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Abstract. For propositional satisfiability (SAT) solvers to be used for
solving the constraint satisfaction problem (CSP), efficient encodings are
required. The AllDifferent constraint is well used in constraint program-
ming. This paper presents a new encoding for the AllDifferent constraint.
This is compared, theoretically and empirically, to a simple and common
encoding. The new encoding presented scales better than the common
(or any other known) encoding, however in the empirical evaluation we
found it does not perform as well as the common encoding on feasibly
sized instances.

1 Introduction

Solvers for propositional satisfiability (SAT) are highly developed and efficient,
incorporating advanced techniques such as conflict learning, backjumping and
tuned heuristics, implemented using techniques such as watched literals. Con-
straint solvers are not typically optimized to the same level, but they offer many
useful types of constraints. Some of these constraints encode neatly into SAT,
such as arbitrary binary constraints. However, others do not, such as the global
cardinality constraint described below.

Our motivation for developing an encoding of the AllDifferent constraint is
to make use of the efficiency of SAT solvers on problems with AllDifferent con-
straints. The usual approach to encoding the AllDifferent is to decompose it into
pairwise binary constraints X # Y, then encode these using the direct encoding
[2]. This is referred to below as the pairwise encoding. The new encoding pre-
sented here maintains the propagation properties of the pairwise encoding while
scaling better in formula size.

In the following discussion, n is the number of variables contained in a con-
straint, d is the largest domain size of the variables in the constraint, and e is
the total number of constraints.

Bailleux and Boufkhad [1] considered the cardinality constraint on a set of
Boolean variables (i.e. constraining the number of variables that can be assigned
the value 1), and produced an encoding with O(n?) clauses (of length at most
3) and O(nlogn) variables. Unit propagation over this encoding restores global
arc-consistency (GAC) in O(n?) time although only setting O(nlogn) variables.
There is a GAC algorithm which runs in O(n) time, so this encoding is subop-
timal in that sense. However, it may be the optimal SAT encoding.



For arbitrary binary constraints, Gent [2] described the support encoding
and showed that unit propagation on the encoding establishes arc-consistency.
Unit propagation takes O(ed?) time, which is the same as the optimal algo-
rithm running on an extensional representation of the constraints. We call this
a propagation optimal encoding.

There are several consistency notions for the AllDifferent constraint [3]. The
three most common are global arc-consistency (GAC), range consistency (RC)
and arc-consistency over the pairwise binary decomposition (AC). GAC is the
strongest, followed by RC, followed by AC. With the example 4, B € {1,3},C €
{1,2}, AlDifferent(A, B, C'), GAC would remove 1 from C, since 1 must be used
by either A or B. However RC would not. With the slightly different exam-
ple A,B € {1,2},C € {1,3}, AllDifferent(A, B, C), RC can identify the range
1...2 and thus prune 1 from C'. AC can only prune when variables become fully
instantiated.

We consider the simplest consistency notion, AC. When the domain of a
variable contains only one value, that value is removed from the domain of all
the other variables in the constraint. This is repeated as long as possible. If two
variables are set to the same value, the constraint fails. This algorithm performs
O(n?) value removals before reaching the fixed point. Storing the constraint as
a list of variables requires O(n) space.

In this paper we present an encoding of the AllDifferent constraint with O(nd)
clauses (of length no more than 3). When unit propagation is performed on the
encoding, it does the same work as the simple propagation algorithm outlined
above, setting O(n?) Boolean variables. We assume that setting a variable in SAT
and removing a value from a domain in CSP have the same time complexity. If
n > d the encoding is propagation optimal. This arises firstly with permutations
(n = d, Yz,y ® D, = D,) and secondly when the domains are not equal. In
this second situation, if all domains were equal and n > d, then the constraint
would be false by the pigeonhole principle. However, the pigeonhole principle
does not apply when the domains are not equal. For example, A, B € {1,3},C €
{1,2}, AliDifferent(A, B,C') has maximum domain size d = 2, but there is a
satisfying assignment.

However, since the size is O(nd), when d > n (or, more accurately, when d
is not O(n), so limg_,o, n/d = 0) the encoding should not be considered propa-
gation optimal.

2 Encodings

The main concept in these encodings is constraining the number of Boolean
variables set to true. For some set S of Boolean variables, we need to constrain
them to have at least one, exactly one, or at most one set to true, so corre-
spondingly we describe at-least-one (ALO), exactly-one (EO) and at-most-one
(AMO) encodings. For this section, members of S are referred to as x;, where
iel...|S|



An ALO encoding for the set S is simply the following.
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151

To create an EO clause set for a set of size n, we could combine ALO and
AMO. Another possibility is to use a structure used by Gent, Prosser and Smith
[4,5] and independently by Ansotegui and Manya [6] in their regular and half
regular mappings. The structure (which is referred to as ladder from here on)
consists of a sequence of p = n —1 additional Boolean variables, y; ...y, (referred
to as the ladder variables) and a set of clauses (defined below).

A complete valid assignment of the ladder variables has no adjacent pair of
variables y,,y,+1 where y, = False A y,41 = True. It consists of a sequence
of zero or more true assignments, and all following variables are assigned false.
Hence if dr e y,. = False A y,+1 = True, the sequence must be invalid.

An assignment to a ladder variable can be unit-propagated appropriately with
p — 1 binary clauses, shown below. Setting a variable to false propagates to all
variables following it in the sequence, and setting a variable to true propagates to
all variables preceding it, by unit propagation. Hence the following set of clauses
forbids all invalid states. These are referred to as the ladder validity clauses.

i=1

NG, (2)
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The set of y variables has |S| valid states. Each valid state can be mapped to
a single variable in S, such that the variable is assigned true iff y; ...y, takes the
matching state. In constraint programming terms, this is channelling between
two representations. This channelling must be propagated in both directions by
unit propagation on the clause set. The channelling constraints are as follows.

i=1
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These constraints encode to the following set of clauses (referred to as the
channelling clauses).

A it Vi V 2 A (523 V i) A (s V=) 3)
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Clauses containing yo or y|s| are simplified by unit propagation as if yo =
T'rue and y|s) = False.

The number of channelling clauses plus ladder validity clauses is O(n) (where
n = |S]), and they are all size 3 or smaller. The number of ladder variables is
also O(n). Therefore the time taken to achieve consistency between the two sets
by unit propagation must also be O(n). However, while performing search on the



variables in S, the total cost of unit-propagation down one branch of the search
tree is also O(n). Since descending the branch involves setting all n variables in
S, the mean cost of unit-propagation during search is O(1).

To form an encoding for AMO, we could take the EO encoding described
above and add a variable to the set S. The additional variable would indicate
that no variables are set true. This is referred to as the ladder AMO encoding.!

Another way is to disallow pairs of variables, with the following set of clauses.

z€SYES
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We will refer to this as the pairwise AMO encoding. The number of clauses is
O(n?) and the cost of achieving consistency is O(n). This encoding is clearly
simpler than the ladder encoding, and much more widely used, but it has worse
space complexity. Unit propagation on this encoding achieves the same level of
consistency as unit propagation on the ladder AMO encoding.

The combination of the pairwise AMO encoding and the ALO encoding gives
a second EO encoding, which is referred to as the pairwise EO encoding.

2.1 AllDifferent from AMO and EO

Throughout we use the same way of encoding of the finite-domain CSP variables
into Boolean variables: for a variable v with domain size d and domain D,,
the unary encoding [17] is a set of Boolean variables z ...zY where Vi e v —
i <= u}. For a variable v contained in the AllDifferent constraint, and a value
¢ € D,, the Boolean variable z} is assigned true iff v = 4. Hence we have a
two-dimensional table of Boolean variables, shown below for the case where all
domains are equal, d = 4, and there are 3 variables in the AllDifferent.
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Intuitively, an AllDifferent constraint can be formed as follows: each value
can be used at most one times, and each variable takes exactly one value. This
corresponds to an EO encoding for each column in the table, and an AMO
encoding for each row. Using the ladder, this gives us an encoding with O(nd)
clauses and O(nd) extra variables. Alternatively, using the pairwise encoding for
AMO, and ALO clauses, we have an EO encoding with O(n%d + d*n) clauses
and no extra variables.

! In practice the additional variable z s is given the last index |S|, and by reasoning on
the clause set it can be seen that z|s| = y|s|—1, S0 7|s| is redundant and is omitted,
along with the relevant channelling clauses (all those that contain x|g)).



More formally, the ladder encoding for the AllDifferent constraint can be
defined as follows. For each CSP variable v within the AllDifferent constraint,
there is one ladder EO structure on the set of Boolean variables representing v:
Vi e x. For each value ¢ where 7 is in the domain of more than one variable, i.e.
Jv,wev #wAi € D, Ni € Dy, there is a ladder AMO structure containing
the set of Boolean variables Vv @ 7. That is, all CSP variables whose domain
contains i are represented in the AMO structure.

The pairwise encoding can be defined similarly. In the place of ladder EO
structures we have ALO and pairwise AMO combined. In place of the ladder
AMO structure we have a pairwise AMO structure.

This scheme also works when the variables do not have equal initial domains.
Each value ¢ that is shared between more than one domain must have an AMO
structure, and this includes all Boolean variables ;. Similarly, each CSP variable
v has an EO structure covering all Boolean variables x".

As a side issue, it is not necessary for the CSP variable to take exactly one
value. It is sufficient to use ALO rather than EO. If a solution to the SAT prob-
lem encodes a CSP variable with more than one value, this indicates multiple
solutions to the underlying CSP. However, with complete SAT solvers, propa-
gation tends to work better if each variable is constrained to take exactly one
value (as shown by Kautz et. al. in their comparison between their 2D and 3D
encodings [8]).

If all variables share the same domain, and n = d, then each value must
be used exactly once. Therefore we can use EO encodings for both rows and
columns. This gives slightly stronger propagation. We use this optimization in
our experimental evaluation, for both ladder and pairwise encodings.

2.2 Propagation in the ladder encoding

It is important that propagation works correctly in the ladder encoding. A change
to the unary variables propagates to the ladder variables, then some propagation
can occur with the ladder validity clauses. This then propagates back to the
unary variables. The following example demonstrates this.

v
1 2 3
ill|zl|2? = False|x?
2|z}|w3 = Falsel|rs
4|z} 2 x5

Let us say that z3 and 23 are already set False. For column 2, there are
three ladder variables 3!, y? and y* and two ladder validity clauses, (y*V —y?) A
(y? vV =y3). The following propagation occurs.

— By unit propagation on the channelling clause (z? V y!), y! is set to True.

(The clause (z%Vy') is derived from (—y° Vv y! vVz?) since y° is always True.)
— By the channelling clause (—y* V y? V 23), y? is set True.



None of the unary variables are set. Next, x3 is set False by the search procedure.
This shows what happens when all but one of the z2 variables are set False.

— By the channelling clause (—y? V y® V 23), y? is set True.

— By the channelling clause (—y® V 2%), 2% is set T'rue. (This clause is derived
from (—y3 V y* Vv x3), because y* is considered to be False.)

We now have this situation.

v

1 2 3
1|zi|2? = False|z?
2|zi|22 = False|r3
3|zi|e3 = Falsel|rs
dlzilx: = Truels]

Propagation can now happen along row 4. This shows what happens when
an z variable is set True. There are three ladder variables z!, 22 and 2% and two

ladder validity clauses, (2! V =22) A (22 V =23).

— By unit propagation on the channelling clauses (=% V 21) A (—z3 V =2?%), 21

is set to True and 22 is set to False.

— By the ladder validity clause (2% V —23), 2% is set False.

— By unit propagation on the channelling clauses (—z} V —z%) A (-3 V 22), o}
and z3 are set to False.

v
1 2 3
ill Tl x? = False T3
T pa— 3
2 x5 5 = False x5
3 T3 22 = False 3
4|z = False|x] = True|x] = False

2.3 Correctness of the ladder encoding

We prove that unit propagation is strong enough to maintain arc-consistency on
the pairwise decomposition of the AllDifferent constraint (i.e. its decomposition
into n(n — 1)/2 not-equal constraints). Firstly there are three lemmas about
the ladder and channelling, which together show that it functions as a GAC
exactly-one constraint. Following that are two theorems which use the lemmas
to show the correctness and propagation properties of the ladder encoding. The
same two theorems are included for the pairwise encoding, proving that the two
encodings are equivalent in propagation. The following proofs refer to variables
x7, and to row and column ladders as used in section 2.1.

Lemma 1. If a set of variables S is channelled to a ladder with the channelling
clauses in formula 8, and the ladder validity clauses in formula 2, and more than
one of S are set T'rue, unit propagation generates the empty clause.



Proof. Suppose that p;,p; € S, p; = pj = T'rue, n = |S|, and the ladder consists
of z1...z,—1. There are many possibilities for generating an empty clause, of
which it suffices to give one:

By the clauses (—p; V zi—1) A (=p; V —z;), zi—1 = True and z; = False. (The
end cases ¢ = 1 and 7 = n each lack one of these clauses, and in these cases the
ladder becomes entirely T'rue or entirely False.) These assignments are then
propagated up and down the ladder by the ladder validity clauses, (2, V —zy41)-
So z, = True forv <i—1 and z, = False for v > ¢. If j < i in the sequence, the
clause (—p; V-z;) becomes empty. If j > ¢ in the sequence, the clause (—p;Vz;j_1)
becomes empty.

Lemma 2. If a set of variables S is channelled to a ladder with the channelling
clauses in formula 3, and the ladder validity clauses in formula 2, and |S| — 1
variables p; € S are set False with the remaining variable p; unassigned, then
p; becomes True by unit propagation.

Proof. Suppose that n = |S| and the ladder consists of z;...z,—1. The first vari-
able p; is contained in the channelling clause (z; V p;) and the last variable in
(=2n—1 V pp). The clause (—z;_1 V z; V p;) (for every other False variable p;)
simplifies to (—z;—1Vz;). At least one of p; and p,, must be false, so unit propaga-
tion begins at the top, bottom or both ends of the ladder and proceeds through
the (—z;—1 V 2;) clauses until all the ladder variables are set. So z, = T'rue for
v < j—1and 2, = False for v > j. p; is contained in the channelling clause
(mzj—1 V z; V p;) and is thus set True. All the channelling and validity clauses
are now satisfied.

Lemma 3. If a set of variables S is channelled to a ladder with the channelling
clauses in formula 3, and the ladder validity clauses in formula 2, and a variable
p; € S is set True with the rest unassigned or False, an unassigned variable
p; € S will be set False by unit propagation.

Proof. Suppose that n = |S| and the ladder consists of z;...z,_1. By the clauses
(=pi V zi—1) A (—p;i V —zi), zi-1 = True and z; = False. (The end cases i = 1
and 7 = n each lack one of these clauses, and in these cases the ladder becomes
entirely T'rue or entirely False.) These assignments are then propagated up and
down the ladder by the ladder validity clauses, (z, V —zyt1). So 2z, = True
forv <i—1 and 2z, = False for v > i. If j < i in the sequence, the clause
(—pj V —z;) causes p; = False. If j > i in the sequence, the clause (—p; V zj_1)
causes p; = False. When all possible variables p; are set, all the channelling
and validity clauses are satisfied.

Theorem 1. Using the ladder encoding of AllDifferent, when unit propagation
stops with no empty clause, the pairwise decomposition not-equal constraints are
arc-consistent.

Proof. Consider the variables x7 where v is the CSP variable and ¢ is the value.
Suppose we have a set of current domains of the z variables in which no unit
propagation is possible, and no domain is empty. Consider any v, w, j such that



there is no support in v for w = 7. That is, for each possible supporting value
i€l (w—-1),(w+1).d, ¥ = False.

In this situation the column ladder causes zj = T'rue by lemma 2, then the row
ladder causes z3" = False by lemma 3. That is, the value j is not in the domain

of variable w, and the domains are pairwise arc-consistent as required.

Theorem 2. Using the ladder encoding of AllDifferent, in a situation where all
the pairwise decomposition not-equal constraints are arc-consistent, construct a
SAT partial assignment as follows. Variable ¥ = True if v = i in the CSP,
and variable i = False if ¢ is not in the domain of v. x is left unassigned if
i is in the domain of v but other values remain in the domain of v. Performing
unit propagation, some ladder variables y will be set in a valid state. Following
this, every clause in the SAT encoding is either satisfied or contains two or more
literals and the propagation on ladder variables does not set any x variables.

Proof. We work by case analysis, first considering the case where v = 7 in the
CSP, corresponding to =z} = T'rue. In the column ladder, z; will be set False
for all j # i by lemma 3, and in the proof of lemma 3 it can be seen that both
validity and channelling clauses in the column ladder are all satisfied. In the
row ladder, again z’ will be set False for all w # v by lemma 3, and again
it can be seen that both validity and channelling clauses in the row ladder are
satisfied, and the value 7 is not present in the domains of variables w as required
by arc-consistency. This case also covers the possibility that z; = False for all
J # i, since this implies that ] = T'rue by lemma 2.

The only other case to consider is where v # ¢ in the CSP, but at least two
values remain in the domain of v. This corresponds to z} = False, and there are
at least two remaining unset variables in the column. Of the channelling clauses
for the column ladder, (2} Vy? | )A(—z¥ V-y?) are satisfied and (—y?_, Vyi Vay)
simplifies to (—yy_; Vy?). There are three possibilities, (1) if z¥_, = False or z}_;
does not exist, then y;_; = T'rue hence y; = True and the clause is satisfied, or
(2) 2}, = False or z},; does not exist, then yy = False hence y;_, = False
and the clause is satisfied, or (3) the clause remains with two literals. The ladder
validity clauses are not relevant here since they cannot become unit. The ladder
variables are set in sequence from the top and bottom, but since there are at
least two unset zV variables, not all ladder variables can be set by the clause
above. Hence there is no j such that yj_; = T'rue and yj = False, therefore no
unit propagation occurs on the clause (—yj_; Vyj V z¥), and no z variables are
set. Other channelling clauses (-2} Vyj_;)A(—z} V-yj) are satisfied or non-unit
because either z7 = False or yj_, and y7 are both unset. A similar, but simpler,
argument applies to the channelling clauses for the row ladder: the argument is
simpler because all variables may be set false, and so we do not need to appeal
to the existence of two unset variables.

Theorem 3. Using the pairwise encoding of AllDifferent, formed from the AMO
encoding in formula 4 and the ALO in formula 1, when unit propagation stops
with no empty clause, the pairwise decomposition not-equal constraints are arc-
consistent.



Proof. Consider the situation described in theorem 1. By the ALO clause ( ii:l xy

(3
zj = T'rue. Hence, by the pairwise AMO clause (ﬁw;’ V—w}”), zy = False. That
is, the value j is not in the domain of variable w, and the domains are pairwise
arc-consistent as required.

Theorem 4. Using the pairwise encoding of AllDifferent, including the AMO
encoding in formula 4, in a situation where all the pairwise decomposition not-
equal constraints are arc-consistent, construct a SAT partial assignment as fol-
lows. Variable 7 = T'rue if v =1 in the CSP, and variable x} = False if i is
not in the domain of v. ] is left unassigned if i is in the domain of v but other
values remain in the domain of v. Every clause in the SAT encoding is either
satisfied or contains two or more literals.

Proof. We work by case analysis, first considering the case where v = i in the
CSP, corresponding to &7 = T'rue. By the relevant pairwise clauses (-} V —z¥)
where v # w, ¢’ = False, as required by arc-consistency. By the other set of
pairwise clauses (nzj V =) where i # j, x§ = False as required. The ALO
clause for v is satisfied by =} = True. The only other case to consider is where
v # ¢ in the CSP, but at least two values remain in the domain of v. This
corresponds to z} = False, and there are at least two remaining unset variables
in the column. The ALO clause for v is not unit since it contains two unset
literals. The pairwise clauses (- V —z}’) where v # w, and (—z} V ~z}) where
t # j, are all satisfied. No other clauses contain z}.

3 Experimental evaluation

To make a comparison between the encodings presented above, we used the
quasigroup completion problem. A quasigroup? is an n x n table of symbols
contained in alphabet X, where |X| = n. n is the order of the quasigroup com-
pletion problem. Each row and column of the table contains a permutation of
the symbols in Y. The completion problem is to fill in blank entries in such a
table, maintaining the permutation property. It is NP-complete [7].

We generated the instances using the method suggested by Achlioptas et.
al., which is to create a random complete quasigroup and punch holes to create
a quasigroup with holes (QWH) problem [7]. The method used to generate a
random quasigroup is a Markov chain Monte Carlo approach proposed by Ja-
cobson and Matthews [18]. The quasigroups generated this way are uniformly
distributed. The second step is to punch a set number of holes in the quasi-
group. The positions of the holes are chosen with uniform distribution. This
does not give a uniform distribution over all satisfiable QCP instances, because
some satisfiable QCP instances can be generated from more than one complete
quasigroup. A weakness of this approach is that the problems are all satisfiable.

There exists a trivial algorithm for completing an empty quasigroup, and
a full quasigroup is also trivial to complete, hence the difficult region for this

2 Or, more properly, the multiplication table of a quasigroup, which is a Latin square.



NP-complete problem must lie between these extremes. Achlioptas et. al. show
that with randomly placed holes, the computational cost peak for QWH (for an
incomplete algorithm (WalkSat) and a complete algorithm (Satz)) occurs when
the number of holes is 1.6 x n'-3®, This corresponds to the backbone covering
50% of the variables. We use only instances from the cost peak (rounding the
number of holes to the nearest integer).

To encode these instances into SAT, we use a 3D table of Boolean variables,
with size n x n x n. This is the 2D quasigroup table extended in a third dimen-
sion to provide a Boolean variable for each symbol in X. For each entry in the
quasigroup table, exactly one symbol is required. This is achieved using n? EOQ
structures. Similarly, each symbol occurs exactly once on each row of the quasi-
group table, and again for the columns, making a total of 3n? EQ structures.

Two ways of forming an EO structure were described above: the ladder,
and the combined ALO clause and AMO pairwise clauses. We do not mix the
two encodings for an instance of QWH, because there is no readily apparent
reason why it would be beneficial. From here we will refer to these as ladder
and pairwise encodings. Note that the pairwise encoding is the 3D encoding
proposed by Kautz et. al. [8]. Recall that the pairwise EO structure has O(n?)
clauses and the ladder structure has O(n): the pairwise encoding has O(n?)
clauses in total and the ladder has O(n?). Both encodings have O(n?) Boolean
variables, although the pairwise encoding has n® and the ladder encoding has
4n? — 3n2.

The ladder encoding has a better size bound, but it does not necessarily show
an improvement in solution time for instances we can feasibly solve.

3.1 Experimental results

We used a selection of recent SAT solvers to evaluate the encodings: ZChaff
[11], SATO version 4.1 [12], and Siege version 4 [13]. Unfortunately, GRASP
[15] and 2clseq [14] exceeded the available memory (1 GB) on instances of order
30 and above, so we have omitted them from the evaluation. All these solvers
are based on the Davis-Putnam-Logemann-Loveland procedure [9,10]. Since the
ladder encoding is designed for unit propagation, we did not consider local search
algorithms. We also use a simpler solver to gain some insight into the encodings:
BT+lex. This is backtracking with unit propagation and pure literal propagation,
with a static (lexicographic) variable ordering and static branch ordering. The
internal data structures are described in [16].

All experiments were carried out on a Pentium 4 3.06 GHz machine with 1
GB of RAM, and all runtimes are measured in seconds. The time to the first
solution is measured. Sizes of the QWH problems were chosen so that runtimes
did not exceed 10 000 seconds.

Figure 1 shows runtimes and node counts for SATO. The line indicates equal
runtime. Initially these results are somewhat surprising, because they show that
neither encoding is consistently better, even though they have identical propaga-
tion characteristics. However, the different clause set and the additional variables
of the ladder encoding affect the variable ordering heuristic of SATO in such a
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Fig. 1. 100 x order 33 QWH problems, with randomly placed holes and on the phase
transition. Runtime and nodes for SATO v4.1.

way that the runtimes are not as well correlated as we expected. The correlation
coeflicient of the log of the runtimes is 0.74, indicating that the two variables are
moderately well correlated. The ladder encoding is better for 60/100 instances,
although the median run time for the ladder encoding is 19.29s whereas for the
pairwise encoding it is 17.02s. Interestingly, the node counts for the ladder en-
coding are mostly lower, indicating that the SATO heuristics work better with
ladder than pairwise.

ZChaff and Siege can be run for larger instances. Figure 2 shows data for
ZChaff with instances of order 35. The correlation coefficient is 0.70 for the log
of the runtimes, similar to the previous experiment. 49/100 instances performed
better with the ladder encoding. The median run time for the ladder encod-
ing is 25.975s, and 19.795s for the pairwise encoding. The plot of node counts
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Fig. 2. 100 x order 35 QWH problems, with randomly placed holes and on the phase
transition. Runtime and nodes for ZChaff.

shows that neither encoding has a significant advantage in terms of the ZChaff
heuristics.

Figure 3 shows data for the Siege solver for the same instances of order 35.
The correlation coefficient is 0.78 for the log of the runtimes, which is stronger
than previous experiments. Siege seems less well suited to the ladder encoding,
with only 12/100 instances performing better with the ladder encoding. The
median run time for the ladder encoding is 8.40s, and 1.855s for the pairwise
encoding. Although the node count plot is omitted for space reasons, it shows
no advantage for either encoding. Therefore the difference in runtime is caused
by increased unit propagation cost.

From these results, it appears that SATO is best suited to the ladder en-
coding. It is also generally the worst-performing solver. For ZChaff and Siege,



1000 T

QCP +
P
»
+ 7

100 | N . 4
Q L+
= + T M
< P *
o P N
Q 10 | + e + 4
E + X L ‘; + +
g A
o 1 SO -+,
£ + e 0t
= Yl K +
g £ o4t + o
[v4 + + 7t

e L +
01 s 4
-~ 4 R " +
0.01 I I I I
0.01 0.1 1 10 100 1000

Runtime with ladder

Fig. 3. 100 x order 35 QWH problems, with randomly placed holes and on the phase
transition. Runtime for Siege v4.

order (n)] clauses

| literals |variables

pairwise encoding

| J[AMO (size 2) (3n®(n —1))[ALO (size n) (3n*)[Units| Total | |

25 562500 1875 390 | 564765 |1172265| 15625
33 1724976 3267 728 |1728971|3558491| 35937
35 2186625 3675 829 |2191129(4502704| 42875
ladder encoding
| | Size2 3(3n—2)n*)  [Size 3 (3(n — 2)n”)[Units| Total | |
25 136875 43125 390 | 180390 | 403515 | 60625
33 316899 101277 728 | 418904 | 938357 | 140481
35 378525 121275 829 | 500629 |1121704| 167825

Table 1. Comparing sizes of the encodings

perhaps we cannot scale high enough to find the benefit of the ladder encod-
ing. Table 1 shows that the ladder encoding is approximately a quarter the size
of the pairwise encoding (comparing either the literals or clauses) at order 35.
However, it appears that the state of the art solvers can efficiently handle prob-
lems with over 5 million literals, and the pairwise encoding allows cheaper unit
propagation with Siege.

3.2 Propagation performance

The experiments above do not control the variable and branch ordering, and as
a result the ladder and pairwise run times can be several orders of magnitude
different, due to different heuristic choices. To remove the effect of the ordering
heuristics, it is necessary to fix the variable and branch ordering. If the unary
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Fig. 4. 100 x order 25 QWH problems, with randomly placed holes and on the phase
transition. Runtime for BT+lex.

variables are all set, the additional ladder variables will be set completely by unit
propagation, so it is possible to traverse the same search tree with both encod-
ings. This allows us to compare the encodings purely on their unit propagation
efficiency.

Algorithms such as conflict backjumping and clause learning can also cause
differences in the search tree, so we use a simple backtracking algorithm, with
pure literal elimination and unit propagation. Unfortunately, the state-of-the-
art SAT solvers do not allow us to use a fixed variable ordering, or to turn
off conflict backjumping or clause learning. Therefore we use the QBF solver
BT+lex, which has efficient data structures based on literal and clause watching.
The implementation is described by Gent et. al. [16]. The fact that BT +lex can
accept the QBF problem does not affect its behaviour on a SAT problem, since
QBF is a direct generalization of SAT.

Figure 4 shows a comparison between the encodings using BT+lex, and or-
der 25 QWH instances. The pairwise encoding is performing better for most
instances. The exception is the easiest instances, which seem to show the over-
head of the larger encoding. (Even at this size, the pairwise encoding is over
twice the size of the ladder; see table 1.) The median run time for the ladder
encoding is 3.77s, compared to 1.875s for the pairwise encoding. Hence at this
scale, unit propagation over the pairwise encoding is approximately two times
faster with this particular implementation.

To compare BT-+lex to a more capable SAT solver, figure 5 shows run times
for SATO on the same instances. The median run times here are 0.38s and 0.44s
for ladder and pairwise respectively. The lower bounds on the run times are
similar to BT +lex, but the upper bound is much lower.
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4 Conclusions

This article has introduced the ladder encoding for the AllDifferent constraint
into SAT. The AllDifferent is commonly used in constraint programming. The
new encoding scales well in the number of clauses. However, empirical evaluation
on feasibly sized instances of the quasigroup completion problem shows that the
new encoding does not perform as well as the pairwise encoding, restricting its
use to cases where the formula is so large that size becomes a more important
consideration than solution speed. This may be the case for large, easy problems
away from the phase transition. Finding encodings of AllDifferent which provide
more powerful propagation remains an open research question.

Finally, although the ladder encoding was not very successful here, the ladder
structure is a useful encoding trick in other situations [4,5,6]. There are not many
such tricks for encoding into SAT at the moment. It would be beneficial to the
SAT community to develop and publish more encoding techniques.
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