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.ukAbstra
t. For propositional satis�ability (SAT) solvers to be used forsolving the 
onstraint satisfa
tion problem (CSP), e�
ient en
odings arerequired. The AllDi�erent 
onstraint is well used in 
onstraint program-ming. This paper presents a new en
oding for the AllDi�erent 
onstraint.This is 
ompared, theoreti
ally and empiri
ally, to a simple and 
ommonen
oding. The new en
oding presented s
ales better than the 
ommon(or any other known) en
oding, however in the empiri
al evaluation wefound it does not perform as well as the 
ommon en
oding on feasiblysized instan
es.1 Introdu
tionSolvers for propositional satis�ability (SAT) are highly developed and e�
ient,in
orporating advan
ed te
hniques su
h as 
on�i
t learning, ba
kjumping andtuned heuristi
s, implemented using te
hniques su
h as wat
hed literals. Con-straint solvers are not typi
ally optimized to the same level, but they o�er manyuseful types of 
onstraints. Some of these 
onstraints en
ode neatly into SAT,su
h as arbitrary binary 
onstraints. However, others do not, su
h as the global
ardinality 
onstraint des
ribed below.Our motivation for developing an en
oding of the AllDi�erent 
onstraint isto make use of the e�
ien
y of SAT solvers on problems with AllDi�erent 
on-straints. The usual approa
h to en
oding the AllDi�erent is to de
ompose it intopairwise binary 
onstraints X 6= Y , then en
ode these using the dire
t en
oding[2℄. This is referred to below as the pairwise en
oding. The new en
oding pre-sented here maintains the propagation properties of the pairwise en
oding whiles
aling better in formula size.In the following dis
ussion, n is the number of variables 
ontained in a 
on-straint, d is the largest domain size of the variables in the 
onstraint, and e isthe total number of 
onstraints.Bailleux and Boufkhad [1℄ 
onsidered the 
ardinality 
onstraint on a set ofBoolean variables (i.e. 
onstraining the number of variables that 
an be assignedthe value 1), and produ
ed an en
oding with O(n2) 
lauses (of length at most3) and O(n logn) variables. Unit propagation over this en
oding restores globalar
-
onsisten
y (GAC) in O(n2) time although only setting O(n logn) variables.There is a GAC algorithm whi
h runs in O(n) time, so this en
oding is subop-timal in that sense. However, it may be the optimal SAT en
oding.



For arbitrary binary 
onstraints, Gent [2℄ des
ribed the support en
odingand showed that unit propagation on the en
oding establishes ar
-
onsisten
y.Unit propagation takes O(ed2) time, whi
h is the same as the optimal algo-rithm running on an extensional representation of the 
onstraints. We 
all thisa propagation optimal en
oding.There are several 
onsisten
y notions for the AllDi�erent 
onstraint [3℄. Thethree most 
ommon are global ar
-
onsisten
y (GAC), range 
onsisten
y (RC)and ar
-
onsisten
y over the pairwise binary de
omposition (AC). GAC is thestrongest, followed by RC, followed by AC. With the example A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C), GAC would remove 1 from C, sin
e 1 must be usedby either A or B. However RC would not. With the slightly di�erent exam-ple A;B 2 f1; 2g; C 2 f1; 3g;AllDi�erent(A;B;C), RC 
an identify the range1 : : : 2 and thus prune 1 from C. AC 
an only prune when variables be
ome fullyinstantiated.We 
onsider the simplest 
onsisten
y notion, AC. When the domain of avariable 
ontains only one value, that value is removed from the domain of allthe other variables in the 
onstraint. This is repeated as long as possible. If twovariables are set to the same value, the 
onstraint fails. This algorithm performsO(n2) value removals before rea
hing the �xed point. Storing the 
onstraint asa list of variables requires O(n) spa
e.In this paper we present an en
oding of the AllDi�erent 
onstraint with O(nd)
lauses (of length no more than 3). When unit propagation is performed on theen
oding, it does the same work as the simple propagation algorithm outlinedabove, setting O(n2) Boolean variables. We assume that setting a variable in SATand removing a value from a domain in CSP have the same time 
omplexity. Ifn � d the en
oding is propagation optimal. This arises �rstly with permutations(n = d, 8x; y � Dx = Dy) and se
ondly when the domains are not equal. Inthis se
ond situation, if all domains were equal and n > d, then the 
onstraintwould be false by the pigeonhole prin
iple. However, the pigeonhole prin
ipledoes not apply when the domains are not equal. For example, A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C) has maximum domain size d = 2, but there is asatisfying assignment.However, sin
e the size is O(nd), when d > n (or, more a

urately, when dis not O(n), so limd!1 n=d = 0) the en
oding should not be 
onsidered propa-gation optimal.2 En
odingsThe main 
on
ept in these en
odings is 
onstraining the number of Booleanvariables set to true. For some set S of Boolean variables, we need to 
onstrainthem to have at least one, exa
tly one, or at most one set to true, so 
orre-spondingly we des
ribe at-least-one (ALO), exa
tly-one (EO) and at-most-one(AMO) en
odings. For this se
tion, members of S are referred to as xi, wherei 2 1 : : : jSj.



An ALO en
oding for the set S is simply the following.0�i=1_jSj xi1A (1)To 
reate an EO 
lause set for a set of size n, we 
ould 
ombine ALO andAMO. Another possibility is to use a stru
ture used by Gent, Prosser and Smith[4,5℄ and independently by Ansótegui and Manyà [6℄ in their regular and halfregular mappings. The stru
ture (whi
h is referred to as ladder from here on)
onsists of a sequen
e of p = n�1 additional Boolean variables, y1:::yp (referredto as the ladder variables) and a set of 
lauses (de�ned below).A 
omplete valid assignment of the ladder variables has no adja
ent pair ofvariables yr; yr+1 where yr = False ^ yr+1 = True. It 
onsists of a sequen
eof zero or more true assignments, and all following variables are assigned false.Hen
e if 9r � yr = False ^ yr+1 = True, the sequen
e must be invalid.An assignment to a ladder variable 
an be unit-propagated appropriately withp � 1 binary 
lauses, shown below. Setting a variable to false propagates to allvariables following it in the sequen
e, and setting a variable to true propagates toall variables pre
eding it, by unit propagation. Hen
e the following set of 
lausesforbids all invalid states. These are referred to as the ladder validity 
lauses.i=1̂p�1(:yi+1 _ yi) (2)The set of y variables has jSj valid states. Ea
h valid state 
an be mapped toa single variable in S, su
h that the variable is assigned true i� y1 : : : yp takes themat
hing state. In 
onstraint programming terms, this is 
hannelling betweentwo representations. This 
hannelling must be propagated in both dire
tions byunit propagation on the 
lause set. The 
hannelling 
onstraints are as follows.i=1̂jSj [(yi�1 ^ :yi) () xi℄These 
onstraints en
ode to the following set of 
lauses (referred to as the
hannelling 
lauses).i=1̂jSj [(:yi�1 _ yi _ xi) ^ (:xi _ yi�1) ^ (:xi _ :yi)℄ (3)Clauses 
ontaining y0 or yjSj are simpli�ed by unit propagation as if y0 =True and yjSj = False.The number of 
hannelling 
lauses plus ladder validity 
lauses is O(n) (wheren = jSj), and they are all size 3 or smaller. The number of ladder variables isalso O(n). Therefore the time taken to a
hieve 
onsisten
y between the two setsby unit propagation must also be O(n). However, while performing sear
h on the



variables in S, the total 
ost of unit-propagation down one bran
h of the sear
htree is also O(n). Sin
e des
ending the bran
h involves setting all n variables inS, the mean 
ost of unit-propagation during sear
h is O(1).To form an en
oding for AMO, we 
ould take the EO en
oding des
ribedabove and add a variable to the set S. The additional variable would indi
atethat no variables are set true. This is referred to as the ladder AMO en
oding.1Another way is to disallow pairs of variables, with the following set of 
lauses.x2Ŝ y2Ŝy 6=x(:x _ :y) (4)We will refer to this as the pairwise AMO en
oding. The number of 
lauses isO(n2) and the 
ost of a
hieving 
onsisten
y is O(n). This en
oding is 
learlysimpler than the ladder en
oding, and mu
h more widely used, but it has worsespa
e 
omplexity. Unit propagation on this en
oding a
hieves the same level of
onsisten
y as unit propagation on the ladder AMO en
oding.The 
ombination of the pairwise AMO en
oding and the ALO en
oding givesa se
ond EO en
oding, whi
h is referred to as the pairwise EO en
oding.2.1 AllDi�erent from AMO and EOThroughout we use the same way of en
oding of the �nite-domain CSP variablesinto Boolean variables: for a variable v with domain size d and domain Dv,the unary en
oding [17℄ is a set of Boolean variables xv1 : : : xvd where 8i � v 7!i () xvi . For a variable v 
ontained in the AllDi�erent 
onstraint, and a valuei 2 Dv, the Boolean variable xvi is assigned true i� v = i. Hen
e we have atwo-dimensional table of Boolean variables, shown below for the 
ase where alldomains are equal, d = 4, and there are 3 variables in the AllDi�erent.v1 2 3i 1 x11 x21 x312 x12 x22 x323 x13 x23 x334 x14 x24 x34Intuitively, an AllDi�erent 
onstraint 
an be formed as follows: ea
h value
an be used at most one times, and ea
h variable takes exa
tly one value. This
orresponds to an EO en
oding for ea
h 
olumn in the table, and an AMOen
oding for ea
h row. Using the ladder, this gives us an en
oding with O(nd)
lauses and O(nd) extra variables. Alternatively, using the pairwise en
oding forAMO, and ALO 
lauses, we have an EO en
oding with O(n2d + d2n) 
lausesand no extra variables.1 In pra
ti
e the additional variable xjSj is given the last index jSj, and by reasoning onthe 
lause set it 
an be seen that xjSj = yjSj�1, so xjSj is redundant and is omitted,along with the relevant 
hannelling 
lauses (all those that 
ontain xjSj).



More formally, the ladder en
oding for the AllDi�erent 
onstraint 
an bede�ned as follows. For ea
h CSP variable v within the AllDi�erent 
onstraint,there is one ladder EO stru
ture on the set of Boolean variables representing v:8i � xvi . For ea
h value i where i is in the domain of more than one variable, i.e.9v; w � v 6= w ^ i 2 Dv ^ i 2 Dw, there is a ladder AMO stru
ture 
ontainingthe set of Boolean variables 8v � xvi . That is, all CSP variables whose domain
ontains i are represented in the AMO stru
ture.The pairwise en
oding 
an be de�ned similarly. In the pla
e of ladder EOstru
tures we have ALO and pairwise AMO 
ombined. In pla
e of the ladderAMO stru
ture we have a pairwise AMO stru
ture.This s
heme also works when the variables do not have equal initial domains.Ea
h value i that is shared between more than one domain must have an AMOstru
ture, and this in
ludes all Boolean variables xi. Similarly, ea
h CSP variablev has an EO stru
ture 
overing all Boolean variables xv .As a side issue, it is not ne
essary for the CSP variable to take exa
tly onevalue. It is su�
ient to use ALO rather than EO. If a solution to the SAT prob-lem en
odes a CSP variable with more than one value, this indi
ates multiplesolutions to the underlying CSP. However, with 
omplete SAT solvers, propa-gation tends to work better if ea
h variable is 
onstrained to take exa
tly onevalue (as shown by Kautz et. al. in their 
omparison between their 2D and 3Den
odings [8℄).If all variables share the same domain, and n = d, then ea
h value mustbe used exa
tly on
e. Therefore we 
an use EO en
odings for both rows and
olumns. This gives slightly stronger propagation. We use this optimization inour experimental evaluation, for both ladder and pairwise en
odings.2.2 Propagation in the ladder en
odingIt is important that propagation works 
orre
tly in the ladder en
oding. A 
hangeto the unary variables propagates to the ladder variables, then some propagation
an o

ur with the ladder validity 
lauses. This then propagates ba
k to theunary variables. The following example demonstrates this.v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 x334 x14 x24 x34Let us say that x12 and x22 are already set False. For 
olumn 2, there arethree ladder variables y1, y2 and y3 and two ladder validity 
lauses, (y1_:y2)^(y2 _ :y3). The following propagation o

urs.� By unit propagation on the 
hannelling 
lause (x21 _ y1), y1 is set to True.(The 
lause (x21_y1) is derived from (:y0_y1_x21) sin
e y0 is always True.)� By the 
hannelling 
lause (:y1 _ y2 _ x22), y2 is set True.



None of the unary variables are set. Next, x23 is set False by the sear
h pro
edure.This shows what happens when all but one of the x2 variables are set False.� By the 
hannelling 
lause (:y2 _ y3 _ x23), y3 is set True.� By the 
hannelling 
lause (:y3 _ x24), x24 is set True. (This 
lause is derivedfrom (:y3 _ y4 _ x24), be
ause y4 is 
onsidered to be False.)We now have this situation. v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 x24 = True x34Propagation 
an now happen along row 4. This shows what happens whenan x variable is set True. There are three ladder variables z1, z2 and z3 and twoladder validity 
lauses, (z1 _ :z2) ^ (z2 _ :z3).� By unit propagation on the 
hannelling 
lauses (:x24 _ z1)^ (:x24 _:z2), z1is set to True and z2 is set to False.� By the ladder validity 
lause (z2 _ :z3), z3 is set False.� By unit propagation on the 
hannelling 
lauses (:x14 _:z1)^ (:x34 _ z2), x14and x34 are set to False: v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 = False x24 = True x34 = False2.3 Corre
tness of the ladder en
odingWe prove that unit propagation is strong enough to maintain ar
-
onsisten
y onthe pairwise de
omposition of the AllDi�erent 
onstraint (i.e. its de
ompositioninto n(n � 1)=2 not-equal 
onstraints). Firstly there are three lemmas aboutthe ladder and 
hannelling, whi
h together show that it fun
tions as a GACexa
tly-one 
onstraint. Following that are two theorems whi
h use the lemmasto show the 
orre
tness and propagation properties of the ladder en
oding. Thesame two theorems are in
luded for the pairwise en
oding, proving that the twoen
odings are equivalent in propagation. The following proofs refer to variablesxvi , and to row and 
olumn ladders as used in se
tion 2.1.Lemma 1. If a set of variables S is 
hannelled to a ladder with the 
hannelling
lauses in formula 3, and the ladder validity 
lauses in formula 2, and more thanone of S are set True, unit propagation generates the empty 
lause.



Proof. Suppose that pi; pj 2 S, pi = pj = True, n = jSj, and the ladder 
onsistsof z1:::zn�1. There are many possibilities for generating an empty 
lause, ofwhi
h it su�
es to give one:By the 
lauses (:pi _ zi�1)^ (:pi _:zi), zi�1 = True and zi = False. (Theend 
ases i = 1 and i = n ea
h la
k one of these 
lauses, and in these 
ases theladder be
omes entirely True or entirely False.) These assignments are thenpropagated up and down the ladder by the ladder validity 
lauses, (zv _:zv+1).So zv = True for v � i�1 and zv = False for v � i. If j < i in the sequen
e, the
lause (:pj_:zj) be
omes empty. If j > i in the sequen
e, the 
lause (:pj_zj�1)be
omes empty.Lemma 2. If a set of variables S is 
hannelled to a ladder with the 
hannelling
lauses in formula 3, and the ladder validity 
lauses in formula 2, and jSj � 1variables pi 2 S are set False with the remaining variable pj unassigned, thenpj be
omes True by unit propagation.Proof. Suppose that n = jSj and the ladder 
onsists of z1:::zn�1. The �rst vari-able p1 is 
ontained in the 
hannelling 
lause (z1 _ p1) and the last variable in(:zn�1 _ pn). The 
lause (:zi�1 _ zi _ pi) (for every other False variable pi)simpli�es to (:zi�1_zi). At least one of p1 and pn must be false, so unit propaga-tion begins at the top, bottom or both ends of the ladder and pro
eeds throughthe (:zi�1 _ zi) 
lauses until all the ladder variables are set. So zv = True forv � j � 1 and zv = False for v � j. pj is 
ontained in the 
hannelling 
lause(:zj�1 _ zj _ pj) and is thus set True. All the 
hannelling and validity 
lausesare now satis�ed.Lemma 3. If a set of variables S is 
hannelled to a ladder with the 
hannelling
lauses in formula 3, and the ladder validity 
lauses in formula 2, and a variablepi 2 S is set True with the rest unassigned or False, an unassigned variablepj 2 S will be set False by unit propagation.Proof. Suppose that n = jSj and the ladder 
onsists of z1:::zn�1. By the 
lauses(:pi _ zi�1) ^ (:pi _ :zi), zi�1 = True and zi = False. (The end 
ases i = 1and i = n ea
h la
k one of these 
lauses, and in these 
ases the ladder be
omesentirely True or entirely False.) These assignments are then propagated up anddown the ladder by the ladder validity 
lauses, (zv _ :zv+1). So zv = Truefor v � i � 1 and zv = False for v � i. If j < i in the sequen
e, the 
lause(:pj _ :zj) 
auses pj = False. If j > i in the sequen
e, the 
lause (:pj _ zj�1)
auses pj = False. When all possible variables pj are set, all the 
hannellingand validity 
lauses are satis�ed.Theorem 1. Using the ladder en
oding of AllDi�erent, when unit propagationstops with no empty 
lause, the pairwise de
omposition not-equal 
onstraints arear
-
onsistent.Proof. Consider the variables xvi where v is the CSP variable and i is the value.Suppose we have a set of 
urrent domains of the x variables in whi
h no unitpropagation is possible, and no domain is empty. Consider any v; w; j su
h that



there is no support in v for w = j. That is, for ea
h possible supporting valuei 2 1::(w � 1); (w + 1)::d, xvi = False.In this situation the 
olumn ladder 
auses xvj = True by lemma 2, then the rowladder 
auses xwj = False by lemma 3. That is, the value j is not in the domainof variable w, and the domains are pairwise ar
-
onsistent as required.Theorem 2. Using the ladder en
oding of AllDi�erent, in a situation where allthe pairwise de
omposition not-equal 
onstraints are ar
-
onsistent, 
onstru
t aSAT partial assignment as follows. Variable xvi = True if v = i in the CSP,and variable xvi = False if i is not in the domain of v. xvi is left unassigned ifi is in the domain of v but other values remain in the domain of v. Performingunit propagation, some ladder variables y will be set in a valid state. Followingthis, every 
lause in the SAT en
oding is either satis�ed or 
ontains two or moreliterals and the propagation on ladder variables does not set any x variables.Proof. We work by 
ase analysis, �rst 
onsidering the 
ase where v = i in theCSP, 
orresponding to xvi = True. In the 
olumn ladder, xvj will be set Falsefor all j 6= i by lemma 3, and in the proof of lemma 3 it 
an be seen that bothvalidity and 
hannelling 
lauses in the 
olumn ladder are all satis�ed. In therow ladder, again xwi will be set False for all w 6= v by lemma 3, and againit 
an be seen that both validity and 
hannelling 
lauses in the row ladder aresatis�ed, and the value i is not present in the domains of variables w as requiredby ar
-
onsisten
y. This 
ase also 
overs the possibility that xvj = False for allj 6= i, sin
e this implies that xvi = True by lemma 2.The only other 
ase to 
onsider is where v 6= i in the CSP, but at least twovalues remain in the domain of v. This 
orresponds to xvi = False, and there areat least two remaining unset variables in the 
olumn. Of the 
hannelling 
lausesfor the 
olumn ladder, (:xvi _yvi�1)^(:xvi _:yvi ) are satis�ed and (:yvi�1_yvi _xvi )simpli�es to (:yvi�1_yvi ). There are three possibilities, (1) if xvi�1 = False or xvi�1does not exist, then yvi�1 = True hen
e yvi = True and the 
lause is satis�ed, or(2) xvi+1 = False or xvi+1 does not exist, then yvi = False hen
e yvi�1 = Falseand the 
lause is satis�ed, or (3) the 
lause remains with two literals. The laddervalidity 
lauses are not relevant here sin
e they 
annot be
ome unit. The laddervariables are set in sequen
e from the top and bottom, but sin
e there are atleast two unset xv variables, not all ladder variables 
an be set by the 
lauseabove. Hen
e there is no j su
h that yvj�1 = True and yvj = False, therefore nounit propagation o

urs on the 
lause (:yvj�1 _ yvj _ xvj ), and no x variables areset. Other 
hannelling 
lauses (:xvj _yvj�1)^(:xvj _:yvj ) are satis�ed or non-unitbe
ause either xvj = False or yvj�1 and yvj are both unset. A similar, but simpler,argument applies to the 
hannelling 
lauses for the row ladder: the argument issimpler be
ause all variables may be set false, and so we do not need to appealto the existen
e of two unset variables.Theorem 3. Using the pairwise en
oding of AllDi�erent, formed from the AMOen
oding in formula 4 and the ALO in formula 1, when unit propagation stopswith no empty 
lause, the pairwise de
omposition not-equal 
onstraints are ar
-
onsistent.



Proof. Consider the situation des
ribed in theorem 1. By the ALO 
lause �Wi=1d xvi �,xvj = True. Hen
e, by the pairwise AMO 
lause (:xvj _:xwj ), xwj = False. Thatis, the value j is not in the domain of variable w, and the domains are pairwisear
-
onsistent as required.Theorem 4. Using the pairwise en
oding of AllDi�erent, in
luding the AMOen
oding in formula 4, in a situation where all the pairwise de
omposition not-equal 
onstraints are ar
-
onsistent, 
onstru
t a SAT partial assignment as fol-lows. Variable xvi = True if v = i in the CSP, and variable xvi = False if i isnot in the domain of v. xvi is left unassigned if i is in the domain of v but othervalues remain in the domain of v. Every 
lause in the SAT en
oding is eithersatis�ed or 
ontains two or more literals.Proof. We work by 
ase analysis, �rst 
onsidering the 
ase where v = i in theCSP, 
orresponding to xvi = True. By the relevant pairwise 
lauses (:xvi _:xwi )where v 6= w, xwi = False, as required by ar
-
onsisten
y. By the other set ofpairwise 
lauses (:xvi _ :xvj ) where i 6= j, xvj = False as required. The ALO
lause for v is satis�ed by xvi = True. The only other 
ase to 
onsider is wherev 6= i in the CSP, but at least two values remain in the domain of v. This
orresponds to xvi = False, and there are at least two remaining unset variablesin the 
olumn. The ALO 
lause for v is not unit sin
e it 
ontains two unsetliterals. The pairwise 
lauses (:xvi _ :xwi ) where v 6= w, and (:xvi _:xvj ) wherei 6= j, are all satis�ed. No other 
lauses 
ontain xvi .3 Experimental evaluationTo make a 
omparison between the en
odings presented above, we used thequasigroup 
ompletion problem. A quasigroup2 is an n � n table of symbols
ontained in alphabet �, where j�j = n. n is the order of the quasigroup 
om-pletion problem. Ea
h row and 
olumn of the table 
ontains a permutation ofthe symbols in �. The 
ompletion problem is to �ll in blank entries in su
h atable, maintaining the permutation property. It is NP-
omplete [7℄.We generated the instan
es using the method suggested by A
hlioptas et.al., whi
h is to 
reate a random 
omplete quasigroup and pun
h holes to 
reatea quasigroup with holes (QWH) problem [7℄. The method used to generate arandom quasigroup is a Markov 
hain Monte Carlo approa
h proposed by Ja-
obson and Matthews [18℄. The quasigroups generated this way are uniformlydistributed. The se
ond step is to pun
h a set number of holes in the quasi-group. The positions of the holes are 
hosen with uniform distribution. Thisdoes not give a uniform distribution over all satis�able QCP instan
es, be
ausesome satis�able QCP instan
es 
an be generated from more than one 
ompletequasigroup. A weakness of this approa
h is that the problems are all satis�able.There exists a trivial algorithm for 
ompleting an empty quasigroup, anda full quasigroup is also trivial to 
omplete, hen
e the di�
ult region for this2 Or, more properly, the multipli
ation table of a quasigroup, whi
h is a Latin square.



NP-
omplete problem must lie between these extremes. A
hlioptas et. al. showthat with randomly pla
ed holes, the 
omputational 
ost peak for QWH (for anin
omplete algorithm (WalkSat) and a 
omplete algorithm (Satz)) o

urs whenthe number of holes is 1:6 � n1:55. This 
orresponds to the ba
kbone 
overing50% of the variables. We use only instan
es from the 
ost peak (rounding thenumber of holes to the nearest integer).To en
ode these instan
es into SAT, we use a 3D table of Boolean variables,with size n� n� n. This is the 2D quasigroup table extended in a third dimen-sion to provide a Boolean variable for ea
h symbol in �. For ea
h entry in thequasigroup table, exa
tly one symbol is required. This is a
hieved using n2 EOstru
tures. Similarly, ea
h symbol o

urs exa
tly on
e on ea
h row of the quasi-group table, and again for the 
olumns, making a total of 3n2 EO stru
tures.Two ways of forming an EO stru
ture were des
ribed above: the ladder,and the 
ombined ALO 
lause and AMO pairwise 
lauses. We do not mix thetwo en
odings for an instan
e of QWH, be
ause there is no readily apparentreason why it would be bene�
ial. From here we will refer to these as ladderand pairwise en
odings. Note that the pairwise en
oding is the 3D en
odingproposed by Kautz et. al. [8℄. Re
all that the pairwise EO stru
ture has O(n2)
lauses and the ladder stru
ture has O(n): the pairwise en
oding has O(n4)
lauses in total and the ladder has O(n3). Both en
odings have O(n3) Booleanvariables, although the pairwise en
oding has n3 and the ladder en
oding has4n3 � 3n2.The ladder en
oding has a better size bound, but it does not ne
essarily showan improvement in solution time for instan
es we 
an feasibly solve.3.1 Experimental resultsWe used a sele
tion of re
ent SAT solvers to evaluate the en
odings: ZCha�[11℄, SATO version 4.1 [12℄, and Siege version 4 [13℄. Unfortunately, GRASP[15℄ and 2
lseq [14℄ ex
eeded the available memory (1 GB) on instan
es of order30 and above, so we have omitted them from the evaluation. All these solversare based on the Davis-Putnam-Logemann-Loveland pro
edure [9,10℄. Sin
e theladder en
oding is designed for unit propagation, we did not 
onsider lo
al sear
halgorithms. We also use a simpler solver to gain some insight into the en
odings:BT+lex. This is ba
ktra
kingwith unit propagation and pure literal propagation,with a stati
 (lexi
ographi
) variable ordering and stati
 bran
h ordering. Theinternal data stru
tures are des
ribed in [16℄.All experiments were 
arried out on a Pentium 4 3.06 GHz ma
hine with 1GB of RAM, and all runtimes are measured in se
onds. The time to the �rstsolution is measured. Sizes of the QWH problems were 
hosen so that runtimesdid not ex
eed 10 000 se
onds.Figure 1 shows runtimes and node 
ounts for SATO. The line indi
ates equalruntime. Initially these results are somewhat surprising, be
ause they show thatneither en
oding is 
onsistently better, even though they have identi
al propaga-tion 
hara
teristi
s. However, the di�erent 
lause set and the additional variablesof the ladder en
oding a�e
t the variable ordering heuristi
 of SATO in su
h a
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Fig. 1. 100 � order 33 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime and nodes for SATO v4.1.way that the runtimes are not as well 
orrelated as we expe
ted. The 
orrelation
oe�
ient of the log of the runtimes is 0.74, indi
ating that the two variables aremoderately well 
orrelated. The ladder en
oding is better for 60/100 instan
es,although the median run time for the ladder en
oding is 19.29s whereas for thepairwise en
oding it is 17.02s. Interestingly, the node 
ounts for the ladder en-
oding are mostly lower, indi
ating that the SATO heuristi
s work better withladder than pairwise.ZCha� and Siege 
an be run for larger instan
es. Figure 2 shows data forZCha� with instan
es of order 35. The 
orrelation 
oe�
ient is 0.70 for the logof the runtimes, similar to the previous experiment. 49/100 instan
es performedbetter with the ladder en
oding. The median run time for the ladder en
od-ing is 25.975s, and 19.795s for the pairwise en
oding. The plot of node 
ounts
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Fig. 2. 100 � order 35 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime and nodes for ZCha�.shows that neither en
oding has a signi�
ant advantage in terms of the ZCha�heuristi
s.Figure 3 shows data for the Siege solver for the same instan
es of order 35.The 
orrelation 
oe�
ient is 0.78 for the log of the runtimes, whi
h is strongerthan previous experiments. Siege seems less well suited to the ladder en
oding,with only 12/100 instan
es performing better with the ladder en
oding. Themedian run time for the ladder en
oding is 8.40s, and 1.855s for the pairwiseen
oding. Although the node 
ount plot is omitted for spa
e reasons, it showsno advantage for either en
oding. Therefore the di�eren
e in runtime is 
ausedby in
reased unit propagation 
ost.From these results, it appears that SATO is best suited to the ladder en-
oding. It is also generally the worst-performing solver. For ZCha� and Siege,
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Fig. 3. 100 � order 35 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for Siege v4.order (n) 
lauses literals variablespairwise en
odingAMO (size 2) ( 32n3(n � 1)) ALO (size n) (3n2) Units Total25 562500 1875 390 564765 1172265 1562533 1724976 3267 728 1728971 3558491 3593735 2186625 3675 829 2191129 4502704 42875ladder en
odingSize 2 (3(3n � 2)n2) Size 3 (3(n� 2)n2) Units Total25 136875 43125 390 180390 403515 6062533 316899 101277 728 418904 938357 14048135 378525 121275 829 500629 1121704 167825Table 1. Comparing sizes of the en
odingsperhaps we 
annot s
ale high enough to �nd the bene�t of the ladder en
od-ing. Table 1 shows that the ladder en
oding is approximately a quarter the sizeof the pairwise en
oding (
omparing either the literals or 
lauses) at order 35.However, it appears that the state of the art solvers 
an e�
iently handle prob-lems with over 5 million literals, and the pairwise en
oding allows 
heaper unitpropagation with Siege.3.2 Propagation performan
eThe experiments above do not 
ontrol the variable and bran
h ordering, and asa result the ladder and pairwise run times 
an be several orders of magnitudedi�erent, due to di�erent heuristi
 
hoi
es. To remove the e�e
t of the orderingheuristi
s, it is ne
essary to �x the variable and bran
h ordering. If the unary
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Fig. 4. 100 � order 25 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for BT+lex.variables are all set, the additional ladder variables will be set 
ompletely by unitpropagation, so it is possible to traverse the same sear
h tree with both en
od-ings. This allows us to 
ompare the en
odings purely on their unit propagatione�
ien
y.Algorithms su
h as 
on�i
t ba
kjumping and 
lause learning 
an also 
ausedi�eren
es in the sear
h tree, so we use a simple ba
ktra
king algorithm, withpure literal elimination and unit propagation. Unfortunately, the state-of-the-art SAT solvers do not allow us to use a �xed variable ordering, or to turno� 
on�i
t ba
kjumping or 
lause learning. Therefore we use the QBF solverBT+lex, whi
h has e�
ient data stru
tures based on literal and 
lause wat
hing.The implementation is des
ribed by Gent et. al. [16℄. The fa
t that BT+lex 
ana

ept the QBF problem does not a�e
t its behaviour on a SAT problem, sin
eQBF is a dire
t generalization of SAT.Figure 4 shows a 
omparison between the en
odings using BT+lex, and or-der 25 QWH instan
es. The pairwise en
oding is performing better for mostinstan
es. The ex
eption is the easiest instan
es, whi
h seem to show the over-head of the larger en
oding. (Even at this size, the pairwise en
oding is overtwi
e the size of the ladder; see table 1.) The median run time for the ladderen
oding is 3.77s, 
ompared to 1.875s for the pairwise en
oding. Hen
e at thiss
ale, unit propagation over the pairwise en
oding is approximately two timesfaster with this parti
ular implementation.To 
ompare BT+lex to a more 
apable SAT solver, �gure 5 shows run timesfor SATO on the same instan
es. The median run times here are 0.38s and 0.44sfor ladder and pairwise respe
tively. The lower bounds on the run times aresimilar to BT+lex, but the upper bound is mu
h lower.
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Fig. 5. 100 � order 25 QWH problems, with randomly pla
ed holes and on the phasetransition. Runtime for SATO.4 Con
lusionsThis arti
le has introdu
ed the ladder en
oding for the AllDi�erent 
onstraintinto SAT. The AllDi�erent is 
ommonly used in 
onstraint programming. Thenew en
oding s
ales well in the number of 
lauses. However, empiri
al evaluationon feasibly sized instan
es of the quasigroup 
ompletion problem shows that thenew en
oding does not perform as well as the pairwise en
oding, restri
ting itsuse to 
ases where the formula is so large that size be
omes a more important
onsideration than solution speed. This may be the 
ase for large, easy problemsaway from the phase transition. Finding en
odings of AllDi�erent whi
h providemore powerful propagation remains an open resear
h question.Finally, although the ladder en
oding was not very su

essful here, the ladderstru
ture is a useful en
oding tri
k in other situations [4,5,6℄. There are not manysu
h tri
ks for en
oding into SAT at the moment. It would be bene�
ial to theSAT 
ommunity to develop and publish more en
oding te
hniques.A
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