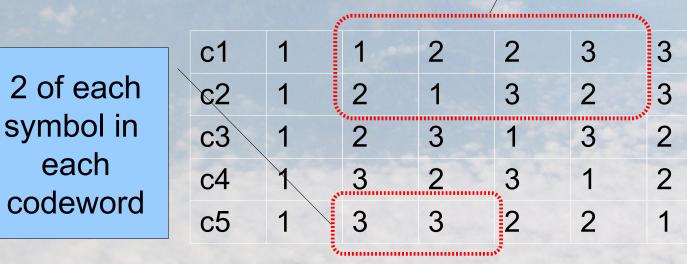
Modelling Equidistant Frequency Permutation Arrays: An Application of Constraints to Mathematics

> Sophie Huczynska, Paul McKay, Ian Miguel and Peter Nightingale

Introduction


- We used CP to contribute to work in theoretical mathematics
 - Directly refuting a conjecture and supporting another
- While modelling EFPAs, we developed a model of cycle notation in CP
 - Shows potential (as a modelling pattern), achieving powerful pruning
 - However, slow in its current incarnation

- Equidistant Frequency Permutation Arrays
- A set of codewords such that:
 - each pair is Hamming distance d apart;
 - Each symbol 1..*q* appears *λ* times in each codeword.

c1	1	1	2	2	3	3
c2	1	2	1	3	2	3
c3	1	2	3	1	3	2
c4	1	3	2	3	1	2
c5	1	3	3	2	2	1

- *q*=3, *d*=4, *λ*=2
- 5 codewords: v=5

4 differences

- Of theoretical interest (recent paper in Designs, Codes and Cryptography journal by Sophie Huczynska)
- We supported this work by generating various maximal size EFPAs
 - Refuted a conjecture that EFPAs always have a full column of 1s when $d=q\lambda-\lambda$
 - Provided empirical evidence for the conjecture that particular constructions are maximal

- This theoretical work may apply to powerline communications
 - Each symbol 1..q corresponds to a frequency
 - Codewords are sent by transmitting the symbols in the codeword one by one
 - Robust against different types of noise

Powerline Communications

Overlay the symbol frequencies on top of the power transmission

Signal received with symbols missing, extra frequencies added

Powerline Communications: Impulse Noise

- Someone switches on the kettle POP
- For example, takes out 3 symbols while transmitting c1
- Receiver can still identify c1 (with any 3 symbols missing)

c1	1	1	Ź	2	3	3
c2	1	2	1	3	2	3
c3	1	2	3	1	3	2
c4	1	3	2	3	1	2
c5	1	3	3	2	2	1

Powerline Communications: Narrow Band Noise

- Some appliances make continuous noise in a narrow frequency range
- For example, adds 1 and 2 everywhere
- Receiver can still distinguish codewords

c1	1, <mark>2</mark>	1,2	1,2	1,2	1,2,3	1,2,3
c2	1,2	1,2	1,2	1,2,3	1,2	1,2,3
c3	1,2	1,2	1,2,3	1,2	1,2,3	1,2
c4	1,2	1,2,3	1,2	1,2,3	1,2	1,2
c5	1,2	1,2,3	1,2,3	1 ,2	1,2	1,2

Example follows Han Vinck, Coded Modulation, AEU J., 2000

Modelling EFPAs: 1: non-Boolean model

 First model – codewords represented as a sequence of *q*λ non-Boolean variables

c1	-	{1 <i>q</i> }	
c2		{1 <i>q</i> }	
·····			

Modelling EFPAs: 1: non-Boolean model

x1	x2	x3	x4	x5	x6
y1	v2	v3	v4	v5	v6
·	<i>J</i> <u>–</u>	,	y .	,	90

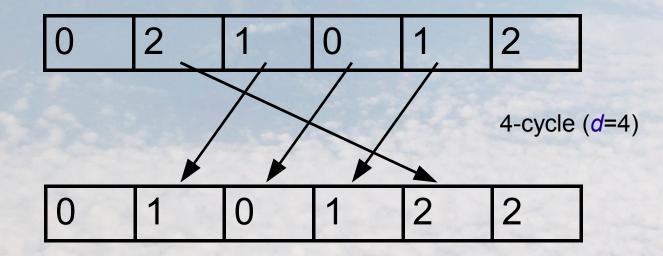
- For each row, a cardinality constraint ensures that each symbol occurs λ times: gcc([x1,..,x6], [1,..,q], [λ,..,λ])
- d differences between each pair of rows: for each i: ri↔(xi≠yi) r1+r2+...+r6=d

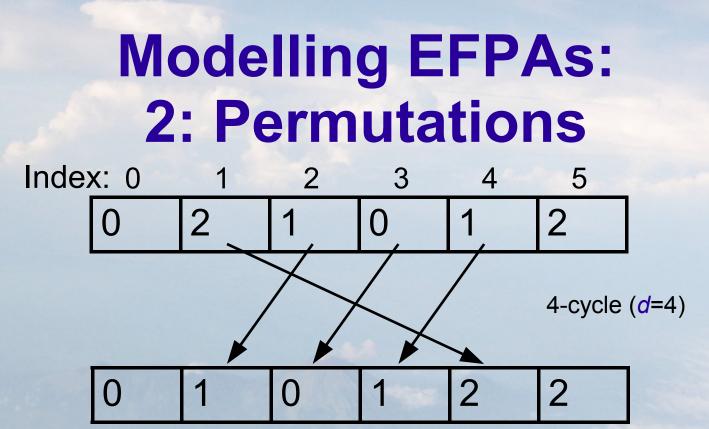
(where a Boolean variable (e.g. ri) has domain {0,1} and 0=false and 1=true)

Modelling EFPAs: 1: non-Boolean model

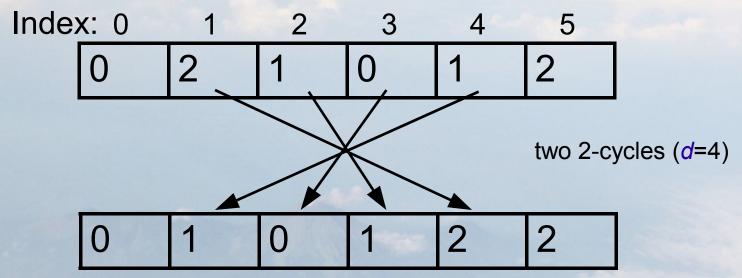
- Symmetry-breaking by lexicographically ordering adjacent rows *e.g.* [x1,..,x6] ≤lex [y1,..,y6]
- Same for adjacent columns
 [x1,y1,z1] ≤lex [x2,y2,z2]

x1	x2	x3	x4	x5	x6
y1	y2	у3	y4	y5	y6
z1	z2	z3	z4	z5	z6

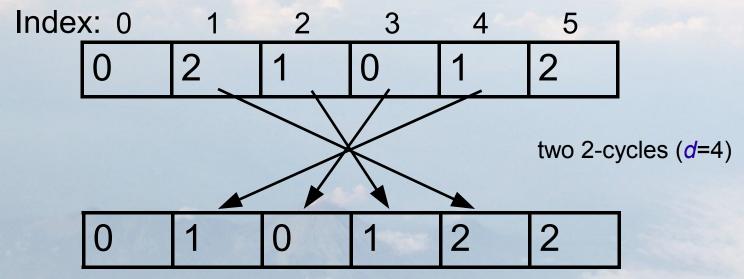

Modelling EFPAs: Boolean and Channelled models


- Boolean model has stronger symmetrybreaking constraints, poor cardinality constraints
- Channelled model combines non-Boolean and Boolean models
- Details in the paper

Modelling EFPAs


- Now we present two models which extend the non-Boolean model with implied constraint sets
 - Permutation (model 2), modelling the permutation between each pair of codewords
 - Implied (model 3), exploiting the fact that the first codeword is fixed by symmetrybreaking.

- Modelling permutations
 - Each codeword can be mapped to any other using a permutation with *d* move-points
 - We represent the permutation explicitly



- Represent cycle notation in CP
- When *d*=4, there are two forms of cycle notation:
 - -4-cycle, e.g. (1,4,3,2) as shown above
 - two 2-cycles e.g. (1,3)(2,5)

- Symmetries arise in cycle notation
- The 4-cycle (1,4,3,2) (on previous slide) is equivalent to (1,4)(2,3) shown above
- (1,4)(2,3) is equivalent to (2,3)(1,4)
- (4,3,2,1) is equivalent to (1,4,3,2)

- Smallest element first in each cycle
- Order cycles by first element
- 4-cycle may only permute distinct symbols (reified allDifferent)

- Somewhat complicated, only implemented for d=4
 - perm contains the indices to be permuted
 - *cform* is the form of the cycle notation 0 for 4-cycle, 1 for 2-cycles

perm: 1 4 3 2

cform: 1

Which means: (1,4)(3,2)

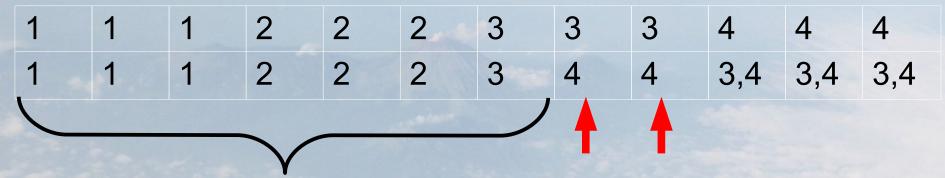
- Example (q=3, d=4, $\lambda=3$), SAC at root node
- Plain non-Boolean model (first two rows):

1122233441..31..41..31..42..41..31..42..41..42..4 \checkmark \land \land

6 values pruned but nothing assigned

- Example (q=3, d=4, $\lambda=3$), SAC at root node
- Permutation model:

 1
 1
 2
 2
 3
 3
 4
 4
 4


 1
 1..4
 1..3
 1..4
 2..4
 1..3
 1..4
 2..4
 1..4
 4

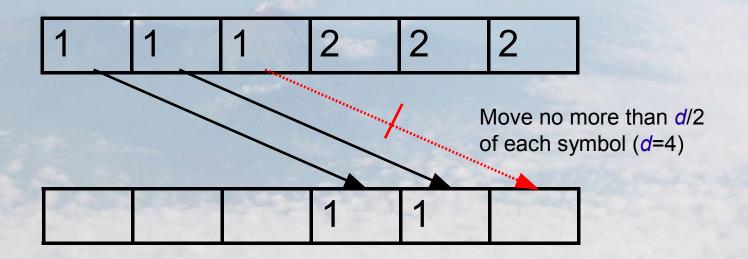
 1
 1..4
 1..3
 1..4
 2..4
 1..4
 2..4
 1..4
 4

 1
 1..4
 1..4
 1..4
 2..4
 1..4
 1..4
 4

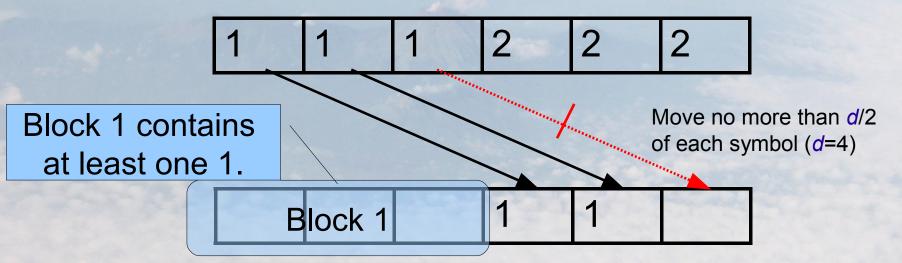
 An extra 4 values pruned, assigning the first and last variables

- Example (q=3, d=4, $\lambda=3$), during search
- Permutation model:

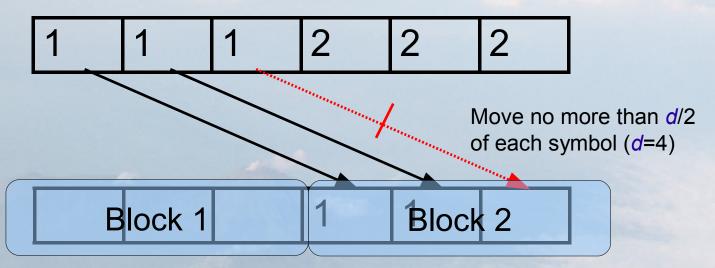
Search decisions


Assigned by perm

 Any permutation must move both remaining 3s


- The first codeword is fixed to: 1,..,1,2,..,2,3,... by column lex ordering constraints
- [x1,y1,z1] ≤lex [x2,y2,z2] implies x1≤x2, and the same applies to every pair of adjacent columns
- The only codeword satisfying x1≤x2≤x3≤... is 1,..,1,2,..,2,3,...

x1	x2	x3	x4	x5	x6
y1	y2	уЗ	y4	y5	y6
z1	z2	z3	z4	z5	z6


 If more than floor(d/2) of any symbol are moved, violates Hamming distance constraint

 If more than floor(d/2) of any symbol are moved, violates Hamming distance constraint

 New constraint: Block *i* has at least λ-floor(d/2) occurrences of *i*.

 Count occurrences of symbols in blocks using GCC constraints

Tools

- We used the Tailor modelling assistant
 - Translates from Essence' modelling language to Minion input language
 - Provides a small performance improvement by eliminating common subexpressions
- The Minion constraint solver was used

Experiments

- Optimization problem: find largest set of codewords for parameters *q*, *d*, λ
- Models all have size parameter v
- We use pairs of values for v, largest satisfiable instance and smallest unsat/unknown
- 24 EFPA instances, 12 satisfiable, 11 unsat, 1 unknown

Experiment 1: non-Boolean, Boolean and Channelled

- Channelled dominates Boolean in both search nodes and time
 - GCC constraint on codewords is valuable
- Non-Boolean and Channelled
 - Neither dominates the other
 - They have different variable/value ordering

Experiment 2: non-Boolean, Perm, Implied

- All based on the non-Boolean model, different sets of additional constraints
- Same variable/value ordering for all
- Implied improves on non-Boolean in most cases, but not dramatically

 – e.g. instance 4-4-4-9, 100s non-Boolean, 80s Implied

Experiment 2: non-Boolean, Perm, Implied

- Perm gives a big improvement in search nodes, but *worse* in solve time
 - Overhead of the extra constraints is too high
 - May have potential (as a modelling pattern) if this issue can be solved

Conclusions

- We used CP to contribute to work in theoretical mathematics
 - Directly refuting a conjecture and supporting another
- While modelling EFPAs, we developed a model of cycle notation in CP
 - Shows potential (as a modelling pattern), achieving powerful pruning
 - However, slow in its current incarnation

Thank You

Any questions?