
Generating Special-purpose Stateless
Propagators for Arbitrary Constraints

Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale
{ipg,caj,ianm,pn}@cs.st-andrews.ac.uk

School of Computer Science, University of St Andrews, St Andrews, Scotland, UK.

Abstract. Given an arbitrary constraint c on n variables with domain
size d, we show how to generate a custom propagator that establishes
GAC in time O(nd) by precomputing the propagation that would be
performed on every reachable subdomain of scope(c). Our propagators
are stateless: they store no state between calls, and so incur no over-
head in storing and backtracking state during search. The preprocessing
step can take exponential time and the custom propagator is potentially
exponential in size. However, for small constraints used repeatedly, in
one problem or many, this technique can provide substantial practical
gains. Our experimental results show that, compared with optimised im-
plementations of the table constraint, this technique can lead to an order
of magnitude speedup, while doing identical search on realistic problems.
The technique can also be many times faster than a decomposition into
primitive constraints in the Minion solver. Propagation is so fast that, for
constraints available in our solver, the generated propagator compares
well with a human-optimised propagator for the same constraint.

1 Introduction

Constraint models of structured problems often contain many copies of a con-
straint, which differ only in their scope. English Peg Solitaire, for example, is
naturally modelled with a move constraint for each of 76 moves, at each of 31
time steps, giving 2,356 copies of the constraint [14]. Efficient implementation of
such a constraint is vital to solving efficiency, but choosing an implementation
is often difficult. The solver may provide a hand-optimized propagator, other-
wise there are two choices: decompose the constraint, or use a table propagator.
Decompositions typically introduce extra variables (and so overhead) and/or
reduce propagation. In the worst case table propagators take time exponential
in the size of their scope. Even hand-optimized propagators the solver provides
may not be optimal if they are designed for a more general class of constraints.

The algorithms we give herein generate GAC propagators for arbitrary con-
straints that run in time O(nd), in extreme cases an exponential factor faster
than any table constraint propagator [4, 12, 7, 6, 17, 15]. As our experiments show,
generated propagators can even outperform hand-optimized propagators when
performing the same propagation. Our approach is general but in practice does
not scale to large constraints as it precomputes domain deletions for all reachable
subdomains. It scales easily to 10 Boolean variables, as a case study shows.

2 Theoretical Background

We summarise relevant definitions. For further discussion of propagators see [2].

Definition 1. A CSP instance, P , is a triple 〈V,D, C〉, where: V is a finite
set of variables; D is a function from variables to their domains, where ∀v ∈
V : D(v) (Z; and C is a set of constraints. A literal of P is a pair 〈v, d〉,
where v ∈ V and d ∈ D(v). An assignment to any subset X ⊆ V is a set
consisting of exactly one literal for each variable in X. Each constraint c is
defined over a list of variables, denoted scope(c). A constraint either forbids
or allows each assignment to the variables in its scope. An assignment S to V
satisfies a constraint c if S contains an assignment allowed by c. A solution
to P is any assignment to V that satisfies all the constraints of P .

Constraint propagators work with subdomain lists, as defined below.

Definition 2. For a set of variables X = {x1 . . . xn} with original domains
D(x1), . . . , D(xn), a subdomain list for X is a function from variables to sets
which satifies: ∀1≤ i≤n : S(xi) ⊆ D(xi) We abuse notation, in a natural way,
to write R ⊆ S for subdomain lists R and S iff ∀1≤ i≤n : R(xi) ⊆ S(xi). Given
a CSP instance P = 〈V,D, C〉, a search state for P is a subdomain list for V .

Backtracking search operates on search states to solve CSPs. During solving,
the search state is changed in two ways: branching and propagation. Propagation
removes literals from the current search state without removing solutions. Herein,
we consider only propagators that establish Generalized Arc Consistency (GAC):

Definition 3. Given a constraint c, a subdomain list S of scope(c) is Gener-
alized Arc Consistent (GAC) if, for every d ∈ S(v), the literal 〈v, d〉 is in
some assignment which satisfies c and is contained in S.

Any literal that does not satisfy the test in Definition 3 may be removed.

Definition 4. Given a CSP P = 〈V,D, C〉, a search state S for P and a con-
straint c ∈ C, The GAC propagator for c returns a new search state S′ which:

1. For all variables not in scope(c): is identical to S.
2. For all variables in scope(c): omits all (and only) literals in S that are in no

solution to c, and is otherwise identical to S.

3 Propagator Generation

GAC propagation is NP-hard for families of constraints defined intensionally.
For example, establishing GAC on the constraint

∑
i xi = 0 is NP-hard, as it is

equivalent to the subset-sum problem [9](§35.5). However, given a constraint c
on n variables, each with domain size d, it is possible to generate a GAC prop-
agator that runs in time O(nd). The approach is to precompute the deletions

performed by a GAC algorithm for every subdomain list for scope(c). The dele-
tions are stored in an array T mapping subdomain lists to sets of literals. The
generated propagator reads the domains (in O(nd) time), looks up the appropri-
ate subdomain list in T and performs the required deletions. T can be indexed as
follows: for each literal in the initial domains, represent its presence or absence
in the sub-domain list with a bit, and concatenate the bits to form an integer.

T can be generated in O((2d − 1)n.n.dn) time. There are 2d − 1 non-empty
subdomains of a size d domain, and so (2d − 1)n non-empty subdomain lists on
n variables. For each, GAC is enforced in O(n.dn) time and the set of deletions
is recorded. As there are at most nd deletions, T is size at most (2d − 1)n.nd.

This algorithm has obvious disadvantages. This preprocessing step can take
substantial time and T requires substantial space. However, for small constraints
which are used repeatedly, in either one problem or many problems, we shall show
how a refinement of this technique can provide substantial practical gains.

4 Generating Tree Propagators

The above approach uses a large data structure, containing all possible subdo-
main lists. Also, the generated propagator tests the presence of every value in
each domain before propagating. We address both problems by using a tree to
represent the generated propagator. The tree represents only the subdomain lists
that are reachable: no larger subdomain fails or is entailed. This improves the
average- but not the worst-case complexity. In this section we describe an al-
gorithm that generates a tree-propagator, given any propagator and entailment
checker for the constraint in question. First we define tree-propagator.

Definition 5. A tree-propagator is a rooted tree T = 〈V,L, R, r, Prune, Test〉
with vertices V , where r ∈ V is the root, L is a function mapping vertices to
their left child, and R maps vertices to their right child. Two other functions
map vertices to prunings and to a literal: Prune : V → 2{(xi,a)|a∈Di}, and Test :
V → {(xi, a)|a ∈ Di}.

An execution of a tree-propagator follows a path in T starting at the root r.
At each vertex v, the propagator prunes the values specified by Prune(v), and
tests if the literal Test(v) = (xi, a) is in the current domain. If a ∈ D(xi), then
the next vertex in the path is the left child L(a), otherwise it is the right child
R(a). If the relevant child is not present, then the propagator is finished.

SimpleGenTree (Algorithm 1) is a naive algorithm to create a propagator tree
given a constraint c and the initial domains D. The algorithm is recursive and
builds the tree in depth-first left-first order. Let Dcur be the current domain. As
a tree-propagator is executed, it tests values to obtain more information about
Dcur. At a given tree node, each value from the initial domain D may be in Dcur,
or out, or unknown (not yet tested). SimpleGenTree constructs a sub-domain
list SD for each tree node, representing values that are in Dcur or unknown. It
also constructs ValsIn, representing values that are known to be in Dcur.

Algorithm 1 SimpleGenTree(c, SD, ValsIn)
1: Deletions ← Propagate(c, SD)
2: SD′ ← SD \Deletions
3: if all domains in SD′ are empty then
4: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)
5: ValsIn∗ ← ValsIn \Deletions
6: ValsIn ′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
7: if SD′ = ValsIn ′ then
8: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)
{Pick a variable and value, and branch}

9: (y, l)← heuristic(SD′ \ValsIn ′)
10: LeftT←SimpleGenTree(c, SD′, ValsIn ′ ∪ (y, l))
11: RightT←SimpleGenTree(c, SD′ \ {(y, l)}, ValsIn ′)
12: return Treenode(Prune=Deletions, Test=(y, l), Left=LeftT, Right=RightT)

SimpleGenTree proceeds in two stages. First, it runs a propagation algorithm
on SD to compute the prunings required given current domain knowledge. The
prunings are stored in the current tree node, and each pruned value is removed
from SD and ValsIn to form SD′ and ValsIn∗. If a domain is empty in SD′, the
algorithm returns. If only one value remains for some variable in SD′, the value
is added to ValsIn∗ to form ValsIn ′ (because otherwise the domain is empty).

The second stage is to choose a literal and branch. This literal is unknown, ie
in SD′ but not ValsIn ′. SimpleGenTree recurses for both left and right branches.
On the left branch, the chosen literal is added to ValsIn, because it is known to be
present in Dcur. On the right, the chosen literal is removed from SD. The main
terminating condition for the recursion is when SD′ = ValsIn ′. At this point, we
have complete knowledge of the current domains: SD′ = ValsIn ′ = Dcur. The
recursion also terminates when a domain is emptied by propagation.

4.1 Generating Code

Algorithm 2 (GenCode) generates a program from a tree-propagator via a depth-
first, left-first tree traversal. It is called initially with the root r. GenCode creates
the body of the propagator function, the remainder is solver specific. In the case
of Minion this code is very short and the same for all generated propagators. As
an alternative to generating code, it is possible to execute a tree-propagator by
traversing the tree at run time. However, in preliminary experiments we found
this approach to be roughly 25% slower.

4.2 Correctness

In order to prove the SimpleGenTree algorithm correct, we assume that the
Propagate function called on line 1 enforces GAC. We need to be careful about
what GAC propagators do. Note that, if a GAC propagator produces a domain
wipeout, it should also delete all values of all other variables in the constraint.

Algorithm 2 GenCode(Tree-propagator T , Vertex v)
1: if v=Nil then
2: WriteToCode(“NoOperation;”)
3: else
4: WriteToCode(“RemoveValuesFromDomains(”+Prune(v)+“);”)
5: if Test(v) 6= Nil then
6: (xi, a)← Test(v)
7: WriteToCode(“if IsInDomain(”+a+“,”+xi+“) then”)
8: GenCode(T ,L(v))
9: WriteToCode(“else”)

10: GenCode(T ,R(v))
11: WriteToCode(“endif;”)

We assume that the Propagate function does this. We also assume that the target
constraint solver removes all values of all variables in a constraint if our generated
propagator empties any individual domain. In practice, constraint solvers often
have some shortcut method, such as a special function Fail for these situations,
but our proofs are slightly cleaner for assuming domains are emptied. Finally we
implicitly match up nodes in the generated trees with corresponding points in
the generated code for the propagator. Given these assumptions, we will prove
that the code we generate does indeed establish GAC.

Lemma 1. Assuming that the Propagate function in Line 1 establishes GAC,
then: given inputs (c, SD, V alsIn), if Algorithm 1 returns at line 4 or line 8, the
resulting set of prunings achieve GAC for the constraint c on any search state
S such that V alsIn ⊆ S ⊆ SD.

Proof. If Algorithm 1 returns on either line 4 or line 8, the set of propagations re-
turned are those generated on Line 1. These deletions achieve GAC propagation
for the search state SD.

If the GAC propagator for c would remove a literal from SD, then that literal
is in no assignment which satisfies c and is contained in SD. As S is contained in
SD, that literal must also be in no assignment which satisfies c and is contained
in S. Therefore any literals in S which are removed by a GAC propagator for
SD would also be removed by a GAC propagator for S.

We now show no extra literals would be removed by a GAC propagator for
S. This is separated into two cases. The first case is if Algorithm 1 returns on
line 4. Then GAC propagation on SD has removed all values from all domains.
There are therefore no further values which can be removed, so the result follows
trivially. The second case is if Algorithm 1 returns on line 8. Then SD′ = ValsIn ′

on Line 7. This can be reached in one of two cases:

1. S \Deletions has at least one empty domain. In this case, the returned tree
node correctly leads to S having a domain wipeout.

2. S\Deletions has no empty domains. In this case, any literals added to ValsIn ′

on line 6 are also in S, as literals are added when exactly one value exists in

the domain of a variable in SD, and so this value must also be in S, else there
would be an empty domain in S. Thus we have ValsIn′ ⊆ (S \Deletions) ⊆
SD′. But since ValsIn ′ = SD′, we also have SD′ = S \ Deletions. Since we
know SD′ is GAC by the assumed correctness of the Propagate function, so
is S \Deletions. ut

Theorem 1. Assuming that the Propagate function in Line 1 establishes GAC,
then: given inputs (c, SD, V alsIn), then the code generator Algorithm 2 applied
to the result of Algorithm 1 returns a correct GAC propagator for search states
S such that V alsIn ⊆ S ⊆ SD.

Proof. We shall proceed by induction on the size of the tree generated by Algo-
rithm 1. The base is that the tree contains just a single leaf node, and this case
is implied by Lemma 1. The rest of the proof is therefore the induction step.

By the same argument used in Lemma 1, the Deletions generated on Line 1
can also be removed from S. If applying these deletions to S leads to a domain
wipeout, then (as we have assumed) the constraint solver sets S = ∅, and the
propagator has established GAC, no matter what happens in the rest of the tree.

If no domain wipeout occurs, we can progress to Line 9. Again using the same
arguments as in Lemma 1, assuming that the Deletions do not cause a domain
wipeout in S, then once we get to line 9, we know that V alsIn′ ⊆ S\Deletions ⊆
SD′. Since we passed Line 7, we know that V alsIn′ 6= SD′, and therefore there
is at least one value for the heuristic to choose.

There are now two cases. The heuristic value (y, l) is in S, or not.
If (y, l) ∈ S, then the generated propagator will branch left. The propaga-

tor generated after this branch is generated from the tree produced by Simple-
GenTree(c, SD′, ValsIn ′ ∪ (y, l)). Since (y, l) ∈ S, we have V alsIn′ ∪ (y, l) ⊆
S \Deletions ⊆ SD′. Since the tree on the left is strictly smaller, we can appeal
to the induction hypothesis that we have generated a correct GAC propagator
for S \ Deletions. Since we know that Deletions were correctly deleted from S,
we have a correct GAC propagator at this node for S.

If (y, l) 6∈ S, the generated propagator branches right. The propagator on the
right is generated from the tree given by SimpleGenTree(c, SD′ \ (y, l), ValsIn ′)
on S \ Deletions. Here we have V alsIn′ ⊆ S \ Deletions ⊆ SD′ \ (y, l). As in
the previous case, the requirements of the induction hypothesis are met and we
have a correct GAC propagator for S.

Finally we note that the set SD \ ValsIn is always reduced by at least one
literal on each recursive call to Algorithm 1, and can never grow. Therefore we
know the algorithm will eventually terminate. With this theorem proved the
main result we want is an immediate corollary. ut

Corollary 1. Assuming the Propagate function correctly establishes GAC for
any constraint c, then the code generator Algorithm 2 applied to the result of
Algorithm 1 with inputs (c, ∅, D), where D are the initial domains of the variables
in c, generates a correct GAC propagator for all search states.

Lemma 2. If r is the time a solver needs to remove a value from a domain,
and s the time to check whether or not a value is in the domain of a variable,
the code generated by Algorithm 2 runs in time O(nd max(r, s)).

Proof. The execution of the algorithm is to go through a single branch of an
if/then/else tree. The tree cannot be of depth greater than nd since one literal is
chosen at each depth and there are at most nd literals in total. Furthermore, on
one branch any given literal can either be removed from a domain or checked,
but not both. This is because Algorithm 1 never chooses a test from a removed
value. Therefore the worst case is nd occurrences of whichever is more expensive
out of testing domain membership and removing a value from a domain. ut

In some solvers both r and s are O(1), e.g. where domains are stored only in
bitarrays. In such solvers our generated GAC propagator is O(nd).

5 Generating Smaller Trees

Algorithm 3 shows the GenTree algorithm. This is an improvement of Simple-
GenTree. We present this without proof of correctness, but a proof would be easy
since the effect is only to remove nodes in the tree for which no propagation can
occur at any subtree.

The first efficiency measure is that GenTree always returns Nil when no
pruning is performed at the current node or any of its children. This means that
the generated tree will have pruning at all of its leaf nodes. The second efficiency
measure is to use an entailment checker. A constraint is entailed with respect to
a subdomain list SD if every tuple allowed on SD is allowed by the constraint.
When a constraint is entailed there is no possibility of further pruning. We
assume we have a function ‘entailed’ to check this. The function entailed(c, SD)
is called at the start of GenTree, and also after domains are updated by pruning
(line 9). If the constraint is entailed under SD, then no pruning is possible for
SD or any sub-domain of it. The value returned is either Nil (if values were
pruned at the current node) or a tree node with no children.

To illustrate the difference between SimpleGenTree and GenTree, consider
Figure 1. The constraint is very small (x ∨ y on Boolean domains) but even
so SimpleGenTree generates 7 more nodes than GenTree. The figure illustrates
the effectiveness and limitations of entailment checking. Subtree C contains no
prunings, therefore it would be removed by GenTree with or without entailment
checking. However, the entailment check is performed at the topmost node in
subtree C, and GenTree immediately returns (line 2) without exploring the four
nodes beneath. Subtree B is entailed, but the entailment check does not reduce
the number of nodes explored by GenTree compared to SimpleGenTree. Subtree
A is not entailed, however GAC does no prunings here so GenTree will explore
this subtree but not output it.

Heuristic The choice of literal to branch on is very important, and can make
a huge difference in the size of the propagator-tree. To minimize the size of

Algorithm 3 Generate Tree-Propagator: GenTree(c, SD, ValsIn)
1: if entailed(c, SD) then
2: return Nil
3: Deletions ← Propagate(c, SD)
4: SD′ = SD \Deletions
5: if all domains in SD′ are empty then
6: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)
7: ValsIn∗ ← ValsIn \Deletions
8: ValsIn ′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
9: if SD′ = ValsIn ′ or entailed(c, SD) then

10: if Deletions=Nil then
11: return Nil
12: else
13: return Treenode(Prune=Deletions, Test=Nil, Left=Nil, Right=Nil)
{Pick a variable and value, and branch}

14: (y, l)← heuristic(SD′ \ValsIn ′)
15: LeftT←GenTree(c, SD′, ValsIn ′ ∪ (y, l))
16: if SD′(y) \ {l} = ∅ then
17: RightT←Nil
18: else
19: RightT←GenTree(c, SD′ \ {(y, l)}, ValsIn ′)
20: if LeftT=Nil And RightT=Nil And Deletions=∅ then
21: return Nil
22: else
23: return Treenode(Prune=Deletions, Test=(y, l), Left=LeftT, Right=RightT)

the tree, the aim of a heuristic must be to cause Algorithm 3 to return before
branching. There are a number of conditions that cause this: entailment (lines 2
and 15); domain wipe-out (line 8); and complete domain information (line 15).

The proposed heuristic greedily attempts to make the constraint entailed.
This is done by selecting the literal contained in the greatest number of disal-
lowed tuples of c that are valid with respect to SD.

Implementation The implementation is recursive and very closely follows the
structure of Algorithm 3. It is instantiated with the GAC2001 table propagator
[4]. The implementation maintains a list of disallowed tuples of c that are valid
with respect to SD. This list is used by the entailment checker: when the list
becomes empty, the constraint is entailed. It is also used to calculate the heuristic
described above. It is implemented in Python and is not highly optimized.

In all the case studies below, we use the solver Minion [11] 0.10. We ex-
periment with 3 generated propagators, in each case comparing against hand-
optimized propagators provided in Minion, and also against table constraints
where appropriate. All case studies were run with a time out of 24 hours. In-
stances that took less than 1 hour were run 5 times and the median was taken.
In all cases times are given for an 8-core Intel Xeon E5520 at 2.27GHz with
12GB RAM. Minion was compiled with g++ 4.4.1, optimisation level -O3.

0∈D  x 0∉D x 

1∉D  x1∈D  x 

Prune 0∈D y
 Infers 1∈D y 

0∈D  y  0∉D  y 

 Infers 1∈D y 

1∈D  y 1∉D y 

Prune 0∈D x 

0∈D y  0∉D  y 

 Infers 1∈D y 

1∈D  y 1∉D y 

 Infers 1∈D x

Subtree C – entailedSubtree B – entailed

Subtree A –
not entailed

Fig. 1. Example of propagator tree for constraint x ∨ y initial domains of {0,1}. The
entire tree is generated by SimpleGenTree (Algorithm 1). The more sophisticated al-
gorithm GenTree (Algorithm 3) does not generate the subtrees A, B and C.

Two table constraints were used: Table, which uses a trie data structure with
watched literals (as described in [12]), and Lighttable, which uses the same trie
data structure but is stateless and uses static triggers. It searches for support
for each value of every variable each time it is called.

6 Case Study: English Peg Solitaire

English Peg Solitaire is a one-player game played with pegs on a board. It is
Problem 37 at www.csplib.org. The game and a model are described by Jefferson
et al [14]. The game has 33 board positions (fields), and begins with 32 pegs and
one hole. The aim is to reduce the number of pegs to 1. At each step, a peg (A)
is jumped over another peg (B) and into a hole, and B is removed. As each move
removes one peg, we fix the number of moves in our model to 31.

The model we use is as follows. The board is represented by a Boolean array
b[32, 33] where the first index is the time step 0 . . . 31 and the second index is
the field. The moves are represented by Boolean variables moves[31, 76], where
the first index is the time step 0 . . . 30 (where move 0 connects board states 0
and 1), and the second index is the move number, where there are 76 possible
moves. The third set of Boolean variables are equal [31, 33], where the first index
is the time step 0 . . . 30 and the second is the field. The following constraints are
posted: equal [a, b]⇔ (b[a, b] = b[a + 1, b]). The board state for the first and last
time step are filled in, with one hole at the position we are starting at and one
peg at the same position we are finishing at.

Starting Time (s) Node rate (per s) Nodes
position Generated Min Reified Generated Min Reified

Sumgeq Sumgeq

1 >86389 >86394 >86400 11249 7088 3303 —
2 1.62 2.48 3.10 6338 4140 3312 10,268
4 >86393 >86381 >86369 10986 7514 3926 —
5 879.25 1351.88 3120.26 12964 8431 3652 11,398,210
9 >86400 >86385 >86380 11135 7531 3544 —
10 110.48 167.30 379.22 13456 8886 3920 1,486,641
17 1.49 2.38 3.97 6892 4315 2587 10,269

Table 1. Results on peg solitaire problems.

For each time step t ∈ {0 . . . 30}, exactly one move must be made, therefore
constraints are posted to enforce

∑
i moves[t, i] = 1. Also for each time step t,

the number of pegs on the board is 32 − t, therefore constraints are posted to
enforce

∑
i b[t, i] = 32− t.

The bulk of the constraints model the moves. At each time step t ∈ {0 . . . 30},
for each possible move m ∈ {0 . . . 75}, the effects of move m are represented by
an arity 7 Boolean constraint. Move m jumps a piece from field f1 to f3 over
field f2. The constraint is as follows.

(b[t, f1]∧¬b[t+1, f1]∧b[t, f2]∧¬b[t+1, f2]∧¬b[t, f3]∧b[t+1, f3])⇔ moves[t, m]

Also, a frame constraint is posted to ensure that all fields other than f1, f2

and f3 remain the same. The constraint states (for all relevant fields f4) that
equal [t, f4] = 1 when moves[t, m] = 1.

The arity 7 move constraint is implemented in three ways. The Reified
Sumgeq implementation uses a sum to represent the conjunction. The negation
of some b variables is achieved with mappers, therefore no auxiliary variables are
introduced. The sum constraint is reified to the moves[t, m] variable, as follows:
[(

∑
b[t, f1], . . . , b[t + 1, f3]) ≥ 6]⇔ moves[t, m].

The Min implementation uses a single min constraint, as follows. Again map-
pers are used for negation. min(b[t, f1], . . . , b[t + 1, f3]) = moves[t, m]

The Generated propagator was generated by GenTree in 0.14s. The tree has
316 nodes, and the algorithm explored 521 nodes. The propagator was compiled
and Minion linked in 16.5s. (For all case studies, we give the time to compile the
generated propagator only, plus the time to link Minion, excluding compilation
of the rest of Minion.)

Table 1 shows our results for peg solitaire. In all cases the generated prop-
agator outperforms Min by a substantial margin (54% on instance 5), which
is perhaps remarkable given that Min is a hand-optimized propagator. For the
harder instances, Generated more than repays the overhead of compiling the
specialized constraint. The generated propagator outperforms Reified Sumgeq
by an even wider margin.

n Time (s) Search nodes Nodes per second
Generated Product Lighttable Table Generated, Product Generated Product

(Light)Table

25 8.86 11.92 20.54 20.71 206,010 365,470 23252 30660
26 18.20 24.86 51.21 43.03 404,879 731,886 22246 29440
27 41.37 53.27 91.58 90.58 790,497 1,383,351 19108 25969
28 80.67 110.66 182.55 184.72 1,574,100 2,755,212 19513 24898
29 131.91 184.64 326.88 360.36 2,553,956 4,550,121 19361 24643
30 258.58 325.63 711.18 697.31 4,120,335 7,345,259 15934 22557

Table 2. Results on LABS problems of size 25-30. All times are a median of 5 runs.

7 Case Study: Low Autocorrelation Binary Sequences

The Low Autocorrelation Binary Sequence (LABS) problem is described by Gent
and Smith [13]. The problem is to find a sequence s of length n of symbols
{−1, 1}. For each k ∈ {1 . . . n−1}, the correlation Ck is the sum of the products
s[i] × s[i + k] for all i ∈ {0 . . . n − k − 1}. The overall correlation is the sum of
the squares of all Ck:

∑n−1
k=1(Ck)2. This quantity must be minimized.

The sequence is modelled directly, using variables s[n] ∈ {−1, 1}. For each
k ∈ {1 . . . n− 1}, and each i ∈ {0 . . . n− k− 1}, we have a variable pi

k ∈ {−1, 1}
and the product constraint pi

k = s[i] × s[i + k]. For each k ∈ {1 . . . n − 1} we
have a variable Ck ∈ {−n . . . n}. Ck is constrained to be the sum of pi

k for all
i. There are also variables C2

k ∈ {0 . . . n2}, and a binary lighttable constraint
is used to link Ck and C2

k . Finally we have minvar =
∑n−1

k=1 C2
k , and minvar is

minimized. Gent and Smith identified 7 symmetric images of the sequence [13].
We use these to post 7 symmetry-breaking constraints on s. Gent and Smith
also proposed a variable and value ordering that we use here.

There are more ternary product constraints than any other constraint in
LABS. Ck is a sum of products: Ck = (s[0]×s[k])+(s[1]×s[k+1])+ · · · . To test
constraint generation on this problem, we combine pairs of product constraints
into a single 5-ary constraint: (s[i] × s[k]) + (s[i + 1] × s[k + i + 1]) = pi

k. This
allows almost half of the pi

k variables to be removed.
We compare four models of LABS: Product, the model with ternary product

constraints; Generated, where the new 5-ary constraint has a generated propaga-
tor; Table and Lighttable where the 5-ary constraint is implemented with a table
propagator. The Product model does not enforce GAC on the 5-ary constraint.
The Generated propagator was generated by GenTree in 0.007s. The algorithm
explored 621 nodes and the resulting propagator has 396 nodes. It was compiled
and Minion linked in 15.69s.

Table 2 shows our results for LABS sizes 25 to 30. The instances were solved
to optimality. The Generated, Table and Lighttable models search the same
number of nodes as each other, and exhibit stronger propagation than Product,
but their node rate is lower than Product in all cases. The table models are
substantially slower than Product. However, Generated is faster than Product,

and for the larger instances it more than repays the overhead of compiling the
specialized constraint. This is perhaps remarkable when comparing against hand-
optimized product and sum constraints.

8 Case Study: Maximum Density Oscillating Life

Conway’s Game of Life was invented by John Horton Conway. The game is
played on a square grid. Each cell in the grid is in one of two states (alive or
dead). The state of the board evolves over time: for each cell, its new state is
determined by its previous state and the previous state of its eight neighbours
(including diagonal neighbours). Oscillators are patterns that return to their
original state after a number of steps (referred to as the period). A period 1
oscillator is named a still life.

Various problems in Life have been modelled in constraints. Bosch and Trick
considered period 2 oscillators and still lifes [5]. Smith [18] and Chu et al [8]
considered the maximum-density still life problem. Here we consider the problem
of finding oscillators of various periods. We use simple models for the purpose
of evaluating the propagator generation technique rather than competing with
the sophisticated still-life models in the literature. However, to our knowledge
we present the first model of oscillators of period greater than 2.

The problem of size n×n (i.e. live cells are contained within an n×n bounding
box at each time step) and period p is represented by a 3-dimensional array of
Boolean variables b[n+4, n+4, p] indexed (from 0) by position i, j and time step
t. To enforce the bounding box, for each t, the rows 0, 1, n+2 and n+3 are set to
0. Similarly, columns 0, 1, n + 2 and n + 3 are set to 0. For a cell b[i, j, t] at time
step t, its liveness is determined as follows. The 8 adjacent cells at the previous
step are summed: s =

∑
adjacent(b[i, j, t−1]), and (s > 3∨s < 2) ⇒ b[i, j, t] = 0,

(s = 3) ⇒ b[i, j, t] = 1, and (s = 2) ⇒ b[i, j, t] = b[i, j, t − 1]. If t is the first
time step, then p− 1 is the previous step, to complete the loop.

We refer to the grid at a particular time step as a layer. For each pair of
layers, a watchvecneq constraint is used to constrain them to be distinct. To
break some symmetries, the first layer is lex less than all subsequent layers. Also,
the first layer may be reflected horizontally and vertically, and rotated 90 degrees,
so it is constrained to be lex less or equal than each of its 7 symmetric images.
Finally, all cells in all layers are summed to a variable m which is maximized.

The liveness constraint involves 10 Boolean variables. We generated a propa-
gator using the GenTree algorithm. The algorithm explored 87041 nodes in 45s.
The resulting propagator tree has 28351 nodes. The constraint is compiled and
Minion linked in 217s, so the total overhead is 262s1.

The generated propagator is compared to two other implementations. The
Sum implementation adds an auxiliary variable s[i, j, t] ∈ 0 . . . 8 for each b[i, j, t],
and the sum constraint s[i, j, t] =

∑
adjacent(b[i, j, t − 1]). s[i, j, t], b[i, j, t − 1]

and b[i, j, t] are linked by a ternary table (lighttable) constraint encoding the
1 In this case the generated constraint was compiled once for Boolean variables only,

rather than multiple times for different variable types as is standard in Minion.

n period p Time (s) Nodes Nodes per s,
Generated Sum Lighttable Table Generated

5 2 0.04 0.09 0.20 0.22 1,169 29,225
5 3 0.08 0.42 1.34 1.26 5,489 68,613
5 4 0.42 2.38 7.42 6.05 21,906 52,157
5 5 1.09 6.35 21.55 16.66 49,704 45,600
5 6 2.34 11.18 40.00 38.15 71,809 30,688

6 2 0.13 0.67 2.03 2.17 13,631 104,853
6 3 0.93 7.02 19.18 24.59 88,655 95,328
6 4 11.98 75.29 350.19 225.29 886,371 73,988
6 5 124.75 896.97 2779.78 1999.82 6,172,319 49,478
6 6 446.44 3108.18 13929.2 6231.22 16,538,570 37,045

7 2 2.34 13.63 44.57 66.58 316,612 135,304
7 3 18.84 122.13 585.48 377.50 1,905,288 101,130
7 4 366.59 2517.26 12163.6 6706.33 29,194,918 79,639
7 5 9822.84 67014.9 >86393 >86397 564,092,290 50,664
7 6 >86395 >86398 >86398 >86359 — 32,922

Table 3. Time to solve to optimality, for each implementation of the life constraint

liveness rules. The Table implementation simply encodes the arity-10 constraint
as a table or lighttable constraint.

We used instances with parameters n ∈ {5, 6, 7} and period p ∈ {2, 3, 4, 5, 6}.
Results are shown in Table 3. In 6 cases, the instances timed out after 24 hours,
but otherwise they were solved to optimality. The three models explored the
same number of nodes in all cases.

The generated propagator is substantially faster than the sum implementa-
tion. For instance n = 7 p = 5, Generated is 6.8 times faster than Sum. Also, Sum
is faster than Table by a factor of 2 or more. For the four hardest instances that
were solved (n = 6, p ∈ {5, 6}, and n = 7, p ∈ {4, 5}), the generated propagator
more than paid back its 262s overhead. Furthermore, note that the generated
propagator is identical in each case: that is the arity 10 constraint is independent
of n and p since it depends only on the rules of the game. Therefore the over-
head can be amortised over this entire set of runs, as well as any future problems
needing this constraint. We can conclude that the generated propagator is the
best choice for this set of instances, and by a very wide margin.

9 Related Work

There are a variety of algorithms which achieve GAC propagation for arbitrary
constraints, for example GAC2001 [4] and GAC-Schema [3]. The major weakness
of these and similar algorithms is that their time complexity for propagation is
exponential, with a worst case of (at least) dn. In GAC2001 and GAC-Schema,
constraints presented as allowed tuples have the allowed tuples stored as a simple
list. There have been a number of attempts to improve these algorithms by using

a more suitable data structure to store the allowed tuples. Many have been
used, including tries [12], Binary Decision Diagrams [7], Multi-valued Decision
Diagrams [6], skip lists [17] and decision trees [15]. In all cases the worst case
complexity is polynomial in the size of the data structure. In some cases the
data structure can be much smaller than an explicit list of all allowed tuples,
but the worst case time remains exponential. That is, establishing GAC during
search can take time dn, compared to our worst case of O(dn).

Other improvements to GAC table propagators, such as caching and reusing
results [16], have also improved average-case performance, but have not removed
the worst-case exponential behaviour.

Constraint Handling Rules is a framework for representing constraints and
propagation. Apt and Monfroy [1] have shown how to generate rules to enforce
GAC for any constraint, although they state that the rules will have an expo-
nential running time in the worst case. However, such systems can produce very
compact sets of propagation rules for some constraints.

The major difference therefore between these techniques and the algorithm in
this paper is that our algorithm provides guaranteed polynomial-time execution
during search, at the cost of much higher space requirements and preprocess-
ing time than any previous technique. Work in CHR is closest in spirit to our
algorithm, but does not guarantee to achieve GAC in polynomial time.

It is possible that techniques from knowledge compilation [10] (in particular
prime implicates) could be usefully applied to propagator compilation. However,
the rules encoded in a propagator-tree are not prime implicates — the set of
known domain deletions is not necessarily minimal. We do not at present know
of a data structure which exploits prime implicates and allows O(nd) traversal.

10 Conclusion

We have presented a novel approach to propagating small constraints. The ap-
proach is to generate a custom stateless propagator that enforces GAC in O(nd)
time. The tradeoff is that the propagator program can be very large — it scales
exponentially in the size of the constraint — therefore generating and compiling
it is only feasible up to a certain size.

In three case studies, we demonstrated that the propagator generation ap-
proach can be highly efficient, compared to table constraints and decompositions.
For example, on Life n = 7 p = 4, the generated constraint is 18 times faster
than a table propagator, and 6.9 times faster than a decomposition. Remarkably,
generated propagators can even be faster than hand-optimized propagators. For
example, 54% faster than a min constraint on peg solitaire 5.

While surprisingly fast, the generated propagators are entirely stateless —
there is no state stored between calls, and no local variables. They also do
not make use of trigger events, which are often essential to the efficiency of
propagators. Therefore we believe there is much scope to improve the scalability
of this approach.

Acknowledgements This research is supported by UK EPSRC Grants no.’s
EP/H004092/1 and EP/E030394/1.

References

1. Apt, K.R., Monfroy, E.: Constraint programming viewed as rule-based program-
ming. Theory and Practice of Logic Programming 1(6), 713–750 (2001)

2. Bessiere, C.: Handbook of Constraint Programming, chap. Constraint Propagation,
pp. 29–83. Elsevier Science Inc., New York, NY, USA (2006)

3. Bessière, C., Régin, J.C.: Arc consistency for general constraint networks: Prelim-
inary results. In: IJCAI(1). pp. 398–404 (1997)

4. Bessière, C., Régin, J.C., Yap, R., Zhang, Y.: An optimal coarse-grained arc con-
sistency algorithm. Artificial Intelligence 165, 165–185 (2005)

5. Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three
life designs. Annals of Operations Research 130, 4156 (2004)

6. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

7. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad-hoc
n-ary boolean constraints. In: Proceeding of the 2006 conference on ECAI 2006.
pp. 78–82. IOS Press, Amsterdam, The Netherlands, The Netherlands (2006)

8. Chu, G., Stuckey, P.J., de la Banda, M.G.: Using relaxations in maximum density
still life. In: Principles and Practice of Constraint Programming (CP 2009). pp.
258–273 (2009)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(2nd ed.). MIT Press/McGraw-Hill (2001)

10. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

11. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In:
Proceedings 17th European Conference on Artificial Intelligence (ECAI 2006). pp.
98–102 (2006)

12. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised
arc consistency for extensional constraints. In: AAAI’07: Proceedings of the 22nd
national conference on Artificial intelligence. pp. 191–197. AAAI Press (2007)

13. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,
W. (ed.) Proceedings of ECAI-2000. pp. 599–603. IOS Press (2000)

14. Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and solving english peg
solitaire. Computers and Operations Research 33(10), 2935–2959 (2006)

15. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Principles and Practice of Constraint Programming (CP 2007). pp.
379–393 (2007)

16. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In:
IJCAI’07: Proceedings of the 20th international joint conference on Artifical intel-
ligence. pp. 125–130. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2007)

17. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Principles and Practice of Constraint Programming - CP 2006,. pp.
284–298 (2006)

18. Smith, B.M.: A dual graph translation of a problem in ‘Life’. In: Principles and
Practice of Constraint Programming (CP 2002),. pp. 402–414 (2002)

