is a
sequence of subdomains for distinct variables. A subdomain list 〈D1, . . . , Dk〉 allows
the set of assignments corresponding to D1 × . . .×Dk.

A propagator for a constraint C is a function which takes a subdomain list for XC

and returns a new subdomain list, which does not allow any extra assignments, and
does not remove any assignments which satisfy C. Further, if every subdomain in a
subdomain list SD on XC is singleton, then a propagator must empty all the domains
iff Cs does not contain the single allowed assignment from SD.

A propagator is GAC if it removes every domain value possible without violating
the definition of propagator. A complete discussion of propagators can be found in [3]
(chapter 3).

Given a constraint c and a subdomain list SD for the variables in Xc, then c is
disentailed if every assignment allowed by SD does not satisfy c. c is entailed if every
assignment allowed by SD satisfies c.

2.2 Related Work on Propagation Control
Brand and Yap [5] present a framework for reducing redundant propagation in logi-
cal combinations of constraints. This is named the controlled propagation framework
(CPF). In CPF the standard reification approach is used, and improved by adding con-
trol flags to each constraint. For an individual reified constraint C ⇔ b, the value of b
controls whether it is propagated (positively or negatively) and the control flags indi-
cate whether it prunes b: the flags chk-true and chk-false indicate whether C is
checked for entailment and disentailment. b is only pruned if at least one of chk-true
or chk-false is present. The flag irrelevant indicates that C ⇔ b need not be
propagated at the current search node or its descendents. This would usually mean
C ⇔ b is revoked and its triggers removed. The control flags are manipulated using
implication rules.

CPF is implemented in a Constraint Logic Programming context that allows con-
straints to be posted (and triggers added) as search moves forward. The posted con-
straints (and their triggers) are removed on backtracking. This allows parts of a de-
composition to be generated as needed during search. Constraints may also be revoked
(and restored on backtracking).

CPF has the same goals as our work. A detailed comparison is given in Section 3.4.

2.3 Related Work on OR

Many authors have considered constructive disjunction for propagating OR. For exam-
ple, Müller and Würtz [6, 7] present a constructive disjunction algorithm implemented
in Oz. Assuming that all child constraints have GAC propagators, constructive disjunc-
tion is able to enforce GAC over the OR, regardless of whether child constraints share
variables. However, this is achieved by making a copy of the variable domains for each
child constraint and propagating each child independently. A value which is pruned by
every child constraint (i.e. pruned in each copy of the domains) is then pruned globally

5

by the OR. It is not clear that this algorithm can be implemented efficiently. Lagerkvist
and Schulte [8] observed a performance penalty of over 45% when executing propa-
gators on copies of the domains and mirroring the result back to the primary domains,
compared with executing directly on the original variables.

Constructive disjunction may be valuable for problems where strong propagation
of OR is required. However, in this paper we consider more lightweight methods that
do not require duplication of variable domains. Therefore we consider constructive
disjunction to be outside the scope of this paper.

Bacchus and Walsh [9] give some theoretical results about logical combinations of
constraints, including AND, OR and negation. Concerning OR, the paper only states
that the set of inconsistent values of the OR is the intersection of the inconsistent values
of each child constraint. This would perform the same domain reductions as construc-
tive disjunction. The authors give a basic algorithm but do not consider incremental
propagation (which is vital for efficiency). Adapting this algorithm for incrementality
would require tracking the state of variable domains independently for each child —
essentially duplicating the variable domains. This would be equivalent to the algorithm
of Müller and Würtz [6, 7].

Lhomme [10, 11] presents an alternative to constructive disjunction which performs
the same domain reductions. Lhomme’s algorithm is claimed to be more efficient than
constructive disjunction. It is based on finding satisfying assignments (represented as
tuples of values) for the constraints. Each relevant variable-value pair is supported by
a satisfying tuple for one of the constraints in the disjunction, or it is pruned.

While Lhomme’s algorithm may be faster than constructive disjunction, it main-
tains a large set of supporting tuples (one for each variable-value pair where the vari-
able is shared between two child constraints). Our proposed algorithm maintains only
two partial tuples (and enforces a weaker consistency), therefore it is much more
lightweight.

In SAT, the constraints (OR of Boolean literals) are often propagated by 2-literal
watching [12]. This scheme has the advantage that only two literals are active at any
time, and the others incur no cost. One of the major contributions of this paper is our
proposed algorithm Watched OR in Section 4, which shows how the basic techniques
behind 2-literal watching can be efficiently extended to support arbitrary constraints
and propagators, keeping the efficiency which comes from only having two active dis-
juncts at any time.

2.4 Related Work on Reification
Reification of a constraint C produces the constraint r ⇔ C, where r is a Boolean
variable. We focus on generic approaches to reification that can be applied to any
constraint that has the appropriate algorithms defined for it. For example, we prove that
a generic reification algorithm that enforces GAC efficiently requires GAC propagators
for both the constraint and its negation.

Indexicals (proposed by Van Hentenryck et al. [13]) allow simple propagators to
be specified in a high-level language. They can be extended slightly to allow reifica-
tion [3] (Section 14.2.6). However, it is not possible to express polynomial-time GAC
propagators for constraints such as AllDifferent [14] in the indexicals language.

6

Propia [15] allows constraints to be expressed as Prolog predicates. The predicate
specifies the constraint semantically as opposed to giving a propagator for the con-
straint. To implement reification, a predicate would be required for both the constraint
and its negation. Similarly to indexicals, it is not possible to specify sophisticated
propagators in propia, therefore it does not offer an efficient generic solution.

Schulte proposed a generic reification algorithm [16] based on the concept of com-
putation spaces. A computation space is an isolated environment which allows a prop-
agator to be executed without affecting the primary variables. The computation space
includes independent variable domains. For ri ⇔ Ci, Ci is posted in the space, and
propagated. If it fails, then ri 6= 1 (i.e. 1 is pruned from ri). If it is entailed (i.e. equiv-
alent to the constraint TRUE), then ri 6= 0. If ri = 1 then the effects of propagating Ci

are copied to the primary variables. In the case where ri = 0, there is no propagation
of ¬Ci, and the algorithm does nothing until Ci is entailed. The approach later pro-
posed by Lagerkvist and Schulte [8] is virtually the same algorithm implemented with
propagator groups.

Both these approaches have the disadvantages that they duplicate variables and
do not propagate the negative constraint ¬C when r = 0. Lagerkvist and Schulte
compared a hand-implemented reified constraint to the generic algorithm. The generic
algorithm was substantially slower, with the solver taking between 29% and 106%
extra time [8].

The commercial product ILOG Solver implements reification, but we found no
literature describing the algorithm.

In Section 5 we propose new reification algorithms which avoid the overhead of
duplicating variables, while also being able to encapsulate any propagator, unlike in-
dexicals or propia.

2.4.1 Triggering

Given a propagator P for a constraint c, there may be many subdomain lists SD where
P (SD) = SD. In these situations, it is not necessary to run the propagator. Rather
than invoke propagators on any domain change, solvers provide a list of events, which
propagators can subscribe to. A propagator subscribes to an event by attaching a trigger
to it. Executing a trigger calls the propagator which generated it, with a reference to
the event which occurred (we refer to this as triggering the propagator). When events
occur they are placed in a queue. Items in the queue are processed by executing every
trigger on that event in turn.

The exact set of events which can be subscribed to varies between solvers. For
any variable x with domain D(x) and domain value i, Minion supports the following
events: i is removed from D(x); any value is removed from D(x); x is assigned; the
maximum value of D(x) removed; and the minimum value of D(x) removed.

The propagator must always be triggered when P (SD) 6= SD; otherwise the prop-
agator would fail to enforce the correct level of consistency.

7

2.4.2 Constraint Trees

There are highly efficient propagators already written for many constraints. We would
like to be able to combine these propagators to build new propagators. Constraint trees
provide a highly efficient framework for achieving this goal.

To define constraint trees, we define the concept of meta-variables. These are not
CSP variables, and have none of the associated overhead, but are merely for pedagog-
ical purposes. Meta-variables are Boolean, and therefore have three states (0, 1, and
unset). The current subdomain of a meta-variable xm for a constraint c denotes if, in
the current subdomain list, c is entailed (xm = 1), disentailed (xm = 0) or neither
(xm ∈ {0, 1}). The state of xm is a property of c, it is never stored.

A constraint tree is a rooted tree T = 〈V,E, r〉 with root r ∈ V . Each node b ∈ V
has associated with it a constraint and a meta-variable. The scope of the constraint on
node b may contain both CSP variables and the meta-variables of the children of b. A
constraint tree as a whole is satisfied iff the constraint associated with r is satisfied.
A constraint tree is a type of constraint, and may be contained in a CSP (defined in
Section 2.1). Constraint trees are not a novel concept (for example, Bacchus and Walsh
make use of them [9]), however they allow us to define a novel propagation framework.

Now we discuss propagation of constraint trees. The constraint for every vertex
a ∈ V has a propagator Pa associated with it. Propagators at leaves of the tree are
conventional propagators as described in Section 2.1. The propagator Pb for an internal
vertex b ∈ V of the tree is able to prune its CSP variables, query any child constraint
for disentailment, and invoke the propagator for any child constraint.

By an abuse of notation, we refer to the vertices in T as constraints. The parent of
the constraint attached to node a is the parent of a in T . The children of the constraint
attached to a node a ∈ V are the children of a in T .

∨

∧

x = 3y = 2

x = 1

Figure 1: Constraint tree
for (x = 1) ∨ ((y = 2) ∧
(x = 3))

Constraint trees are used to implement constraints that
are expressed as logical combinations of other constraints.
For example, (x = 1)∨ ((y = 2)∧ (x = 3)) could be rep-
resented by the constraint tree in Figure 1. We will present
propagators for the interior nodes ∧ and ∨ in Section 4.

One issue which is often ignored when discussing
propagation algorithms is when variables are repeated
within the constraint. Most propagation algorithms that
enforce GAC will not enforce GAC when variables are
repeated. Many constraints with polynomial-time GAC
propagators become NP-hard to enforce GAC once re-
peated variables are taken into account, for example the
Global Cardinality Constraint [17]. We address the issue
of repeated variables separately for each of the proposed algorithms in this paper.

3 Solver Architecture
In order to implement logical connectives efficiently, we made a number of solver
architecture decisions which are described in this section.

8

3.1 Movable Triggers
One important part of how propagators are implemented is how they are triggered, as
described in Section 2.4.1. In Minion there are three classes of triggers, discussed in
depth in [1]. In this paper we exploit both static and movable triggers. In [1], movable
triggers are referred to as watched literals.

Static: These triggers are placed on variables at the beginning of search. They can
never be moved or removed.

Movable: These triggers can be placed, moved and removed during search. When
search backtracks, they are not restored to their previous place.

Using movable triggers can produce great improvements in the performance of the
solver, as observed in SAT [12] and CSP [1]. Some solvers support movable triggers
which backtrack during search. The algorithms described in this paper can be trivially
modified to work with such solvers, at the cost of the extra overhead of backtracking
the triggers and data structures.

3.2 Constraint Trees
All the following algorithms use the concept of a Constraint Tree, as defined in Sec-
tion 2.4.2. In this paper we assume that a parent constraint controls when a child is
propagated, and also every constraint has a method which can detect if a constraint is
disentailed. We will show in Section 4 how we can detect disentailment of interior
nodes by using the disentailment detectors of their children.

Any constraint which has a propagator and disentailment checker can function as
a child constraint, allowing us to leverage the large number of already implemented
highly efficient propagators in the CP literature. All the parent constraints we describe
in this paper can also function as a child of another constraint.

Static triggers are handled as follows in a tree of constraints. At setup time, all
propagators in the tree place the static triggers that they need. During search, all trig-
ger events are passed to the topmost propagator. Each parent propagator passes the
appropriate trigger events through to the children which are currently propagating, and
discards others. An example of this is shown in Figure 2. Three assignments occur in
sequence (x2 = 0, x6 = 0 and x1 = 0) and the corresponding events are passed to the
propagator of c1 by the solver core. In Fig 2(b), c1 is propagating neither of its children
so it discards the two events. In (c), c1 is propagating its left child, but the trigger event
belongs to the right child so it is discarded. In (d), c1 passes the trigger event on to c2
because c2 is currently propagating.

Movable triggers are somewhat more complicated, but they allow triggers for non-
propagating children to be removed, reducing the number of unnecessary trigger events.
Operations on movable triggers are described in detail with the algorithms in sections
4 and 5.

For both classes of trigger, the trigger events are passed in at the top of the tree, and
filter down, which adds a small overhead to propagating the constraints at the leaves of
the tree. However, once the propagators are invoked they execute as if they were not
within a constraint tree, directly reading and changing the subdomain of variables.

9

c1: Or

c2: Reify(x1)

c3: x2=x3

c5: And

c6: x4<1 c7: x5<x6

(a) Initial state, all domains {0,1}. c1 collects satisfying
 sets from both its children

0,0

1,0,0

0

0,0,1

0,1

(b) x2=0, events discarded by c1

c4: x2≠x3

c1: Or

c2: Reify(x1)

c3: x2=x3

c5: And

c6: x4<1 c7: x5<x6
0,0

1,0,0

0 0,1
c4: x2≠x3

(c) x6=0, c5 cannot provide a valid satisfying set. c1
 begins to propagate c2. c2 collects satisfying sets
 from c3, c4.

c1: Or

c2: Reify(x1)

c3: x2=x3

c5: And

c6: x4<1 c7: x5<x6

False

False
c4: x2≠x3

0,0,1

UB(x2)
Assigned(x2)

UB(x6)

(d) x1=0, c2 begins to propagate right child. Value 0
 is pruned from x3.

c1: Or

c2: Reify(x1)

c3: x2=x3

c5: And

c6: x4<1 c7: x5<x6

False

False
c4: x2≠x3

Assigned(x1)

0,0 0,1

Constraint Static triggers
c1
c2 Assigned(x1)
c3 UB(x2), LB(x2), UB(x3), LB(x3)
c4 Assigned(x2), Assigned(x3)
c5
c6
c7 LB(x5), UB(x6)

Figure 2: Example of static trigger events and satisfying sets in a constraint tree
representing (x1 ↔ x2 = x3) ∨ (x4 < 1 ∧ x5 < x6). Satisfying sets are writ-
ten beside constraints as a list of values. For example, the satisfying set for c5 is
〈x4, 0〉, 〈x5, 0〉, 〈x6, 1〉. Movable trigger events are omitted from this diagram. In the
table at the bottom, the static triggers placed by each constraint are listed.

3.3 Satisfying Sets
In many of the algorithms in this paper, we want a fast method of checking if a con-
straint is satisfiable. One way of doing this is to execute its propagator and check to
see if it removes all the values from the domain of any variable. However this is clearly
inefficient because it computes domain deletions as well as deducing whether the con-
straint is satisfiable. In this section, we introduce satisfying sets, a simple and efficient
framework for checking disentailment.

Definition 1. Given a constraint C, a satisfying set is a set of literals F from XC such
that every assignment to XC which contains all the literals in F also satisfies C. A
satisfying set F is complete if, additionally, every subdomain list for XC that contains
all the literals in F allows at least one assignment that satisfies C.

10

Example 2. Consider the constraint X + Y + Z ≥ 2, for variables X , Y and Z with
domains {0, 1}. The set of literals {〈X, 1〉, 〈Y, 1〉} is a complete satisfying set. It is a
satisfying set as the two assignments that contain these literals, 〈X,Y, Z〉 = 〈1, 1, 0〉
and 〈1, 1, 1〉, both satisfy the constraint. It is complete because any subdomain list for
XC which contain this satisfying set must contain an assignment where X = 1 and
Y = 1. Therefore regardless of the assignment to Z the sum of the variables must be
greater than or equal to two.

The set of literals {〈X, 0〉, 〈X, 1〉} is trivially a satisfying set, as there can be no
assignment which contains both of these literals, as they are from the same variable. It
is not complete, because the subdomain list X ∈ {0, 1}, Y, Z ∈ {0} does not contain
an assignment which satisfies the constraint.

Given a satisfying set for a constraint, we know that if none of the literals in the
satisfying set are removed, we cannot end up in a state where every variable is as-
signed and the constraint is not satisfied. This basic guarantee will be used to ensure
algorithms using satisfying sets are correct. A complete satisfying set produces a much
stronger guarantee, that the constraint is never disentailed as long as no literal from the
satisfying set is removed. This will be necessary for any propagator which makes use
of satisfying sets to enforce GAC.

Definition 3 introduces the concept of a satisfying set generator.

Definition 3. A satisfying set generator for a constraint C is a function that takes a
subdomain list SD and either returns a satisfying set within SD, or FAIL. A satisfy-
ing set generator may only return FAIL when there is no assignment within SD that
satisfies C.

A satisfying set generator is complete if it only returns complete satisfying sets.
This implies it must return FAIL exactly when there is no assignment within SD that
satisfies C.

One question is for which constraints satisfying set generators can be implemented
in polynomial time, and when they can be made complete. Definition 4 presents the
trivial satisfying set generator, which provides a polynomial-time satisfying set gener-
ator for any constraint. Lemma 5 shows that the trivial satisfying set generator is valid.
Notice that an incomplete satisfying set must contain two literals of the same variable,
by Definition 1. The following trivial satisfying set generator makes use of this fact.

Definition 4. The trivial satisfying set generator for a constraint C and subdomain list
SD is defined as follows:

1. There exists an X ∈ XC such that |SD(X)| > 1: Return a satisfying set con-
taining two literals from SD(X).

2. SD allows exactly one assignment: If this assignment satisfies C, return the
satisfying set containing all the literals in SD, else return FAIL.

Lemma 5. For every constraint C, the trivial satisfying set generator is valid and runs
in polynomial time.

11

Proof. Any set of literals that contains two assignments to one variable is a satisfying
set, as no assignment can contain two values for one variable. Once all variables are
assigned, the trivial satisfying set generator either returns FAIL, or returns a complete
assignment which must satisfy C. The complexity result is trivial.

Theorem 6 categorizes the complexity of complete satisfying set generators.

Theorem 6. A constraint C has a polynomial time complete satisfying set generator if
and only if it has a polynomial time GAC propagator.

Proof. Given a complete satisfying set generator, it is possible to check if a subdomain
list for XC contains a satisfying assignment, by seeing if the satisfying set generator
returns FAIL. Lemma 1 of [17] proves this is polynomially equivalent to having a GAC
propagator. Alternatively, given a GAC propagator for C, we can construct a complete
satisfying set generator as follows.

The GAC propagator will empty the domains of the variables if the subdomain list
contains no assignment which satisfies C, which is exactly the situation in which a
complete satisfying set generator must return FAIL. Assuming the GAC propagator
does not empty the domains, then they must contain at least one satisfying assignment.
A complete assignment which satisfies C is a complete satisfying set, as any subdo-
main list which contains it contains a satisfying assignment. The following algorithm
produces an assignment which satisfies C within |XC | invocations of the propagator:
(1) Run the GAC propagator. (2) If any unassigned variable exists, choose one and
assign it to any value in its current subdomain. (3) If any variable is unassigned, return
to step 1.

While Theorem 6 shows how to build a complete satisfying set generator from a
GAC propagator, for many constraints there is a faster complete satisfying set generator
which produces smaller satisfying sets. Theorem 6 always returns a complete satisfy-
ing set with as many literals as variables in XC . The complexity of finding smaller
complete satisfying sets is an open problem which we leave for future work. For all
the constraints in Minion which have GAC propagators, we have constructed complete
satisfying set generators (often by taking a small part of the propagator). We present
two cases here as examples.

Example 7. Consider the constraint M [x] = y for an array of variables M and
variables x and y. Given a subdomain list, this constraint is satisfiable if and only if
there exist i and j such that i is in the subdomain of x and j is in the subdomain of
both M [i] and y. If such i and j exist, then the literals 〈x, i〉, 〈M [i], j〉 and 〈y, j〉 form
a complete satisfying set.

Example 8. The complete satisfying set generator given in Theorem 6 requires finding
a complete assignment which satisfies the constraint. The first part of the AllDifferent
propagator [14] finds a satisfying assignment, so a complete satisfying set generator
can be formed by truncating the algorithm at this point.

12

3.4 Comparison to Previous Work
The most closely related previous work is by Brand and Yap [5] (CPF, described in
Section 2.2). There are several important differences between our work and CPF.
Firstly, their approach has reification variables whereas with constraint trees we are
able to avoid them (to reduce overheads). Secondly, constraint trees are static whereas
their framework posts new constraints and revokes constraints during search, poten-
tially saving space but with a time overhead. Thirdly, our approach is restricted to
propagation and checking of child constraints. It is not possible to propagate the nega-
tion of a child, except by introducing the negation as another child constraint. CPF
allows propagation and checking of the negation of any constraint, at the cost of re-
quiring a propagator for the reified form of each constraint.

Fourthly, and perhaps most importantly, CPF does not make use of movable trig-
gers. Constraints are posted and revoked during search, but between these two events
the triggers are fixed. The framework proposed here makes extensive use of movable
triggers (with satisfying sets) to check disentailment of both primitive and parent con-
straints. For example, checking disentailment of the AllDifferent constraint requires a
movable trigger on one literal per variable. By contrast, in CPF it would be necessary
to check the constraint for every domain change3.

It is possible to implement 2-literal watching for a SAT clause on Boolean variables
in CPF. This is done by dynamically posting literals such that only two are checked
for disentailment at any time. The same technique can be applied to a disjunction of
constraints, however CPF is not able to combine the technique with movable triggers
and satisfying sets for efficient disentailment checking of the child constraints.

4 Efficient Propagators for ATLEASTK, AND and OR

In this section we present a new algorithm for ATLEASTK of a set of constraints (de-
fined in Section 2.1). Then we show how that algorithm can be specialized to AND and
OR.

4.1 Theoretical Overview
The ATLEASTK algorithm is defined as: ATLEASTK(k,Con) is true if at least k con-
straints in Con are true. In Theorem 9, we show the fundamental result which the
algorithm for ATLEASTK uses to enforce GAC, assuming all the constraints in Con
have a GAC propagator and no two constraints in Con share a variable.

Theorem 9. Let constraint C = ATLEASTK(k, {Con1, Con2, . . . , Conn}) for a con-
stant k and constraints Coni, where the scopes of the Coni are disjoint.

Given a subdomain list SD for XC , where the subdomain of every variable in SD
is non-empty, then SD is GAC with respect to C if and only if, either:

1. At least k + 1 of the Coni have satisfying assignments in SD; or

3Assuming that complete satisfiability checking is required.

13

2. exactly k of the Coni has a satisfying assignment in SD, and SD is GAC with
respect to each of these k constraints.

Proof. 1. Assume that there exists some set S such that |S| = k + 1 and Coni

has a satisfying assignment for every i ∈ S. Then given any assignment to any
variable there are at least k members of S which do not contain this variable in
their scope. A satisfying assignment to C can be generated by assigning these
k constraints a satisfying assignment, and then assigning all other variables any
value. Therefore, every assignment to every variable is supported.

2. Assume there exists a set S such that |S| = k and Coni is satisfiable if and only if
i ∈ S. This implies in any satisfying assignment to C, then every Coni for i ∈ S
must be satisfied. Therefore for each i ∈ S, any assignment to any variable in
the scope of Coni which cannot be extended to a satisfying assignment to Coni

must be removed. This is the definition of GAC(Coni).

Any variable not in the scope of any Coni for i ∈ S can be assigned any value.
If there are less than k members of the Con which are satisfiable, clearly no as-

signment can satisfy C.

4.2 The Watched ATLEASTK Propagator
Our algorithm is split into three distinct phases, namely a setup phase, a watching phase
and a propagation phase. In this section we will present each phase separately. Before
presenting the steps in our algorithm, we first describe the state that the algorithm stores
between calls.

PropagateMode: a Boolean which represents if we are in the propagation phase of
the algorithm. It is reverted when search backtracks.

Watches: The indices of the k + 1 child constraints that are currently being watched.
These are not reverted when search backtracks.

The algorithm operates on child constraints c1 to cn, which are each required to
have a propagator and a satisfying set generator. By using the constraint trees frame-
work (Section 3.2), the child propagators are able to use any kind of trigger available in
Minion, and executing them is almost as efficient as propagating an ordinary constraint
(the only overhead being passing trigger events through the ATLEASTK).

The algorithm begins in the setup phase. This searches for k+1 satisfiable children.
If k+1 can be found then they are all watched. If exactly k are found then the propaga-
tion phase is entered, and if fewer than k are found then the constraint fails, signalling
that search should backtrack. The code for the setup phase is shown in Algorithm 1.

14

PropagateMode = FALSE;
if ∃S ⊆ {1 . . . n}. (|S| = k + 1 ∧ ∀ci ∈ S. ci has satisfying set) then

Place movable triggers on satisfying sets of all ci ∈ S;
Watches=S

else
if ∃S ⊆ {1 . . . n}. (|S| = k ∧ ∀ci ∈ S. ci has satisfying set) then

Initialise propagation of ci for all i ∈ S;
PropagateMode = TRUE;

else
Fail;

end
end

Algorithm 1: Code for setup phase

While PropagateMode is FALSE, whenever a literal of a satisfying set is pruned,
the watching phase of the algorithm is called. This either finds a new satisfying set,
or (if only k children are satisfiable) starts to propagate all k satisfiable children. The
code for the watching phase is shown in Algorithm 2

Input: i : The satisfying set of constraint ci has been lost
Global Data: PropagateMode
if PropagateMode then

Return
end
if ci is satisfiable then

Move movable triggers to new satisfying set of ci;
else

if ∃k. ck is satisfiable and k /∈Watches then
Move movable triggers to satisfying set of ck from ci;
Watches=(Watches \ {i}) ∪ {k};

else
Prop = Watches \ {i};
Initialise propagation of cj for all j ∈ Prop;
PropagateMode = TRUE;

end
end

Algorithm 2: Code for watching phase

Finally, the propagation phase is active when PropagateMode is TRUE. All trigger
events belonging to any cj where j ∈ Prop are passed through to cj . We do not give
code for the propagation phase.

It is possible to receive stale trigger events from movable triggers which were
placed in a different phase because movable triggers are not backtracked. Therefore
in the watching and propagation phases, some trigger events must be ignored or other-
wise handled specially. These are listed below, but in Algorithms 1 and 2 we assume
such events have already been dealt with appropriately.

Watching Phase: Trigger events from the propagation phase may be received in this

15

phase. Movable triggers are removed and ignored; static triggers cannot be re-
moved and are just ignored.

Propagation Phase: Static trigger events for children not being propagated are ig-
nored. All trigger events from setup and watching phases are ignored, and mov-
able trigger events from a non-propagating child cause the corresponding mov-
able trigger to be removed.

To prove our algorithm correct, we present two invariants. These two invariants are
exactly the conditions which are required to enforce GAC on ATLEASTK from The-
orem 9, so our algorithm achieves GAC under the assumptions that all children have
GAC propagators, all satisfying set generators are complete and no pair of children
share variables.

Lemma 10. After the setup phase for the algorithm has completed, at any point during
search where failure has not occurred and all items on the constraint queue have been
executed, the following two invariants are true.

1. PropagateMode = FALSE implies that k + 1 satisfying sets of k + 1 child con-
straints are being watched.

2. PropagateMode = TRUE implies that n − k child constraints are known to be
unsatisfiable, and the other k are being propagated.

Proof. Invariant 1 is true after setup, and whenever search progresses forward. How-
ever, we must consider what happens when search backtracks. If PropagateMode was
TRUE and remains so, then the condition is trivially true. There are two other cases to
consider.

• Backtrack from node A where PropagateMode is FALSE to node B, where Prop-
agateMode is still FALSE. The k+1 satisfying sets from A are retained, and they
are valid at B since the domain sets at B are (non-strict) supersets of those at A.

• Backtrack from node A where PropagateMode is TRUE to node B where it is
FALSE. The k + 1 satisfying sets were found at node B or at an intermediate
state between A and B. They remain valid at B since the domain sets at B are
supersets of those at any intermediate state.

For invariant 2, in both places where PropagateMode is set to TRUE, the invariant
holds. Suppose PropagateMode is set to TRUE at node A. For all nodes B below A in
the search tree, domain sets are a subset of those at A and therefore the invariant still
holds (i.e. the n− k unsatisfiable children remain unsatisfiable at B). When backtrack-
ing from A, PropagateMode is reverted to FALSE therefore the invariant holds.

As stated above, the proof assumes that each child constraint has a GAC propagator
and satisfying set generators are all complete. If this is not the case, in invariant 2
when k children are propagated the guarantee of GAC is lost, however it is clear that
the algorithm remains correct as long as the children have propagators meeting the
definition in Section 2.1.

16

The proof also assumes that no variables are shared between children. However,
this assumption will often not be met, so it requires some discussion. In terms of
constraint trees, consider an ATLEASTK vertex with two child vertices a and b, with
associated meta-variables xa and xb, and associated constraints y = 1 and y = 3 on
variable y ∈ {1, 2, 3}. Both meta-variables will be unassigned, and the ATLEASTK
algorithm will not deduce that they cannot both be equal to 1 at the same time. The
level of consistency enforced on the ATLEASTK is the same as achieved by doing the
following: replace y = 3 with y′ = 3 for a new variable y′ of identical domain, add the
new (GAC) constraint y = y′, and apply the Watched ATLEASTK algorithm. In this
translation, the two children y = 1 and y′ = 3 no longer share variables so Watched
ATLEASTK enforces GAC.

In general the level of consistency enforced on an ATLEASTK with shared vari-
ables is the same as achieved by doing the following: reformulating the ATLEASTK to
remove shared variables by duplicating variables and adding GAC equality constraints,
then enforcing GAC on the reformulated ATLEASTK. It is assumed here that each
child constraint has a GAC propagator, and that if a child constraint itself has repeated
variables in its scope, that its propagator still enforces GAC.

As discussed in Section 2.3, previous work has shown that given a disjunction
of constraints, each of which has a polynomial-time GAC propagator, it is possible
to achieve GAC propagation over the whole disjunction in polynomial-time, even if
disjuncts share variables (constructive disjunction). We leave efficiently combining
constructive disjunction, constraint trees and satisfying sets to future work.

4.2.1 A Satisfying Set Generator for ATLEASTK

Our Watched ATLEASTK algorithm uses satisfying sets extensively. To be able to
use ATLEASTK as a non-root node in a constraint tree, it is necessary to also have a
satisfying set generator for ATLEASTK.

Definition 11. Given satisfying set generators for a set {c1, . . . , cn} of constraints, the
satisfying set generator for ATLEASTK (c1, . . . , cn) is defined as follows:

If the satisfying set generators of more than n−k children return FAIL, then return
FAIL. Otherwise choose any set of k children whose satisfying set generators do not
return FAIL, and return the union of the satisfying sets they generate.

Lemma 12. The satisfying set generator for C = ATLEASTK(c1, . . . , cn) given in
Definition 11 is correct. Further, it is complete if the satisfying set generators for the
ci are complete and for all i 6= j, Xci and Xcj are disjoint.

Proof. (Correct) The satisfying set generator for C returns FAIL when fewer than k
children are satisfiable, matching the definition of ATLEASTK. A satisfying set F gen-
erated for C must contain satisfying sets for at least k of its children, therefore any
assignment that contains F must satisfy those k children.

(Completeness) If C is unsatisfiable, there cannot exist k children of C which have
a complete satisfying set, and so the satisfying set generator for C will return FAIL. If
C is satisfiable, it must have at least k satisfiable children, so complete satisfying sets
can be generated for these k children. Given any subdomain list SD for XC which

17

contains these k complete satisfying sets, the same k children must have a satisfying
assignment in SD. Joining these k disjoint assignments, together with any assignment
to every other variable in XC , produces a satisfying assignment to C. Therefore the
satisfying set generator for C is complete as long as the satisfying set generators for its
children are complete, and the scopes of the children are disjoint.

4.3 The Watched OR and AND Propagators
It is easy to take our algorithm for ATLEASTK, and generate algorithms for both AND
and OR. OR is logically identical to ATLEASTK when k = 1, although of course
this algorithm will not achieve constructive disjunction, as discussed in Section 2.3.
Furthermore AND is equivalent to ATLEASTK when k is set equal to the number of
children. (Watched AND is useless in isolation, as it will achieve identical propagation
as posting the child constraints individually. However, it is useful as a child of an OR
or ATLEASTK constraint.)

Given this observation, the propagators and satisfying set generators for Watched
OR and Watched AND are straightforward specializations of Watched ATLEASTK. For
both algorithms, there are some simplifications and performance gains which can be
achieved by fixing k.

The algorithm for OR is a generalization of unit propagation (with 2-literal watch-
ing) in SAT [12]. A SAT clause is an OR of literals of Boolean variables (〈xi, 0〉 or
〈xi, 1〉).

4.4 Complexity
Lemma 10 showed that the polynomial-time algorithm given for ATLEASTK achieves
GAC if there are no repeated variables, so the specialisations of it we describe in Sec-
tion 4.3 for Watched OR and Watched AND will also run in polynomial time and
achieve GAC. As discussed previously in Section 2.3, it is possible to achieve GAC
in polynomial time on Watched OR, even with variables repeated in different disjuncts.
Lemma 14 shows that this is not the case for ATLEASTK for k ≥ 2.

Definition 13. The TRUE constraint is the constraint on no variables which contains
a single empty tuple. Therefore it is always satisfied. The FALSE constraint is the
constraint on no variables which contains no tuples, and is therefore always false.

Lemma 14. GAC propagation of AND (C) is NP hard if |C| ≥ 2, and ATLEASTK
(k,C) is NP-hard if k ≥ 2 and |C| ≥ 2.

Proof. Bacchus et al. [9] show that the AND of two constraints with polynomial-time
GAC propagators is NP-hard, when the constraints are allowed to share variables. We
can extend this result to AND (C) for |C| ≥ 3 by adding |C| − 2 copies of the TRUE
constraint (Definition 13). We can further extend this result to ATLEASTK (k,C) by
adding k − 2 copies of the TRUE and |C| − k copies of FALSE (Definition 13).

18

4.5 Experimental Results
We claimed in Section 1.2 that both constraint trees and movable triggers are essen-
tial for propagation of logical connectives. Here we test that claim on four different
problems.

All of our experiments use Minion version 0.10 which can be downloaded from
http://minion.sourceforge.net. We ran our experiments on 4 servers us-
ing Intel Xeon 2.4GHz CPUs. Each server has 2 cores and 2GB of memory, and is
running Linux kernel 2.6.18. We repeated each experiment 5 times and took the in-
stance with minimum runtime as representative, since this is the run suffering from
the least interference and hence most closely approximating the ideal. The maximum
coefficient of variation of any set of 5 runs is under 1.3%. We have published all our
problem instances as online supplementary data associated with this paper4. All times
are given in seconds.

4.5.1 The Generalised Pigeon-Hole Problem

The first experiment is a generalisation of the pigeon-hole problem. We consider the
problem of finding assignments to a two-dimensional array of variables, where every
pair of rows in the array must be unequal.

The parameters for this problem are the number of rows n, the number of columns
p, and the domain size d. We introduce a matrix of variables M [1 . . . n, 1 . . . p] ∈
{1 . . . d}. All five models must introduce n(n − 1)/2 not-equal constraints between
pairs of rows in M . We compare five representations of the constraint that two rows r1
and r2 are not equal.

Watched OR: Implement M [r1, 1] 6= M [r2, 1] ∨ . . . ∨ M [r1, p] 6= M [r2, p] as a
Watched OR (described in Section 4.3) that enforces GAC.

Element: We ensure that r1 and r2 differ at some position by adding, for each pair of
rows:

• New variables X ∈ {1, . . . , p} and Y, Z ∈ {1, . . . , d}.
• The constraints M [r1, X] = Y , M [r2, X] = Z and Y 6= Z

Sum: Decompose the model for Watched OR into:

• New variables N [1 . . . p] ∈ {0, 1}.
• The constraints ∀i. (N [i] ⇐⇒ (M [r1, i] 6= M [r2, i])) and (

∑
N) ≥ 1

Watched Sum: The same model as Sum, except the constraint (
∑

N) ≥ 1 is replaced
by a SAT clause implemented using movable triggers.

Custom: A custom-written propagation algorithm using static triggers on all variables,
enforcing the same level of consistency as Watched OR (GAC).

4http://www.cs.st-andrews.ac.uk/∼pn/or-reify-journal-instances.tar.bz2

19

〈n, p, d〉 Element Watched OR
Time Nodes Time Nodes

〈8, 3, 2〉 25.81 12,335,593 0.27 25
〈8, 3, 3〉 8,028.62 3,112,501,760 0.27 28
〈8, 4, 2〉 2,137.13 1,092,789,218 0.27 33
〈8, 4, 3〉 >109,067.70 >45,000,000,000 0.27 36

Table 1: Search size for small instances of the array pigeonhole problem

These models explore all four possibilities of using static or movable triggers, with
reification or constraint trees, as shown in the table below.

Static Triggers Movable Triggers
Reification Sum Watched Sum
Constraint Trees Custom Watched OR

Note that using Theorem 6.6 from [18], as long as we get GAC on each of the
constraints in the Sum and Watched Sum models, we get GAC over the whole OR,
and further as long as we place the new variables at the end of the search ordering, the
resulting searches will be identical to the Watched OR model. Therefore, the only
model which could result in a different sized search is Element.

Since we achieve GAC, there is no scope for Lhomme’s algorithm [10, 11] (or
other constructive disjunction algorithms) to enforce a stronger consistency. Lhomme’s
algorithm is statically triggered, and would be similar to Custom in this context.

Table 1 shows just how badly the Element model performs in practice on some
very small instances, quickly leading to insolvable problems which the other models
we consider are all able to solve in less than a second. Due to the very poor performance
of this model, it will not be considered further.

As the remaining four models produce identical search trees, in Table 2 we com-
pare them on various instances in terms of the number of nodes of search they perform
per second. The Custom model improves significantly on Sum and Watched Sum by
eliminating the additional variables, but Watched OR is always faster than Custom,
sometimes by several orders of magnitude. When in the watching phase, the Watched
OR algorithm will use only four movable triggers: two for each watched child con-
straint. By comparison, the custom algorithm has assignment triggers on all variables.
This illustrates the importance of using an appropriate triggering mechanism, in this
case movable triggers.

With domain size 2, the Watched OR algorithm sometimes increases in speed as
instance size increases. This surprising result is caused by a decrease in the proportion
of variables with a movable trigger on them.

The small differences between Sum and Watched Sum show that the gain from
using movable triggers for the sum constraint is often insignificant compared to the
cost of propagating the reified not-equal constraints.

In summary, these results support the hypothesis that both constraint trees and mov-
able triggers can be used to efficiently propagate OR.

20

〈n, p, d〉 Watched OR Sum Watched Sum Custom
〈100, 5, 2〉 191,536.22 19,304.05 29,404.22 54,180.04
〈100, 10, 2〉 499,007.21 1,268.15 1,377.21 79,704.14
〈100, 20, 2〉 1,576,413.85 755.48 782.40 87,443.99
〈100, 30, 2〉 1,579,347.99 548.23 564.70 84,170.60
〈100, 40, 2〉 1,461,316.06 424.32 428.23 78,234.20
〈100, 50, 2〉 1,439,796.97 370.62 373.95 76,766.77
〈100, 5, 10〉 690,482.51 1,404.05 1,439.98 105,234.71
〈100, 10, 10〉 379,255.81 817.18 838.69 103,457.50
〈100, 20, 10〉 239,937.97 378.53 385.92 79,418.76
〈100, 30, 10〉 203,991.09 266.58 307.82 71,914.23
〈100, 40, 10〉 155,887.24 234.83 253.54 65,572.34
〈100, 50, 10〉 124,141.39 203.79 225.54 56,685.84

Table 2: Nodes per second averaged over 100 seconds of pigeonhole instances where
n = 100

4.5.2 The Anti-Chain Problem

In our second experiment we consider the anti-chain problem, defined below.

Definition 15. An anti-chain is a set S of multisets where ∀{x, y} ⊆ S. x 6⊆ y∧y 6⊆ x.

The 〈n, l, d〉 instance of anti-chain finds a set of n multisets with cardinality l drawn
from d elements in total, satisfying the constraint of Definition 15. We model this
as a CSP using n arrays of variables, denoted M1, . . . ,Mn, each containing l vari-
ables with domain {0, . . . , d − 1} and the constraints ∀i 6= j ∈ {1, . . . , n}. ∃k ∈
{1, . . . , n}. Mi[k] < Mj [k].

Each variable Mi[v] represents the number of occurrences of value v in multiset i,
up to a maximum of d− 1. Each pair of rows Mi and Mj differ in at least two places:
in one position k, Mi[k] < Mj [k] and in another position p, Mi[p] > Mj [p]. This
ensures that neither multiset contains the other.

Similarly to the generalised pigeon-hole problem, we consider 4 implementations
of the constraint ∃i. M [i] < N [i] for arrays M and N .

Watched OR: Implemented as a Watched OR.

Element: Introduce variables i with domain {0, . . . , l − 1} and m and n each with
domain {0, . . . , d − 1}. Impose the three constraints M [i] = m,N [i] = n and
m < n.

Sum: Introduce a new array of Boolean variables b of length l and impose the set of
constraints ∀i. (M [i] < N [i])↔ b[i] and also

∑
(bij) ≥ 1.

Watched Sum: The same model as Sum, except the constraint (
∑

b) ≥ 1 is replaced
by a SAT clause b[1] ∨ . . . ∨ b[l] implemented with movable triggers.

21

〈n, l, d〉 Element Watched OR
Time Nodes Time Nodes

〈11, 4, 3〉 3.83 142,674 0.64 77,117
〈12, 4, 3〉 77.40 3,030,555 9.68 2,189,034
〈13, 4, 3〉 4,488.45 166,888,355 416.89 95,301,659
〈14, 4, 3〉 4,931.10 166,888,372 444.87 95,301,661
〈9, 4, 10〉 3.76 90,678 0.34 12,349
〈10, 4, 10〉 28.31 636,635 0.73 75,807
〈11, 4, 10〉 171.82 3,340,225 3.16 399,997
〈12, 4, 10〉 775.36 12,311,354 15.68 1,815,755
〈11, 5, 2〉 735.76 47,602,427 188.30 47,602,427

Table 3: Search size for finding the first solution to the antichain problem

〈n, l, d〉 Element Watched OR
Time Nodes Solutions Time Nodes Solutions

〈2, 4, 3〉 0.02 18,628 8,748 0.00 8,099 4,050
〈3, 4, 3〉 3.62 2,855,281 1,269,108 0.16 288,377 144,150
〈4, 4, 3〉 814.42 561,666,863 240,375,312 4.94 7,657,223 3,823,200
〈3, 6, 2〉 2.79 3,102,719 1,551,360 0.10 167,999 84,000
〈3, 7, 2〉 61.05 70,533,119 35,266,560 1.04 1,845,143 922,572

Table 4: Finding all solutions for instances of the antichain problem

We did not construct a custom propagator for this experiment because it takes con-
siderable effort and we are concerned with generic algorithms.

Similarly to the previous experiment, the Watched OR , Sum and Watched Sum
models all enforce the equivalent of GAC on the original expression, and Element does
not.

Once again, we will consider the Element model separately, as we must compare
time, rather than just nodes per second. In each of these experiments, we search for
only the first solution and results are given in Table 3.

These results are much closer than those in the pigeon hole problem. On some
instances, such as 〈11, 5, 2〉, the Element model even achieves the same sized search
as Watched OR. However, Element was slower in terms of nodes per second on all
the instances we considered. Furthermore, Element sometimes exhibits a much larger
number of solutions. Table 4 shows the results of finding all solutions to a small set of
problems. The number of solutions found by the Watched OR model is the correct
number of solutions, the Element duplicates some of these solutions multiple times,
due to the fact its auxiliary variables can take multiple values for each solution to the
problem. This shows once again the limitation of the Element model in practice.

To compare the other three models we consider how many nodes per second the
particular model can solve, averaged over the first 100 seconds of search. In both cases
we consider solving the anti-chain problem on 100 arrays (n = 100) of varying length

22

〈n, l, d〉 Watched OR Sum Watched Sum
〈100, 5, 2〉 22,351.38 727.77 984.32
〈100, 10, 2〉 13,503.04 598.67 552.10
〈100, 20, 2〉 8,812.30 466.01 640.04
〈100, 30, 2〉 6,564.40 492.44 386.65
〈100, 40, 2〉 6,426.52 434.64 374.49
〈100, 50, 2〉 4,870.18 451.68 343.52
〈100, 5, 10〉 344.69 42.23 32.89
〈100, 10, 10〉 382.78 34.08 34.95
〈100, 20, 10〉 385.45 39.59 37.25
〈100, 30, 10〉 413.34 42.92 41.85
〈100, 40, 10〉 506.79 56.50 54.96
〈100, 50, 10〉 672.59 67.06 69.39

Table 5: Nodes per second achieved on antichain instances

and domain size.
A number of conclusions can be drawn from the results of this experiment, given in

Table 5. First of all, our algorithm performs well compared to Sum on short vectors, but
performance decreases as the length increases. For example with Boolean domains for
length 5 arrays our algorithm is around 31 times faster, decreasing to 11 times at length
50. We note that for larger domains the nodes per second increases as the problem
size increases. This is in common with the pigeon-hole problem, and is caused by a
decrease in the proportion of variables with a movable trigger on them.

This experiment partially supports the hypothesis that both constraint trees and
movable triggers are required to efficiently propagate OR. However we do not have an
algorithm using static triggers with constraint trees, so we have not fully explored the
space.

4.5.3 The Hamming Codes Problem

In this section we consider Hamming codes (see [19]), defined below.

Definition 16. The 〈n, l, d, s〉 instance of the Hamming problem is to find a set of n
codewords of length l with alphabet {1 . . . d}, where each pair of codewords differ in
at least s positions.

This is modelled as follows. We have n arrays of integers, named M1, . . . ,Mn,
each of length l and domain {1, . . . , d} with the following Hamming distance con-
straints: ∀{i, j} ⊆ {1, . . . , n}.

(∑
k∈{1,...,l}Mi[k] 6= Mj [k]

)
≥ s. We compare 3

representations of the constraint
(∑

i∈{1,...,l}M [i] 6= N [i]
)
≥ s.

Watched ATLEASTK: Directly represented as a Watched ATLEASTK, the algorithm
described in Section 4.2.

23

Distance (s) Watched ATLEASTK Sum Watched Sum
49 12,660.01 10,932.19 1,746.42
45 55,012.06 50,508.98 4,446.96
40 53,005.73 52,200.72 9,491.13
30 159,528.97 54,943.08 19,336.15
20 184,247.49 54,770.75 30,900.58
10 76,531.80 20,405.95 13,281.60
5 1,502,509.71 1,613.26 1,639.26
3 1,733,255.03 1,226.18 1,239.55
2 1,726,415.28 1,166.95 1,166.50

Table 6: Nodes per second achieved on Hamming instances

Sum: Introduce an array of auxiliary Boolean variables b[l] and add the set of con-
straints ∀i ∈ {1, . . . , l}. (M [i] 6= N [i])↔ b[i]. Then impose

∑
b ≥ s.

Watched Sum: The same model as Sum, except the constraint
∑

b ≥ s is replaced
by a watched sum constraint.

For this problem we do not attempt to give an Element model, because preliminary
experiments showed that the performance was so poor it was impossible to usefully
compare it to any of the other models. All three models enforce GAC, because the
child constraints of the ATLEASTK do not share variables.

We experimented with the Hamming codes problem where n = l = 50 and d = 2,
and the Hamming distance s is varied. The results are presented in Table 6. As stated
in Section 4.2, we expect the Watched ATLEASTK algorithm to be most efficient when
k is small (where k = s here). This is supported by Table 6, which shows Watched
ATLEASTK performing much better at low values of s than high values. However
Watched ATLEASTK dominates Sum and Watched Sum at all values of s. At s = 49,
Watched ATLEASTK will watch all child constraints, so there is little scope for it to
improve on Sum.

In summary, this experiment provides some evidence that the gains from using
constraint trees and movable triggers apply to ATLEASTK as well as OR.

4.5.4 The Supertree Problem

The supertree problem [20] is that of transforming an input set of rooted bifurcat-
ing trees (species trees), describing the evolutionary history of a set of species, into
an output tree respecting all the relationships in the input. Various CP models have
been created to solve this problem, here we will use the model of [21] as well as the
optimisation model of [22]. Both consist almost entirely of constraints of the form
(a ≤ b = c) ∨ (b ≤ a = c) ∨ (c ≤ a = b) ∨ (a = b = c). The standard model requires
all such constraints to be satisfied, while the optimisation model maximises the number
that are satisfied.

This can be modelled directly as OR(AND(a ≤ b, b = c), AND(b ≤ a, a =
c), AND(c ≤ a, a = b), AND(a = b, a = c, b = c)) using Watched AND and Watched

24

Instance Nodes Watched time Sum time Saving
AB 58 0.32 0.42 22.12%
AD 97 0.45 0.79 42.24%
AF 66 0.32 0.40 20.60%
AG 152 0.41 0.73 43.87%
BD 72 0.54 0.72 24.65%
BF 27 0.33 0.43 24.36%
BG 78 0.47 0.73 35.12%
CD 53 0.58 1.14 48.50%
CF 30 0.38 0.53 29.14%
DF 81 0.94 1.07 12.76%

Table 7: Experimental data for solvable supertree instances

Instance Best sol found Watched time Sum time Saving
AC 48 cons satisfied 3,063.09 11,146.44 72.52%
BC 27 3,591.10 22,235.87 83.85%
CG 13 1,264.82 2,360.06 46.41%
DG 43 3,766.26 8,404.40 55.19%

Table 8: Experimental data for unsolvable supertree instances

OR. Note that this modelling does not require any auxiliary variables. The conjuncts
and disjuncts share variables, so GAC may not be enforced by the Watched AND and
OR propagators.

We compare this to the Sum model. We have already described how OR is handled
using sums (Section 4.5.1). To represent AND, we reify each conjunct, and then use a
sum constraint to represent the conjunction. This encoding uses auxiliary variables and
enforces the same level of consistency as the above Watched OR and AND encoding.

We use all instances from Moore and Prosser [22] that have two input trees and are
small enough to load. (The model takes cubic space and the larger instances exceeded
2GB RAM.) These are partitioned into ten solvable instances and four instances where
input trees contain conflicting information (e.g. tree 1 says that a and b are closer
relatives to each other than to c, whereas tree 2 says that a and c are closest). The
standard model is used for the solvable instances, and the optimization model for the
unsolvable ones.

Table 7 shows that the watched model is significantly faster than Sum for the ten
solvable instances. These times do not include time to load instances, however load
times are larger for Sum because it is less concise. Table 8 presents results for the
unsolvable instances. We ran these instances to 2,000,000 nodes and again the results
are in favour of the watched model. Using a profiler we discovered that the speedups
are due to an increase in propagation speed; the reduced cost of creating, setting and
backtracking the additional auxiliary variables has an insignificant effect in this case.

25

In summary, this final experiment shows that the Watched OR algorithm can be
valuable when combined with another parent constraint.

5 Reification
The reification of a constraint C produces another constraint Cr, such that Cr has an
extra Boolean variable r in its scope, and (in any solution) r is set to true iff the original
constraint C is satisfied.

Cr
def
≡ r ⇔ C

Constraints can be combined in arbitrary ways using reification. For example, con-
sider the exclusive-or of a set of constraints, as follows.

C1 ⊕ C2 ⊕ · · · ⊕ Cn

An odd number of these constraints must be satisfied in any solution. It is straight-
forward to represent this structure with reification. The constraints C1 . . . Cn are each
reified, creating extra variables r1 . . . rn. These are added using a sum constraint, and
the total variable is constrained to be odd.

Previous work on generic reification (Section 2.4) has been limited in one of two
ways: the method cannot make use of efficient global propagators such as Régin’s
AllDifferent [14] (e.g. indexicals and propia [13, 15]); or GAC propagation is not
achieved [16, 8]. Our methods overcome both these limitations, at the cost of requiring
propagators for both C and ¬C.

In this section we describe two ways to propagate reified constraints, and com-
pare them empirically. The first method uses only static triggers. The second method
uses movable triggers, and is more complex, but it overcomes some of the apparent
disadvantages of the first method.

We also investigate another form of reification, which we call reifyimply, where the
reification variable implies the constraint, as follows.

Cri
def
≡ r ⇒ C

Again we describe an algorithm based on checking and a movable trigger algorithm
to propagate reifyimplied constraints.

5.1 Theoretical Analysis
Theorem 17 provides a simple algorithm which achieves GAC propagation for r ⇔ C,
given a GAC propagator for both C and ¬C. We shall consider two different ways of
making this algorithm more efficient, using incrementality. In general the propagators
for C and ¬C will be very different and can have very different complexities. Lemma
18 shows that the propagator for r ⇔ C is tractable if and only if the propagators for
both C and ¬C are tractable.

26

Theorem 17. The following Algorithm 3 is a GAC propagation algorithm for r ⇔ C
for Boolean variable r and any constraint C, assuming r is not in the scope of C and
that the propagators for C and ¬C achieve GAC propagation.

Input: r, C
if Domain(r) = {TRUE, FALSE} then

if There is no satisfying assignment to C then
r 6= TRUE

end
if There is no satisfying assignment to ¬C then

r 6= FALSE
end

end
if Domain(r) = {TRUE} then

Propagate(C)
else

if Domain(r) = {FALSE} then
Propagate(¬C)

end
end

Algorithm 3: GAC propagation algorithm for reify

Proof. Consider the following cases upon entering the algorithm:

1. Domain(r) = {TRUE, FALSE}: In this case, we check if the values in r are
supported. This requires finding both an assignment to XC which satisfies C,
and an assignment which does not satisfy C. If either value is unsupported it is
removed, and the algorithm continues with case 2 below.

If neither value of r is removed then every value in the domain of every variable
in the scope of C is supported, by either C or ¬C. Any assignment to the vari-
ables in C can be extended to a satisfying assignment to r ⇔ C by adding either
r = TRUE or r = FALSE, depending on whether the assignment satisfies C or
¬C.

2. Domain(r) contains a single value: In this case, if the domain of r is {TRUE},
r ⇔ C is exactly equivalent to C, and if the domain of r is {FALSE}, the con-
straint is equivalent to ¬C.

Lemma 18. GAC(r ⇔ C) is NP-hard if and only if at least one of GAC(C) and
GAC(¬C) is.

Proof. Running GAC(C) on a subdomain list removes all domain values if and only if
there is no satisfying assignment for C. Therefore, Theorem 17 demonstrates how to
implement GAC(r ⇔ C) using at most one invocation of GAC(C) and at most one
invocation of GAC(¬C). Therefore GAC(r ⇔ C) is polynomial time if both GAC(C)
and GAC(¬C) are. By assigning r to TRUE or FALSE, we can see that GAC(r ⇔ C)
must be at least as hard as both GAC(C) and GAC(¬C).

27

In this paper reification is implemented as a constraint tree with two child con-
straints, C and ¬C. This raises the issue of shared variables among child constraints,
as discussed in Section 2.4.2. However, the constraint tree propagator implements Al-
gorithm 3, and therefore enforces GAC despite the shared variables.

Theorem 19 presents a basic algorithm for implementing the constraint r ⇒ C. We
will improve this basic algorithm using incrementality.

Theorem 19. The following Algorithm 4 is a GAC propagation algorithm for r ⇒ C
for Boolean variable r and any constraint C, assuming r is not in the scope of C and
the propagator for C achieves GAC.

Input: r, C
if Domain(r) = {TRUE, FALSE} then

if There is no satisfying assignment to C then
r 6= TRUE;

end
else

if Domain(r) = {TRUE} then
Propagate(C)

end
end

Algorithm 4: GAC propagation algorithm for reifyimply

Proof. This proof follows the cases in the algorithm:

1. Domain(r) = {TRUE, FALSE}: In this case, every value in the domain of ev-
ery variable in the scope of C is supported, as an assignment which contains
r = FALSE satisfies the constraint. Therefore the only value which could possi-
bly be eliminated is r = TRUE. This value is allowed if and only if there exists
an assignment to XC which satisfies C.

2. Domain(r) contains a single value: In this case, if the domain of r is {TRUE},
the constraint is exactly equivalent to just C, and if the domain of r is {FALSE},
any assignment satisfies the constraint so no pruning can occur.

5.2 Algorithms for Reification and Reifyimply
The following algorithms for r ⇔ C and r ⇒ C have some features in common.
They all have a phase for checking entailment/disentailment of C, so that r can be set
when necessary (the watching or checking phase). They all have a phase for propagat-
ing C (or ¬C) when that is necessary (the propagation phase). The movable trigger
algorithms also have a setup phase where movable triggers are placed for the first time.

When describing the algorithms, C is described as a child constraint object, with
methods for propagation, checking disentailment (checkUnsat) and a satisfying set gen-
erator. Checking for disentailment is equivalent to checking if a satisfying set generator
would return FAIL. This means it can often be implemented more efficiently. Full reifi-
cation also has ¬C as a child. Child constraints do not receive trigger events unless
they are passed through by the parent.

28

5.3 Watched Reification
First we describe implementing reification using movable triggers. Following this, we
will show three simple modifications of this algorithm. In this scheme, both the positive
and negative child constraints must implement a satisfying set generator. Watched
reification has three phases, described below. There are three sets of triggers: triggers
required by the child constraints; the static trigger on r; movable triggers placed in
phases 1 and 2 to watch satisfying sets.

Setup Phase: If r is assigned, move to the propagation phase. Otherwise, call the
satisfying set generator for both child constraints. If either child returns FAIL,
then it is disentailed. Set r appropriately and move to the propagation phase.
Otherwise, place static triggers on r and movable triggers on both satisfying sets
and move to the watching phase.

Watching Phase: If r is assigned, move to the propagation phase. If a domain value
being watched is removed, then determine which child it belongs to, and call the
satisfying set generator again for the child. If it returns FAIL, set r appropriately
and move to the propagation phase. If it returns a satisfying set, place movable
triggers on it and remain in this phase.

Propagation Phase: If r = 1 then propagate the positive constraint, otherwise prop-
agate the negative constraint. Trigger events for the appropriate child constraint
are passed through.

Since movable triggers are not backtracked, it is possible to receive stale trigger
events from movable triggers which were placed in a different phase. Therefore in the
watching and propagation phases, some trigger events must be ignored or otherwise
handled specially. These are listed below.

Watching Phase: Trigger events from the propagation phase may be received in this
phase; in this case the movable trigger is removed and the event is ignored. Any
trigger events belonging to child constraints are ignored.

Propagation Phase: When propagating one child constraint, trigger events for the
other child are ignored. Movable trigger events from setup and watching phases
are ignored.

Notice that movable triggers from the setup and watching phases are not removed
in the propagation phase. When backtracking into the watching phase, there is no
opportunity to place movable triggers, but the previous set are still be present so there
is no need to replace them.

The setup phase only occurs when the propagator is first invoked. The other two
phases occur during search, and we use one backtracking Boolean to indicate which
phase the algorithm is in. This algorithm does not make use of the fact that disentail-
ment of C implies entailment of ¬C, and therefore can perform unneccesary propaga-
tion of entailed child constraints. We leave this for future work.

29

5.3.1 Reifyimply

We implemented watched reifyimply, using the abstract Algorithm 4. As Algorithm
4 is a subset of Algorithm 3, we did this by taking a subset of the concrete algorithm
described in Section 5.3 above. This required removing the child constraint ¬C, as it
is not necessary to check disentailment of, or propagate, ¬C. Also, it is only necessary
to trigger when r is assigned 1, as no propagation occurs when r is assigned 0.

5.4 Static Reification
We implement a static variant of both reify and reifyimply. These use a disentailment
checker instead of a combination of a satisfying set generator and movable triggers to
detect when a constraint is disentailed. Static reification requires both the positive and
negative child constraints have a checkUnsat method which checks if the constraint is
disentailed. Before search begins, the (static) triggers of both the positive and negative
constraints are placed on the variables, along with a trigger on the reification variable.5

5.5 Empirical comparison of reification algorithms
In this section we give an empirical comparison of reify and reifyimply, in their watched
and static forms, using a range of realistic benchmark problems.

Notice that checkUnsat (CU) in static reification, and satisfying set generators
(SSG) in watched reification perform similar tasks. Both determine whether a con-
straint is disentailed. Satisfying set generators additionally return a satisfying set of
literals when the constraint is not disentailed. For all reified or reifyimplied constraints
in the benchmarks, the two functions are equivalent for determining disentailment.
Hence, static and watched algorithms provide the same level of consistency, and the
solver explores the same number of search nodes for all benchmarks.

One metric we use to compare static and watched algorithms is the number of
calls made to CU and SSG. Consider a hypothetical solver which only offers triggers
(static or watched) on individual domain values. CU must have static triggers on any
value which may be important at any time during search. SSG is able to place watches
during search. In this solver SSG cannot be called more times than CU. In most cases,
this carries through to Minion, however Minion has assignment triggers which are not
available to SSG. For movable triggers to have any potential, the number of calls to
SSG must be substantially fewer, since the cost of calling it is somewhat higher and
there is the additional overhead of placing movable triggers.

The methodology and hardware used for the following experiments was the same
as for those described in §4.5.

5.5.1 Steel Mill Slab Design

Our first benchmark consists of instances of the steel mill slab design problem [23].
This is a well-known optimisation problem involving assigning orders to a steel mill
to slabs, minimising the total waste. Our instances include reifyimplied lex ordering

5Our implementation of static reification does not allow children to use movable triggers.

30

Instance Watched Static Overall
Time Calls to SSG Time Calls to CU Winner

40 2,120.02 151 2,180.97 1,350,922,599 W by 2.87%
50 2,329.73 131 2,362.71 758,088,075 W by 1.42%
60 2,839.90 156 2,884.10 1,193,581,857 W by 1.56%
70 3,542.02 246 3,619.98 1,589,486,539 W by 2.20%
80 4,488.40 282 4,622.78 2,525,193,986 W by 2.99%
90 5,390.12 320 5,248.09 2,596,608,279 S by 2.63%

Table 9: Times and call counts for steelmill instances

constraints on rows of a 0/1 matrix, these constraints break symmetry on the rows and
are reifyimplied so that they can be switched off when a row (corresponding to a slab)
is not needed to fulfil the set of orders.

Our evaluation on these instances exhibits solid results in favour of watched reify-
imply. Table 9 shows an exceptional decrease in calls to SSG compared to CU, for
watched versus static reifyimply, running the instances up to 100,000,000 nodes. Here
billions of calls are being made to CU compared to hundreds for SSG. In fact, after
the first 100 nodes of search in all these examples, the movable triggers are hardly ever
moved. Instance 90 is typical: during the first 100 nodes, SSG is called 260 times; at
10,000 nodes it has been called 301 times; and at 1,000,000 nodes it has been called
315 times. For the same instance CU is being called over 60 times per node on aver-
age up to 1,000,000 nodes. This dramatic improvement is due to the movable triggers
being very rarely triggered in the watched variant, whereas for the static variant the
bound triggers are being woken up frequently even when the constraint remains sat-
isfiable. SSG needs to place movable triggers on just two values in the scope of the
lexleq needed to ensure it remains satisfiable, whereas CU has bound triggers on all the
variables in the scope of the constraint.

Table 9 shows that this improvement in calls translates to an improvement in solu-
tion time. This improvement is relatively small in absolute terms, but this is because
most of the time is spent propagating other constraints besides reifyimply. With the
aid of a profiler, we have discovered that, on benchmark 90, the average call to SSG
for the lexicographic ordering constraint consumes 2695 CPU instructions whereas the
average call to CU consumes just 54. These statistics give an impression that the SSG
movable triggers must be triggered substantially less often than the static triggers to
justify the cost, in this case more than 50 times less often (since there is an additional
overhead of placing dynamic triggers on the literals).

5.5.2 Blackhole Solitaire

Blackhole solitaire [24] is a single-player card game. The initial layout is 17 stacks of
3 cards, with all cards visible. There is one special stack, containing only the ace of
spades initially, named the black hole. Cards are moved from the top of a stack onto
the black hole, and the game is completed when all 51 cards have been moved onto
the black hole. The card moved must be adjacent to (but not the same as) the previous

31

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
....................................

........

............................
........

............................
........

............................
........

............................
....................................

........

...
................

................
................

0e+00 1e+07 2e+07 3e+07

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................

................

................

................

................

................

0
10

00
00

0
20

00
00

0

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

calls to check unsat

ca
lls

to
SS

G

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

... ...

... ...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........

Figure 3: Comparison of calls to SSG and CU for blackhole problems

card on the black hole, regardless of suit, where adjacency wraps around (i.e. king is
adjacent to ace). A solution is a sequence of 51 valid moves.

Our model of blackhole solitaire contains reifyimplied less-than constraints (r ⇒
x1 < x2). The less-than constraint places two static triggers, one on the lower bound of
x1 and the other on the upper bound of x2. SSG always returns two movable triggers,
the lower bound of x1 and the upper bound of x2. When bounds are restored on back-
tracking, the movable triggers are no longer on the bounds. This effect allows SSG to
be called many fewer times than CU on these benchmarks. The model also contains
reified less-than and sum-greater constraints, which were propagated statically in both
cases, so as not to influence the results.

As shown in Figure 3 the total number of calls to SSG for all constraints is much
smaller than the number of calls to CU for each instance of blackhole we tried. The
black line on the plot is the line y = x/10, or the “10 times better line”, since all points
beneath the line use at least 10 times more calls to CU than SSG, for static and watched
reifyimply respectively. Using a profiler, we have discovered that the mean number of
CPU instructions in a call to SSG was 54 versus 9 instructions per call to CU, meaning
that the ratio of CU to SSG would have to be more than 6 for dynamic reify-imply
to have a chance of winning. This does not take into account the time to additionally
place the watches, and so Figure 4 shows that even a ratio of 10 is not sufficient, as the
static algorithm is slightly faster on this benchmark.

32

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
....................................

........
............................
........

............................
........

............................
........

........

............................
........

............................
........

............................
........

........

............................
........

............................
........

............................
........

............................
........

..
................

................
................

0 500 1000 1500

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................

................

................

................
1.

00
1.

01
1.

02
1.

03

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

CPU time for static (seconds)

w
at

ch
ed

tim
e

ov
er

st
at

ic
tim

e

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

..

Figure 4: Comparison of time spent on blackhole problems

5.5.3 Contrived benchmark

We use a reified allDifferent constraint in a contrived problem intended to demonstrate
the potential of watched reification. We expect that watched reification will perform
well if the movable triggers can settle on values which are never (or only rarely) re-
moved. This effect was observed for watched reifyimply, on the steel mill slab design
problem.

Problem instances can be generated for any positive integer k, and consist of two
k-vectors X and Y with domains {1, . . . , k}. The constraints are as follows: ∀i ∈
{1 . . . k} : (2X[i]) 6= Y [i]; X[k−1] 6= X[k]; X[k−1] = X[k] and r ⇔ allDifferent(Y).

The allDifferent constraint uses a GAC algorithm [25], and maintains a matching
from variables to distinct values. SSG for the positive constraint returns a k-matching
if one exists, hence there is one movable trigger for each variable in X . For the static
reify, CU is called for any domain change. CU is very similar to SSG, it maintains a
maximal matching using the same algorithm as SSG.

The negative constraint waits until all variables are assigned, then checks the as-
signment6. SSG for the negative constraint places two movable triggers on different
values of an unassigned variable, if possible. If all variables are assigned, SSG checks
if the constraint is disentailed. CU requires an assignment trigger on each variable.

The variable ordering is X in index order, values are branched in ascending order.
X[k] cannot be consistently assigned, and there is no restriction on the rest of X , so

6The standard implementation in Minion 0.10 is a Watched OR of equal constraints on all pairs of vari-
ables. Unfortunately, Watched OR is incompatible with the static reification algorithm, so for this experiment
the Watched OR was replaced with an assignment checker.

33

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

........

............................
........

............................
........

............................
........

............................
....................................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

...
................

................
................

................
................

0 2000 4000 6000 8000 10000

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................

................

................

................

................

................

................

................

1.
00

1.
10

1.
20

1.
30

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

CPU time for static (seconds)

w
at

ch
ed

tim
e

ov
er

st
at

ic
tim

e

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

..

Figure 5: Comparison of time spent on English peg solitare instances

the solver explores kk−1 assignments of X[1 . . . k − 1]. Whenever a variable X[i] is
set to j, 2j is removed from Y [i] by the not-equal constraint. Therefore odd values in
Y are never removed, and movable triggers may settle on them.

We ran instance k = 20 with a node limit of 10,000,000. Watched reify made 2509
calls to SSG, compared to 10526315 calls to CU. With static reify, Minion took 50.82s,
and with watched reify it took 50.16s. Using the callgrind profiler (and a node limit
of 500,000), we found that Minion uses 6.60 bn CPU instructions with static reify and
6.42 bn with watched reify. The static reify propagator alone uses 193m instructions,
compared to 7.90m for the watched reify propagator. This clearly shows that most of
the cost is outside the reification, and that watched reify is performing much better than
the static variant, as we would expect from the call counts.

5.5.4 English Peg Solitaire

Finally we consider the game of English peg solitaire [26], which is played with 32
pegs placed in a board with 33 holes. Pegs are removed by hopping moves (similar
to checkers/draughts) until a goal state is reached or no moves are possible. We use
model C of Jefferson et al [26], slightly adapted to suit Minion rather than ILOG Solver.
These benchmarks contain a large number of reified sum constraints. The constraints
state that a sum of Boolean variables is 1 or more. The length of the sum ranges from
1 to 8 variables.

We used 33 instances with different goals. All instances are run to a node limit
of 10,000,000. Figure 6 shows that, on these instances, the number of calls to SSG
by watched reification is usually between a half and third of the calls to CU for static

34

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
....................................
........

............................
....................................

........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........

............................
........
............................
........

............................
........

............................
....................................

........

............................
........

............................
........
............................
........

............................
........

............................
........

............................
........

..
................

................
................

................
................

0e+00 1e+09 2e+09 3e+09 4e+09 5e+09

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

................

................

................

................

................

0.
0e

+0
0

1.
0e

+0
9

2.
0e

+0
9

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

calls to check unsat

ca
lls

to
SS

G

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

... ...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.......

Figure 6: Comparison of calls to SSG and CU for English peg solitaire instances

reification. However, Figure 5 shows that static reification is faster for all instances.
We used the profiler callgrind with instance solitaire benchmark 6 (which

takes 40s with static reification). Minion uses 71.2 billion CPU instructions with static
reification, and 78.1 with watched. Static reify alone uses 21.8 bn, and watched reify
uses 26.5, an increase of 22%7.

5.5.5 Conclusion to empirical comparison

The results of our experiments are not conclusive, demonstrating that different imple-
mentations perform better on different constraints and problems. In all cases, we have
shown the potential of a movable triggers approach, by demonstrating that the SSG
function is called much less often than CU. On the other hand, static reification (and
reifyimply) is simple and fast, and in many cases it is faster than the watched variant.

6 Conclusion
In this paper we have explored possibilities for implementing logical connectives in a
constraint solver, with the overall hypothesis that movable triggers and constraint trees
together are invaluable. These two solver features are combined with satisfying set
generators, which provide an efficient way of checking the satisfiability of a constraint.

7Changing the reification algorithm changes the propagation order and affects other constraints. In this
case, the difference for reify alone is 4.8 bn and for the whole solver it is 6.9 bn.

35

First we focussed on ATLEASTK, OR and AND of arbitrary constraints. The ubiq-
uitous way of modelling these in CP is by reifying the constraints, and applying a
sum-≥ k constraint (or equivalent) to the reification variables. With this approach,
the solver is required to propagate all reified constraints at all times. By contrast, the
Watched ATLEASTK algorithm we present has at most k + 1 active constraints at any
time — all others have zero cost. Using this approach on Hamming codes we were
able to demonstrate a 2,000 times speedup on some instances compared to reification.

We also presented Watched OR, a specialisation of Watched ATLEASTK. In our
evaluation we observed that Watched OR can be over 10,000 times faster than reifica-
tion, and is consistently much faster on all problems we tested.

By implementing satisfying set generators for Watched ATLEASTK, OR and AND,
these parent constraints can be arbitrarily nested, giving a rich language for logical
expressions. We hope to extend this work to other logical connectives, and also to
achieve GAC in the case where child constraints share variables, while maintaining
high performance.

Secondly, we investigated two ways of implementing both reification and reifyim-
ply for any constraint. We described simple algorithms which use static triggers, and
more sophisticated algorithms which make use of movable triggers to reduce the num-
ber of constraint checks. In our experiments, the results were mixed. In some cases,
the simple static algorithms were faster, and in others the watched algorithms paid their
additional overhead and were more efficient.

The common thread through this paper is that movable triggers, satisfying sets and
constraint trees together allow simple, efficient implementation of logical connectives
of constraints. Once a constraint has a satisfying set generator (which is usually much
simpler than its propagation function), it can be used in Watched OR and other parent
constraints, and it can be reified and reifyimplied. This makes a simple, general and
compelling framework for implementing logical connectives.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments about
an earlier version of this paper. This work was funded by EPSRC research grant
numbers EP/C523229/1 (Jefferson), EP/H004092/1 (Jefferson, Nightingale, Petrie),
EP/E030394/1 (Moore, Nightingale), and a Royal Society Dorothy Hodgkin Fellow-
ship (Petrie).

References
[1] Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in

minion. In Benhamou, F., ed.: CP. Volume 4204 of Lecture Notes in Computer
Science., Springer (2006) 182–197

[2] Apt, K.R.: Principles of Constraint Programming. Cambridge University Press
(2003)

36

[3] Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006)

[4] Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In
Brewka, G., Coradeschi, S., Perini, A., Traverso, P., eds.: ECAI. Volume 141 of
Frontiers in Artificial Intelligence and Applications., IOS Press (2006) 98–102

[5] Brand, S., Yap, R.H.C.: Towards ”propagation = logic + control”. In Etalle,
S., Truszczynski, M., eds.: ICLP. Volume 4079 of Lecture Notes in Computer
Science., Springer (2006) 102–116

[6] Müller, T., Würtz, J.: Constructive disjunction in Oz. In: Workshop Logische
Programmierung (WLP). Volume 270 of GMD-Studien., Gesellschaft für Mathe-
matik und Datenverarbeitung MBH (1995) 113–122

[7] Würtz, J., Müller, T.: Constructive disjunction revisited. In Görz, G., Hölldobler,
S., eds.: German Conference on Artificial Intelligence (KI) 1996. Volume 1137
of LNCS., Springer (1996) 377–386

[8] Lagerkvist, M.Z., Schulte, C.: Propagator groups. In Gent, I.P., ed.: CP. Volume
5732 of Lecture Notes in Computer Science., Springer (2009) 524–538

[9] Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In
Kaelbling, L.P., Saffiotti, A., eds.: IJCAI, Professional Book Center (2005) 35–
40

[10] Lhomme, O.: An efficient filtering algorithm for disjunction of constraints. In
Rossi, F., ed.: CP. Volume 2833 of Lecture Notes in Computer Science., Springer
(2003) 904–908

[11] Lhomme, O.: Arc-consistency filtering algorithms for logical combinations of
constraints. In Régin, J.C., Rueher, M., eds.: CPAIOR. Volume 3011 of Lecture
Notes in Computer Science., Springer (2004) 209–224

[12] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: en-
gineering an efficient sat solver. In: DAC ’01: Proceedings of the 38th annual
Design Automation Conference, New York, NY, USA, ACM (2001) 530–535

[13] Hentenryck, P.V., Saraswat, V., Deville, Y.: Constraint processing in cc(fd). Tech-
nical report, Brown University (1991)

[14] Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings 12th National Conference on Artificial Intelligence (AAAI 94). (1994)
362–367

[15] Aggoun, A., Chan, D., Dufresne, P., Falvey, E., Grant, H., Harvey, W., Herold,
A., Macartney, G., Meier, M., Miller, D., Mudambi, S., Novello, S., Perez, B., van
Rossum, E., Schimpf, J., Shen, K., Tsahageas, P.A., de Villeneuve, D.H.: Eclipse
user manual release 5.10 (2006) http://eclipse-clp.org/.

37

[16] Schulte, C.: Programming deep concurrent constraint combinators. In: Proceed-
ings of Practical Aspects of Declarative Languages (PADL 2000). Volume 1753
of LNCS., Springer (2000) 215–229

[17] Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of reasoning
with global constraints. Constraints 12(2) (2007) 239–259

[18] Jefferson, C.: Representations in Constraint Programming. PhD thesis, Univer-
sity of York (2007)

[19] Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, Second Edi-
tion (Discrete Mathematics and Its Applications). Chapman & Hall/CRC (2006)

[20] Daniel, P., Semple, C.: Supertree algorithms for nested taxa. In Bininda-Emonds,
O., ed.: Phylogenetic Supertrees: Combining information to reveal the tree of life.
Computational Biology Series Kluwer (2004) 151–171

[21] Gent, I.P., Prosser, P., Smith, B.M., Wei, W.: Supertree construction with con-
straint programming. In Rossi, F., ed.: CP. Volume 2833 of Lecture Notes in
Computer Science., Springer (2003) 837–841

[22] Moore, N.C., Prosser, P.: The ultrametric constraint and its application to phylo-
genetics. Journal of Artificial Intelligence Research 32 (Aug 2008) 901–938

[23] Frisch, A.M., Miguel, I., Walsh, T.: Modelling a steel mill slab design problem.
In: IJCAI-01 Workshop on Modelling and Solving Problems with Constraints.
(2001) 39–45

[24] Gent, I.P., Jefferson, C., Kelsey, T., Lynce, I., Miguel, I., Nightingale, P., Smith,
B.M.: Search in the patience game ‘black hole’. AI Communications 20(3)
(2007) 211–226

[25] Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alld-
ifferent constraint: An empirical survey. Artificial Intelligence 172(18) (2008)
1973–2000

[26] Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and solving english
peg solitaire. Computers and Operations Research 33(10) (2006) 2935–2959

38

