
A new en
oding of AllDi�erent into SATIan P. Gent and Peter NightingaleUniversity of St Andrews, Fife, S
otland{ipg, pn}�d
s.st-and.a
.ukAbstra
t. For propositional satis�ability (SAT) solvers to be used forsolving the
onstraint satisfa
tion problem (CSP), e�
ient en
odings arerequired. The AllDi�erent
onstraint is well used in
onstraint program-ming. This paper presents a new en
oding for the AllDi�erent
onstraint.This is
ompared, theoreti
ally and empiri
ally, to a simple and
ommonen
oding. The new en
oding presented s
ales better than the
ommon(or any other known) en
oding, however in the empiri
al evaluation wefound it does not perform as well as the
ommon en
oding on feasiblysized instan
es.1 Introdu
tionSolvers for propositional satis�ability (SAT) are highly developed and e�
ient,in
orporating advan
ed te
hniques su
h as
on�i
t learning, ba
kjumping andtuned heuristi
s, implemented using te
hniques su
h as wat
hed literals. Con-straint solvers are not typi
ally optimized to the same level, but they o�er manyuseful types of
onstraints. Some of these
onstraints en
ode neatly into SAT,su
h as arbitrary binary
onstraints. However, others do not, su
h as the global
ardinality
onstraint des
ribed below.Our motivation for developing an en
oding of the AllDi�erent
onstraint isto make use of the e�
ien
y of SAT solvers on problems with AllDi�erent
on-straints. The usual approa
h to en
oding the AllDi�erent is to de
ompose it intopairwise binary
onstraints X 6= Y , then en
ode these using the dire
t en
oding[2℄. This is referred to below as the pairwise en
oding. The new en
oding pre-sented here maintains the propagation properties of the pairwise en
oding whiles
aling better in formula size.In the following dis
ussion, n is the number of variables
ontained in a
on-straint, d is the largest domain size of the variables in the
onstraint, and e isthe total number of
onstraints.Bailleux and Boufkhad [1℄
onsidered the
ardinality
onstraint on a set ofBoolean variables (i.e.
onstraining the number of variables that
an be assignedthe value 1), and produ
ed an en
oding with O(n2)
lauses (of length at most3) and O(n logn) variables. Unit propagation over this en
oding restores globalar
-
onsisten
y (GAC) in O(n2) time although only setting O(n logn) variables.There is a GAC algorithm whi
h runs in O(n) time, so this en
oding is subop-timal in that sense. However, it may be the optimal SAT en
oding.

For arbitrary binary
onstraints, Gent [2℄ des
ribed the support en
odingand showed that unit propagation on the en
oding establishes ar
-
onsisten
y.Unit propagation takes O(ed2) time, whi
h is the same as the optimal algo-rithm running on an extensional representation of the
onstraints. We
all thisa propagation optimal en
oding.There are several
onsisten
y notions for the AllDi�erent
onstraint [3℄. Thethree most
ommon are global ar
-
onsisten
y (GAC), range
onsisten
y (RC)and ar
-
onsisten
y over the pairwise binary de
omposition (AC). GAC is thestrongest, followed by RC, followed by AC. With the example A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C), GAC would remove 1 from C, sin
e 1 must be usedby either A or B. However RC would not. With the slightly di�erent exam-ple A;B 2 f1; 2g; C 2 f1; 3g;AllDi�erent(A;B;C), RC
an identify the range1 : : : 2 and thus prune 1 from C. AC
an only prune when variables be
ome fullyinstantiated.We
onsider the simplest
onsisten
y notion, AC. When the domain of avariable
ontains only one value, that value is removed from the domain of allthe other variables in the
onstraint. This is repeated as long as possible. If twovariables are set to the same value, the
onstraint fails. This algorithm performsO(n2) value removals before rea
hing the �xed point. Storing the
onstraint asa list of variables requires O(n) spa
e.In this paper we present an en
oding of the AllDi�erent
onstraint with O(nd)
lauses (of length no more than 3). When unit propagation is performed on theen
oding, it does the same work as the simple propagation algorithm outlinedabove, setting O(n2) Boolean variables. We assume that setting a variable in SATand removing a value from a domain in CSP have the same time
omplexity. Ifn � d the en
oding is propagation optimal. This arises �rstly with permutations(n = d, 8x; y � Dx = Dy) and se
ondly when the domains are not equal. Inthis se
ond situation, if all domains were equal and n > d, then the
onstraintwould be false by the pigeonhole prin
iple. However, the pigeonhole prin
ipledoes not apply when the domains are not equal. For example, A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C) has maximum domain size d = 2, but there is asatisfying assignment.However, sin
e the size is O(nd), when d > n (or, more a

urately, when dis not O(n), so limd!1 n=d = 0) the en
oding should not be
onsidered propa-gation optimal.2 En
odingsThe main
on
ept in these en
odings is
onstraining the number of Booleanvariables set to true. For some set S of Boolean variables, we need to
onstrainthem to have at least one, exa
tly one, or at most one set to true, so
orre-spondingly we des
ribe at-least-one (ALO), exa
tly-one (EO) and at-most-one(AMO) en
odings. For this se
tion, members of S are referred to as xi, wherei 2 1 : : : jSj.

An ALO en
oding for the set S is simply the following.0�i=1_jSj xi1A (1)To
reate an EO
lause set for a set of size n, we
ould
ombine ALO andAMO. Another possibility is to use a stru
ture used by Gent, Prosser and Smith[4,5℄ and independently by Ansótegui and Manyà [6℄ in their regular and halfregular mappings. The stru
ture (whi
h is referred to as ladder from here on)
onsists of a sequen
e of p = n�1 additional Boolean variables, y1:::yp (referredto as the ladder variables) and a set of
lauses (de�ned below).A
omplete valid assignment of the ladder variables has no adja
ent pair ofvariables yr; yr+1 where yr = False ^ yr+1 = True. It
onsists of a sequen
eof zero or more true assignments, and all following variables are assigned false.Hen
e if 9r � yr = False ^ yr+1 = True, the sequen
e must be invalid.An assignment to a ladder variable
an be unit-propagated appropriately withp � 1 binary
lauses, shown below. Setting a variable to false propagates to allvariables following it in the sequen
e, and setting a variable to true propagates toall variables pre
eding it, by unit propagation. Hen
e the following set of
lausesforbids all invalid states. These are referred to as the ladder validity
lauses.i=1̂p�1(:yi+1 _ yi) (2)The set of y variables has jSj valid states. Ea
h valid state
an be mapped toa single variable in S, su
h that the variable is assigned true i� y1 : : : yp takes themat
hing state. In
onstraint programming terms, this is
hannelling betweentwo representations. This
hannelling must be propagated in both dire
tions byunit propagation on the
lause set. The
hannelling
onstraints are as follows.i=1̂jSj [(yi�1 ^ :yi) () xi℄These
onstraints en
ode to the following set of
lauses (referred to as the
hannelling
lauses).i=1̂jSj [(:yi�1 _ yi _ xi) ^ (:xi _ yi�1) ^ (:xi _ :yi)℄ (3)Clauses
ontaining y0 or yjSj are simpli�ed by unit propagation as if y0 =True and yjSj = False.The number of
hannelling
lauses plus ladder validity
lauses is O(n) (wheren = jSj), and they are all size 3 or smaller. The number of ladder variables isalso O(n). Therefore the time taken to a
hieve
onsisten
y between the two setsby unit propagation must also be O(n). However, while performing sear
h on the

variables in S, the total
ost of unit-propagation down one bran
h of the sear
htree is also O(n). Sin
e des
ending the bran
h involves setting all n variables inS, the mean
ost of unit-propagation during sear
h is O(1).To form an en
oding for AMO, we
ould take the EO en
oding des
ribedabove and add a variable to the set S. The additional variable would indi
atethat no variables are set true. This is referred to as the ladder AMO en
oding.1Another way is to disallow pairs of variables, with the following set of
lauses.x2Ŝ y2Ŝy 6=x(:x _ :y) (4)We will refer to this as the pairwise AMO en
oding. The number of
lauses isO(n2) and the
ost of a
hieving
onsisten
y is O(n). This en
oding is
learlysimpler than the ladder en
oding, and mu
h more widely used, but it has worsespa
e
omplexity. Unit propagation on this en
oding a
hieves the same level of
onsisten
y as unit propagation on the ladder AMO en
oding.The
ombination of the pairwise AMO en
oding and the ALO en
oding givesa se
ond EO en
oding, whi
h is referred to as the pairwise EO en
oding.2.1 AllDi�erent from AMO and EOThroughout we use the same way of en
oding of the �nite-domain CSP variablesinto Boolean variables: for a variable v with domain size d and domain Dv,the unary en
oding [17℄ is a set of Boolean variables xv1 : : : xvd where 8i � v 7!i () xvi . For a variable v
ontained in the AllDi�erent
onstraint, and a valuei 2 Dv, the Boolean variable xvi is assigned true i� v = i. Hen
e we have atwo-dimensional table of Boolean variables, shown below for the
ase where alldomains are equal, d = 4, and there are 3 variables in the AllDi�erent.v1 2 3i 1 x11 x21 x312 x12 x22 x323 x13 x23 x334 x14 x24 x34Intuitively, an AllDi�erent
onstraint
an be formed as follows: ea
h value
an be used at most one times, and ea
h variable takes exa
tly one value. This
orresponds to an EO en
oding for ea
h
olumn in the table, and an AMOen
oding for ea
h row. Using the ladder, this gives us an en
oding with O(nd)
lauses and O(nd) extra variables. Alternatively, using the pairwise en
oding forAMO, and ALO
lauses, we have an EO en
oding with O(n2d + d2n)
lausesand no extra variables.1 In pra
ti
e the additional variable xjSj is given the last index jSj, and by reasoning onthe
lause set it
an be seen that xjSj = yjSj�1, so xjSj is redundant and is omitted,along with the relevant
hannelling
lauses (all those that
ontain xjSj).

More formally, the ladder en
oding for the AllDi�erent
onstraint
an bede�ned as follows. For ea
h CSP variable v within the AllDi�erent
onstraint,there is one ladder EO stru
ture on the set of Boolean variables representing v:8i � xvi . For ea
h value i where i is in the domain of more than one variable, i.e.9v; w � v 6= w ^ i 2 Dv ^ i 2 Dw, there is a ladder AMO stru
ture
ontainingthe set of Boolean variables 8v � xvi . That is, all CSP variables whose domain
ontains i are represented in the AMO stru
ture.The pairwise en
oding
an be de�ned similarly. In the pla
e of ladder EOstru
tures we have ALO and pairwise AMO
ombined. In pla
e of the ladderAMO stru
ture we have a pairwise AMO stru
ture.This s
heme also works when the variables do not have equal initial domains.Ea
h value i that is shared between more than one domain must have an AMOstru
ture, and this in
ludes all Boolean variables xi. Similarly, ea
h CSP variablev has an EO stru
ture
overing all Boolean variables xv .As a side issue, it is not ne
essary for the CSP variable to take exa
tly onevalue. It is su�
ient to use ALO rather than EO. If a solution to the SAT prob-lem en
odes a CSP variable with more than one value, this indi
ates multiplesolutions to the underlying CSP. However, with
omplete SAT solvers, propa-gation tends to work better if ea
h variable is
onstrained to take exa
tly onevalue (as shown by Kautz et. al. in their
omparison between their 2D and 3Den
odings [8℄).If all variables share the same domain, and n = d, then ea
h value mustbe used exa
tly on
e. Therefore we
an use EO en
odings for both rows and
olumns. This gives slightly stronger propagation. We use this optimization inour experimental evaluation, for both ladder and pairwise en
odings.2.2 Propagation in the ladder en
odingIt is important that propagation works
orre
tly in the ladder en
oding. A
hangeto the unary variables propagates to the ladder variables, then some propagation
an o

ur with the ladder validity
lauses. This then propagates ba
k to theunary variables. The following example demonstrates this.v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 x334 x14 x24 x34Let us say that x12 and x22 are already set False. For
olumn 2, there arethree ladder variables y1, y2 and y3 and two ladder validity
lauses, (y1_:y2)^(y2 _ :y3). The following propagation o

urs.� By unit propagation on the
hannelling
lause (x21 _ y1), y1 is set to True.(The
lause (x21_y1) is derived from (:y0_y1_x21) sin
e y0 is always True.)� By the
hannelling
lause (:y1 _ y2 _ x22), y2 is set True.

None of the unary variables are set. Next, x23 is set False by the sear
h pro
edure.This shows what happens when all but one of the x2 variables are set False.� By the
hannelling
lause (:y2 _ y3 _ x23), y3 is set True.� By the
hannelling
lause (:y3 _ x24), x24 is set True. (This
lause is derivedfrom (:y3 _ y4 _ x24), be
ause y4 is
onsidered to be False.)We now have this situation. v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 x24 = True x34Propagation
an now happen along row 4. This shows what happens whenan x variable is set True. There are three ladder variables z1, z2 and z3 and twoladder validity
lauses, (z1 _ :z2) ^ (z2 _ :z3).� By unit propagation on the
hannelling
lauses (:x24 _ z1)^ (:x24 _:z2), z1is set to True and z2 is set to False.� By the ladder validity
lause (z2 _ :z3), z3 is set False.� By unit propagation on the
hannelling
lauses (:x14 _:z1)^ (:x34 _ z2), x14and x34 are set to False: v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 = False x24 = True x34 = False2.3 Corre
tness of the ladder en
odingWe prove that unit propagation is strong enough to maintain ar
-
onsisten
y onthe pairwise de
omposition of the AllDi�erent
onstraint (i.e. its de
ompositioninto n(n � 1)=2 not-equal
onstraints). Firstly there are three lemmas aboutthe ladder and
hannelling, whi
h together show that it fun
tions as a GACexa
tly-one
onstraint. Following that are two theorems whi
h use the lemmasto show the
orre
tness and propagation properties of the ladder en
oding. Thesame two theorems are in
luded for the pairwise en
oding, proving that the twoen
odings are equivalent in propagation. The following proofs refer to variablesxvi , and to row and
olumn ladders as used in se
tion 2.1.Lemma 1. If a set of variables S is
hannelled to a ladder with the
hannelling
lauses in formula 3, and the ladder validity
lauses in formula 2, and more thanone of S are set True, unit propagation generates the empty
lause.

Proof. Suppose that pi; pj 2 S, pi = pj = True, n = jSj, and the ladder
onsistsof z1:::zn�1. There are many possibilities for generating an empty
lause, ofwhi
h it su�
es to give one:By the
lauses (:pi _ zi�1)^ (:pi _:zi), zi�1 = True and zi = False. (Theend
ases i = 1 and i = n ea
h la
k one of these
lauses, and in these
ases theladder be
omes entirely True or entirely False.) These assignments are thenpropagated up and down the ladder by the ladder validity
lauses, (zv _:zv+1).So zv = True for v � i�1 and zv = False for v � i. If j < i in the sequen
e, the
lause (:pj_:zj) be
omes empty. If j > i in the sequen
e, the
lause (:pj_zj�1)be
omes empty.Lemma 2. If a set of variables S is
hannelled to a ladder with the
hannelling
lauses in formula 3, and the ladder validity
lauses in formula 2, and jSj � 1variables pi 2 S are set False with the remaining variable pj unassigned, thenpj be
omes True by unit propagation.Proof. Suppose that n = jSj and the ladder
onsists of z1:::zn�1. The �rst vari-able p1 is
ontained in the
hannelling
lause (z1 _ p1) and the last variable in(:zn�1 _ pn). The
lause (:zi�1 _ zi _ pi) (for every other False variable pi)simpli�es to (:zi�1_zi). At least one of p1 and pn must be false, so unit propaga-tion begins at the top, bottom or both ends of the ladder and pro
eeds throughthe (:zi�1 _ zi)
lauses until all the ladder variables are set. So zv = True forv � j � 1 and zv = False for v � j. pj is
ontained in the
hannelling
lause(:zj�1 _ zj _ pj) and is thus set True. All the
hannelling and validity
lausesare now satis�ed.Lemma 3. If a set of variables S is
hannelled to a ladder with the
hannelling
lauses in formula 3, and the ladder validity
lauses in formula 2, and a variablepi 2 S is set True with the rest unassigned or False, an unassigned variablepj 2 S will be set False by unit propagation.Proof. Suppose that n = jSj and the ladder
onsists of z1:::zn�1. By the
lauses(:pi _ zi�1) ^ (:pi _ :zi), zi�1 = True and zi = False. (The end
ases i = 1and i = n ea
h la
k one of these
lauses, and in these
ases the ladder be
omesentirely True or entirely False.) These assignments are then propagated up anddown the ladder by the ladder validity
lauses, (zv _ :zv+1). So zv = Truefor v � i � 1 and zv = False for v � i. If j < i in the sequen
e, the
lause(:pj _ :zj)
auses pj = False. If j > i in the sequen
e, the
lause (:pj _ zj�1)
auses pj = False. When all possible variables pj are set, all the
hannellingand validity
lauses are satis�ed.Theorem 1. Using the ladder en
oding of AllDi�erent, when unit propagationstops with no empty
lause, the pairwise de
omposition not-equal
onstraints arear
-
onsistent.Proof. Consider the variables xvi where v is the CSP variable and i is the value.Suppose we have a set of
urrent domains of the x variables in whi
h no unitpropagation is possible, and no domain is empty. Consider any v; w; j su
h that

there is no support in v for w = j. That is, for ea
h possible supporting valuei 2 1::(w � 1); (w + 1)::d, xvi = False.In this situation the
olumn ladder
auses xvj = True by lemma 2, then the rowladder
auses xwj = False by lemma 3. That is, the value j is not in the domainof variable w, and the domains are pairwise ar
-
onsistent as required.Theorem 2. Using the ladder en
oding of AllDi�erent, in a situation where allthe pairwise de
omposition not-equal
onstraints are ar
-
onsistent,
onstru
t aSAT partial assignment as follows. Variable xvi = True if v = i in the CSP,and variable xvi = False if i is not in the domain of v. xvi is left unassigned ifi is in the domain of v but other values remain in the domain of v. Performingunit propagation, some ladder variables y will be set in a valid state. Followingthis, every
lause in the SAT en
oding is either satis�ed or
ontains two or moreliterals and the propagation on ladder variables does not set any x variables.Proof. We work by
ase analysis, �rst
onsidering the
ase where v = i in theCSP,
orresponding to xvi = True. In the
olumn ladder, xvj will be set Falsefor all j 6= i by lemma 3, and in the proof of lemma 3 it
an be seen that bothvalidity and
hannelling
lauses in the
olumn ladder are all satis�ed. In therow ladder, again xwi will be set False for all w 6= v by lemma 3, and againit
an be seen that both validity and
hannelling
lauses in the row ladder aresatis�ed, and the value i is not present in the domains of variables w as requiredby ar
-
onsisten
y. This
ase also
overs the possibility that xvj = False for allj 6= i, sin
e this implies that xvi = True by lemma 2.The only other
ase to
onsider is where v 6= i in the CSP, but at least twovalues remain in the domain of v. This
orresponds to xvi = False, and there areat least two remaining unset variables in the
olumn. Of the
hannelling
lausesfor the
olumn ladder, (:xvi _yvi�1)^(:xvi _:yvi) are satis�ed and (:yvi�1_yvi _xvi)simpli�es to (:yvi�1_yvi). There are three possibilities, (1) if xvi�1 = False or xvi�1does not exist, then yvi�1 = True hen
e yvi = True and the
lause is satis�ed, or(2) xvi+1 = False or xvi+1 does not exist, then yvi = False hen
e yvi�1 = Falseand the
lause is satis�ed, or (3) the
lause remains with two literals. The laddervalidity
lauses are not relevant here sin
e they
annot be
ome unit. The laddervariables are set in sequen
e from the top and bottom, but sin
e there are atleast two unset xv variables, not all ladder variables
an be set by the
lauseabove. Hen
e there is no j su
h that yvj�1 = True and yvj = False, therefore nounit propagation o

urs on the
lause (:yvj�1 _ yvj _ xvj), and no x variables areset. Other
hannelling
lauses (:xvj _yvj�1)^(:xvj _:yvj) are satis�ed or non-unitbe
ause either xvj = False or yvj�1 and yvj are both unset. A similar, but simpler,argument applies to the
hannelling
lauses for the row ladder: the argument issimpler be
ause all variables may be set false, and so we do not need to appealto the existen
e of two unset variables.Theorem 3. Using the pairwise en
oding of AllDi�erent, formed from the AMOen
oding in formula 4 and the ALO in formula 1, when unit propagation stopswith no empty
lause, the pairwise de
omposition not-equal
onstraints are ar
-
onsistent.

Proof. Consider the situation des
ribed in theorem 1. By the ALO
lause �Wi=1d xvi �,xvj = True. Hen
e, by the pairwise AMO
lause (:xvj _:xwj), xwj = False. Thatis, the value j is not in the domain of variable w, and the domains are pairwisear
-
onsistent as required.Theorem 4. Using the pairwise en
oding of AllDi�erent, in
luding the AMOen
oding in formula 4, in a situation where all the pairwise de
omposition not-equal
onstraints are ar
-
onsistent,
onstru
t a SAT partial assignment as fol-lows. Variable xvi = True if v = i in the CSP, and variable xvi = False if i isnot in the domain of v. xvi is left unassigned if i is in the domain of v but othervalues remain in the domain of v. Every
lause in the SAT en
oding is eithersatis�ed or
ontains two or more literals.Proof. We work by
ase analysis, �rst
onsidering the
ase where v = i in theCSP,
orresponding to xvi = True. By the relevant pairwise
lauses (:xvi _:xwi)where v 6= w, xwi = False, as required by ar
-
onsisten
y. By the other set ofpairwise
lauses (:xvi _ :xvj) where i 6= j, xvj = False as required. The ALO
lause for v is satis�ed by xvi = True. The only other
ase to
onsider is wherev 6= i in the CSP, but at least two values remain in the domain of v. This
orresponds to xvi = False, and there are at least two remaining unset variablesin the
olumn. The ALO
lause for v is not unit sin
e it
ontains two unsetliterals. The pairwise
lauses (:xvi _ :xwi) where v 6= w, and (:xvi _:xvj) wherei 6= j, are all satis�ed. No other
lauses
ontain xvi .3 Experimental evaluationTo make a
omparison between the en
odings presented above, we used thequasigroup
ompletion problem. A quasigroup2 is an n � n table of symbols
ontained in alphabet �, where j�j = n. n is the order of the quasigroup
om-pletion problem. Ea
h row and
olumn of the table
ontains a permutation ofthe symbols in �. The
ompletion problem is to �ll in blank entries in su
h atable, maintaining the permutation property. It is NP-
omplete [7℄.We generated the instan
es using the method suggested by A
hlioptas et.al., whi
h is to
reate a random
omplete quasigroup and pun
h holes to
reatea quasigroup with holes (QWH) problem [7℄. The method used to generate arandom quasigroup is a Markov
hain Monte Carlo approa
h proposed by Ja-
obson and Matthews [18℄. The quasigroups generated this way are uniformlydistributed. The se
ond step is to pun
h a set number of holes in the quasi-group. The positions of the holes are
hosen with uniform distribution. Thisdoes not give a uniform distribution over all satis�able QCP instan
es, be
ausesome satis�able QCP instan
es
an be generated from more than one
ompletequasigroup. A weakness of this approa
h is that the problems are all satis�able.There exists a trivial algorithm for
ompleting an empty quasigroup, anda full quasigroup is also trivial to
omplete, hen
e the di�
ult region for this2 Or, more properly, the multipli
ation table of a quasigroup, whi
h is a Latin square.

NP-
omplete problem must lie between these extremes. A
hlioptas et. al. showthat with randomly pla
ed holes, the
omputational
ost peak for QWH (for anin
omplete algorithm (WalkSat) and a
omplete algorithm (Satz)) o

urs whenthe number of holes is 1:6 � n1:55. This
orresponds to the ba
kbone
overing50% of the variables. We use only instan
es from the
ost peak (rounding thenumber of holes to the nearest integer).To en
ode these instan
es into SAT, we use a 3D table of Boolean variables,with size n� n� n. This is the 2D quasigroup table extended in a third dimen-sion to provide a Boolean variable for ea
h symbol in �. For ea
h entry in thequasigroup table, exa
tly one symbol is required. This is a
hieved using n2 EOstru
tures. Similarly, ea
h symbol o

urs exa
tly on
e on ea
h row of the quasi-group table, and again for the
olumns, making a total of 3n2 EO stru
tures.Two ways of forming an EO stru
ture were des
ribed above: the ladder,and the
ombined ALO
lause and AMO pairwise
lauses. We do not mix thetwo en
odings for an instan
e of QWH, be
ause there is no readily apparentreason why it would be bene�
ial. From here we will refer to these as ladderand pairwise en
odings. Note that the pairwise en
oding is the 3D en
odingproposed by Kautz et. al. [8℄. Re
all that the pairwise EO stru
ture has O(n2)
lauses and the ladder stru
ture has O(n): the pairwise en
oding has O(n4)
lauses in total and the ladder has O(n3). Both en
odings have O(n3) Booleanvariables, although the pairwise en
oding has n3 and the ladder en
oding has4n3 � 3n2.The ladder en
oding has a better size bound, but it does not ne
essarily showan improvement in solution time for instan
es we
an feasibly solve.3.1 Experimental resultsWe used a sele
tion of re
ent SAT solvers to evaluate the en
odings: ZCha�[11℄, SATO version 4.1 [12℄, and Siege version 4 [13℄. Unfortunately, GRASP[15℄ and 2
lseq [14℄ ex
eeded the available memory (1 GB) on instan
es of order30 and above, so we have omitted them from the evaluation. All these solversare based on the Davis-Putnam-Logemann-Loveland pro
edure [9,10℄. Sin
e theladder en
oding is designed for unit propagation, we did not
onsider lo
al sear
halgorithms. We also use a simpler solver to gain some insight into the en
odings:BT+lex. This is ba
ktra
kingwith unit propagation and pure literal propagation,with a stati
 (lexi
ographi
) variable ordering and stati
 bran
h ordering. Theinternal data stru
tures are des
ribed in [16℄.All experiments were
arried out on a Pentium 4 3.06 GHz ma
hine with 1GB of RAM, and all runtimes are measured in se
onds. The time to the �rstsolution is measured. Sizes of the QWH problems were
hosen so that runtimesdid not ex
eed 10 000 se
onds.Figure 1 shows runtimes and node
ounts for SATO. The line indi
ates equalruntime. Initially these results are somewhat surprising, be
ause they show thatneither en
oding is
onsistently better, even though they have identi
al propaga-tion
hara
teristi
s. However, the di�erent
lause set and the additional variablesof the ladder en
oding a�e
t the variable ordering heuristi
 of SATO in su
h a

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

R
un

tim
e

w
ith

 p
ai

rw
is

e
A

M
O

Runtime with ladder

QCP
x

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06

N
od

es
 w

ith
 p

ai
rw

is
e

A
M

O

Nodes with ladder

QCP
x

Fig. 1. 100 � order 33 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime and nodes for SATO v4.1.way that the runtimes are not as well
orrelated as we expe
ted. The
orrelation
oe�
ient of the log of the runtimes is 0.74, indi
ating that the two variables aremoderately well
orrelated. The ladder en
oding is better for 60/100 instan
es,although the median run time for the ladder en
oding is 19.29s whereas for thepairwise en
oding it is 17.02s. Interestingly, the node
ounts for the ladder en-
oding are mostly lower, indi
ating that the SATO heuristi
s work better withladder than pairwise.ZCha� and Siege
an be run for larger instan
es. Figure 2 shows data forZCha� with instan
es of order 35. The
orrelation
oe�
ient is 0.70 for the logof the runtimes, similar to the previous experiment. 49/100 instan
es performedbetter with the ladder en
oding. The median run time for the ladder en
od-ing is 25.975s, and 19.795s for the pairwise en
oding. The plot of node
ounts

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

R
un

tim
e

w
ith

 p
ai

rw
is

e
A

M
O

Runtime with ladder

QCP
x

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

N
od

es
 w

ith
 p

ai
rw

is
e

A
M

O

Nodes with ladder

QCP
x

Fig. 2. 100 � order 35 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime and nodes for ZCha�.shows that neither en
oding has a signi�
ant advantage in terms of the ZCha�heuristi
s.Figure 3 shows data for the Siege solver for the same instan
es of order 35.The
orrelation
oe�
ient is 0.78 for the log of the runtimes, whi
h is strongerthan previous experiments. Siege seems less well suited to the ladder en
oding,with only 12/100 instan
es performing better with the ladder en
oding. Themedian run time for the ladder en
oding is 8.40s, and 1.855s for the pairwiseen
oding. Although the node
ount plot is omitted for spa
e reasons, it showsno advantage for either en
oding. Therefore the di�eren
e in runtime is
ausedby in
reased unit propagation
ost.From these results, it appears that SATO is best suited to the ladder en-
oding. It is also generally the worst-performing solver. For ZCha� and Siege,

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

R
un

tim
e

w
ith

 p
ai

rw
is

e
A

M
O

Runtime with ladder

QCP
x

Fig. 3. 100 � order 35 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for Siege v4.order (n)
lauses literals variablespairwise en
odingAMO (size 2) (32n3(n � 1)) ALO (size n) (3n2) Units Total25 562500 1875 390 564765 1172265 1562533 1724976 3267 728 1728971 3558491 3593735 2186625 3675 829 2191129 4502704 42875ladder en
odingSize 2 (3(3n � 2)n2) Size 3 (3(n� 2)n2) Units Total25 136875 43125 390 180390 403515 6062533 316899 101277 728 418904 938357 14048135 378525 121275 829 500629 1121704 167825Table 1. Comparing sizes of the en
odingsperhaps we
annot s
ale high enough to �nd the bene�t of the ladder en
od-ing. Table 1 shows that the ladder en
oding is approximately a quarter the sizeof the pairwise en
oding (
omparing either the literals or
lauses) at order 35.However, it appears that the state of the art solvers
an e�
iently handle prob-lems with over 5 million literals, and the pairwise en
oding allows
heaper unitpropagation with Siege.3.2 Propagation performan
eThe experiments above do not
ontrol the variable and bran
h ordering, and asa result the ladder and pairwise run times
an be several orders of magnitudedi�erent, due to di�erent heuristi

hoi
es. To remove the e�e
t of the orderingheuristi
s, it is ne
essary to �x the variable and bran
h ordering. If the unary

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

R
un

tim
e

w
ith

 p
ai

rw
is

e
A

M
O

Runtime with ladder

QCP
x

Fig. 4. 100 � order 25 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for BT+lex.variables are all set, the additional ladder variables will be set
ompletely by unitpropagation, so it is possible to traverse the same sear
h tree with both en
od-ings. This allows us to
ompare the en
odings purely on their unit propagatione�
ien
y.Algorithms su
h as
on�i
t ba
kjumping and
lause learning
an also
ausedi�eren
es in the sear
h tree, so we use a simple ba
ktra
king algorithm, withpure literal elimination and unit propagation. Unfortunately, the state-of-the-art SAT solvers do not allow us to use a �xed variable ordering, or to turno�
on�i
t ba
kjumping or
lause learning. Therefore we use the QBF solverBT+lex, whi
h has e�
ient data stru
tures based on literal and
lause wat
hing.The implementation is des
ribed by Gent et. al. [16℄. The fa
t that BT+lex
ana

ept the QBF problem does not a�e
t its behaviour on a SAT problem, sin
eQBF is a dire
t generalization of SAT.Figure 4 shows a
omparison between the en
odings using BT+lex, and or-der 25 QWH instan
es. The pairwise en
oding is performing better for mostinstan
es. The ex
eption is the easiest instan
es, whi
h seem to show the over-head of the larger en
oding. (Even at this size, the pairwise en
oding is overtwi
e the size of the ladder; see table 1.) The median run time for the ladderen
oding is 3.77s,
ompared to 1.875s for the pairwise en
oding. Hen
e at thiss
ale, unit propagation over the pairwise en
oding is approximately two timesfaster with this parti
ular implementation.To
ompare BT+lex to a more
apable SAT solver, �gure 5 shows run timesfor SATO on the same instan
es. The median run times here are 0.38s and 0.44sfor ladder and pairwise respe
tively. The lower bounds on the run times aresimilar to BT+lex, but the upper bound is mu
h lower.

 0.1

 1

 10

 0.1 1 10

R
un

tim
e

w
ith

 p
ai

rw
is

e
A

M
O

Runtime with ladder

QCP
x

Fig. 5. 100 � order 25 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for SATO.4 Con
lusionsThis arti
le has introdu
ed the ladder en
oding for the AllDi�erent
onstraintinto SAT. The AllDi�erent is
ommonly used in
onstraint programming. Thenew en
oding s
ales well in the number of
lauses. However, empiri
al evaluationon feasibly sized instan
es of the quasigroup
ompletion problem shows that thenew en
oding does not perform as well as the pairwise en
oding, restri
ting itsuse to
ases where the formula is so large that size be
omes a more important
onsideration than solution speed. This may be the
ase for large, easy problemsaway from the phase transition. Finding en
odings of AllDi�erent whi
h providemore powerful propagation remains an open resear
h question.Finally, although the ladder en
oding was not very su

essful here, the ladderstru
ture is a useful en
oding tri
k in other situations [4,5,6℄. There are not manysu
h tri
ks for en
oding into SAT at the moment. It would be bene�
ial to theSAT
ommunity to develop and publish more en
oding te
hniques.A
knowledgmentsWe thank Andrew Rowley for the use of his BT+lex solver, and Carla Gomesfor her random
omplete quasigroup generator. The �rst author is supportedby a Royal So
iety of Edinburgh SEELLD Support Fellowship, and the se
ondby an EPSRC Do
toral Training Grant. We also thank the referees for helpful
omments.Referen
es1. E�
ient CNF En
oding of Boolean Cardinality Constraints, Olivier Bailleux andYa
ine Boufkhad, Pro
eedings of CP 2003, pages 108-122, 2003.

2. Ar
 Consisten
y in SAT, Ian P. Gent, Pro
eedings of ECAI 2002: the 15th Euro-pean Conferen
e on Arti�
ial Intelligen
e, pages 121-125, 2002.3. The alldi�erent Constraint: A Survey, W. J. van Hoeve, 6th Annual workshop ofthe ERCIM Working Group on Constraints, 2001.4. A 0/1 en
oding of the GACLex
onstraint for pairs of ve
tors, Ian Gent, Patri
kProsser and Barbara Smith, in ECAI 2002 workshop W9 Modelling and SolvingProblems with Constraints, 2002.5. SAT En
odings of the Stable Marriage Problem with Ties and In
omplete Lists,Ian P. Gent and Patri
k Prosser, Pro
eedings of 5th International Symposium onTheory and Appli
ations of Satis�ability Testing (SAT2002), 2002.6. Mapping Problems with Finite-Domain Variables into Problems with Boolean Vari-ables, Carlos Ansótegui and Felip Manyà, To appear in 7th International Confer-en
e on Theory and Appli
ations of Satis�ability Testing (SAT04), 2004.7. Generating Satis�able Problem Instan
es, Dimitris A
hlioptas, Carla Gomes,Henry Kautz and Bart Selman, Pro
eedings of 17th National Conferen
e on Arti-�
ial Intelligen
e (AAAI2001), pages 256-261, 2001.8. Balan
e and Filtering in Stru
tured Satis�able Problems, Henry A. Kautz, Yong-shao Ruan, Dimitris A
hlioptas, Carla P. Gomes, Bart Selman and Mark E. Sti
kel,Pro
eedings of IJCAI2001, pages 351-358, 2001.9. A Computing Pro
edure for Quanti�
ation Theory, Martin Davis, Hilary Putnam,Journal of the ACM (JACM), vol. 7 no. 3, pages 201-215, July 1960.10. A ma
hine program for theorem-proving, Martin Davis, George Logemann, DonaldLoveland, Communi
ations of the ACM, vol. 5 no. 7, pages 394-397, July 1962.11. Cha�: Engineering an E�
ient SAT Solver, Matthew W. Moskewi
z, Conor F.Madigan, Ying Zhao, Lintao Zhang and Sharad Malik, Pro
eedings of the 38thDesign Automation Conferen
e (DAC'01), 2001.12. SATO: an E�
ient Propositional Prover, Hantao Zhang, Pro
eedings of the Inter-national Conferen
e on Automated Dedu
tion (CADE'97), volume 1249 of LNAI,pages 272-275, 1997.13. E�
ient Algorithms for Clause-learning SAT Solvers, Lawren
e Ryan, MS
 thesis,Simon Fraser University, February 2004.14. Enhan
ing Davis Putnam with Extended Binary Clause Reasoning, F. Ba

hus,Pro
eedings of 18th National Conferen
e on Arti�
ial Intelligen
e (AAAI-2002),2002.15. GRASP: A Sear
h Algorithm for Propositional Satis�ability, J. P. Marques-Silvaand K. A. Sakallah, IEEE Transa
tions on Computers, vol. 48, no. 5, pages 506-521,May 1999.16. Wat
hed Data Stru
tures for QBF Solvers, Ian Gent, Enri
o Giun
higlia, MassimoNarizzano, Andrew Rowley and Armando Ta

hella, Pro
eedings of 6th Interna-tional Symposium on Theory and Appli
ations of Satis�ability Testing (SAT2003),pages 348-355, 2003.17. Solving Non-Boolean Satis�ability Problems with Sto
hasti
 Lo
al Sear
h, AlanM. Fris
h and Timothy J. Peugniez, Pro
eedings of IJCAI 2001, pages 282-290,2001.18. Generating uniformly distributed random latin squares, M. T. Ja
obson and P.Matthews, Journal of Combinatorial Designs, vol. 4, no. 6, pages 405-437, 1996.

