The Extended Global Cardinality Constraint: An Empirical Survey: Extended
Abstract”

Peter Nightingale
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, UK
pwnl @st-andrews.ac.uk

Abstract

The Extended Global Cardinality Constraint
(EGCC) is an important component of constraint
solving systems, since it is very widely used to
model diverse problems. The literature contains
many different versions of this constraint, which
trade strength of inference against computational
cost. In this paper, I focus on the highest strength
of inference usually considered, enforcing general-
ized arc consistency (GAC) on the target variables.
This work is an extensive empirical survey of algo-
rithms and optimizations, considering both GAC
on the target variables, and tightening the bounds
of the cardinality variables. I evaluate a number of
key techniques from the literature, and report im-
portant implementation details of those techniques,
which have often not been described in published
papers. Two new optimizations are proposed for
EGCC. One of the novel optimizations (dynamic
partitioning, generalized from AllDifferent) was
found to speed up search by 5.6 times in the best
case and 1.56 times on average, while exploring the
same search tree. The empirical work represents
by far the most extensive set of experiments on
variants of algorithms for EGCC. Overall, the
best combination of optimizations gives a mean
speedup of 4.11 times compared to the same
implementation without the optimizations.

This paper is an extended abstract of the publication
in Artificial Intelligence [Nightingale, 2011].

Constraint programming is a powerful and flexible means
of solving combinatorial problems. Constraint solving of a
combinatorial problem proceeds in two phases. First, the
problem is modelled as a set of decision variables, and a set
of constraints on those variables that a solution must satisfy.
A decision variable represents a choice that must be made in
order to solve the problem. The domain of potential values
associated with each decision variable corresponds to the op-
tions for that choice.

Consider a sports scheduling problem, where each team

*This paper is an extended abstract of the Al Journal publication
[Nightingale, 2011].

plays every other team exactly once in a season. No team can
play two or more matches at the same time. Each team plays
in a particular stadium at most twice during the season. In this
example one might have two decision variables per match,
representing the two teams. For a set of matches played in the
same stadium, a global cardinality constraint [Régin, 1996]
could be used to ensure no more than two occurrences of each
team.

The second phase consists of using a constraint solver to
search for solutions: assignments of values to decision vari-
ables satisfying all constraints. The simplicity and generality
of this approach is fundamental to the successful application
of constraint solving to a wide variety of disciplines such as
scheduling, industrial design and combinatorial mathematics
[Wallace, 1996; Huczynska et al., 2009].

The Global Cardinality Constraint (GCC) is a very impor-
tant global constraint, present in various constraint solving
toolkits, solvers and languages. It restricts the number of
occurrences of values assigned to a set of variables. In the
original version of the constraint [Régin, 1996], each value
is given a lower bound and upper bound. In any solution,
the number of occurrences of the value must fall within the
bounds. The literature contains many propagation algorithms
for this constraint, which trade strength of inference against
computational cost, for example bound consistency [Ka-
triel and Thiel, 2005; Quimper ef al., 2003], range consis-
tency [Quimper et al., 2004], and generalized arc-consistency
(GAC) [Régin, 1996; Quimper et al., 2004]. GCC is widely
used in a variety of constraint models, for diverse problems
such as routing and wavelength assignment [Simonis, 20091,
car sequencing [Régin and Puget, 19971, and combinatorial
mathematics [Huczynska et al., 2009].

Returning to the sports scheduling example, GCC can be
used to express the stadium constraint (that a team plays in
a particular stadium at most twice during the season). Each
value (representing a team) is given the bounds (0, 2), and the
variables are all slots at a particular stadium.

GCC has been generalized by replacing the fixed bounds
on values with cardinality variables [Quimper et al., 2004],
where each cardinality variable represents the number of oc-
currences of a value. To avoid confusion, I refer to this as
the Extended Global Cardinality Constraint (EGCC). Thus an
EGCC constraint has target variables (where the number of
occurrences of some values are constrained) and cardinality



variables.

In this paper, I focus on the highest strength of inference
(enforcing GAC) on the target variables. This allows the
study of various methods in depth, and leads to some sur-
prising conclusions. I also survey methods for pruning the
cardinality variables in depth. The main contributions of the
paper are as follows.

e A literature survey of GAC propagation algorithms for
the target variables, and their optimizations.

e Discussion of important implementation decisions that
are frequently omitted from original papers, perhaps due
to lack of space. For example, how to find augmenting
paths for Régin’s algorithm [Régin, 1996].

e The proposal of two new optimizations. One of these
is based on modifying the flow network of Régin’s al-
gorithm for greater efficiency, and the other is a novel
generalization of the dynamic partitioning optimization
of AllDifferent [Gent et al., 2008].

e A careful description of three concrete algorithms for
pruning the cardinality variables.

e Easily the largest empirical study of GAC propagation
methods for the target variables of EGCC. This involves
two basic algorithms and seven optimizations.

e Experimental conclusions and implementation advice
for GAC for the target variables.

e An empirical study of pruning the cardinality variables,
comparing the three methods.

It is shown that an appropriate combination of optimiza-
tions is over 4 times faster on average than a careful but unop-
timized implementation of Régin’s algorithm for our bench-
mark set.

A fast variant of EGCC is typically orders of magnitude
better than a set of occurrence constraints (one constraint for
each value of interest). Even when EGCC propagation was
least effective, it slowed the solver down by only 1.66 times
or less in the experiments.

Background

Régin’s algorithm [Régin, 1996] and Quimper’s algorithm
[Quimper er al., 2004] for pruning EGCC make use of net-
work flow and bipartite matching theory [Cormen et al.,
1990] as well as strongly connected components (SCCs) [Tar-
jan, 1972]. Similarly, Régin’s AllDifferent algorithm [Régin,
1994] makes use of results from graph theory, in particular
maximum bipartite matching [Berge, 1973] and strongly con-
nected components.

Both Régin’s algorithm and Quimper’s algorithm prune
only the target variables of the EGCC constraint. The car-
dinality variables may be pruned by a network flow algo-
rithm (also by Quimper) [Quimper et al., 2004], or by simpler
means.

Pruning the Target Variables

In this section I will briefly summarise the main results of the
paper regarding pruning the target variables.

Instance Families

3 Car seq model A

Car seq model AB

2.4 Car seq model B
EFPA

Magic sequence

4 >Oo0X +

Sports scheduling

oy axion
!

i
i1
O
[
C
O

0.01 0.1 1 10 100 1000 10000

Figure 1: Speedup of Baseline-Régin compared to Baseline-
Quimper. The z-axis represents the run time of Quimper’s
algorithm to solve the instance. The y-axis gives the speed-
up ratio obtained by using Régin’s algorithm as opposed to
Quimper’s algorithm. Points above 1 on the y-axis indicate
Régin’s algorithm is faster. The ratio is of node rates, and
includes the full cost of the solver not just the EGCC con-
straints. In this graph we can see that Régin’s algorithm al-
most always performs better than Quimper’s algorithm.

Quimper’s Algorithm vs Régin’s Algorithm

The paper compares the two algorithms for GAC pruning
of the target variables. Quimper’s algorithm [Quimper et
al., 2004] is superior in big-O terms, but Régin’s algo-
rithm [Régin, 1996] has the advantage of simplicity, and in
fact performs better as shown in Figure 1. Régin’s algorithm
is used throughout the rest of the paper.

Dynamic Partitioning

Gent et al. [2008] proposed an algorithm which partitions
an AllDifferent constraint during search. Suppose for ex-
ample we have AllDifferent(z; ...x6) and have 21 ... 25 €
{1...3}, x4...26 € {4...6}. This can be partitioned
into two independent cells: AllDifferent(x; ...x3) and
AllDifferent(x4 . . . 2g). The main benefit is that if some vari-
able xz; has changed, the propagator need only be executed on
the cell containing x;, not the original constraint. This saves
time in the second stage of Régin’s AllDifferent algorithm.

A cheap way of obtaining the partition is to use the SCCs
of the residual flow network, which are computed as part of
Régin’s AllDifferent algorithm. In some cases it is possible
to find a finer partition than the SCCs. However, experiments
showed that using SCCs as the partition is effective in practice
[Gent et al., 2008].

In this paper I generalise dynamic partitioning to the EGCC
constraint. The partition is obtained from the SCCs of the
residual flow network, as in AllDifferent, but unlike AllD-
ifferent cells must contain both variables and values. This
proves to be an effective optimisation. Figure 2 shows the
results of an experiment comparing dynamic partitioning to a
baseline implementation of Régin’s algorithm.

Important Edges

Katriel [2006] observed that many value removals affecting
a GCC constraint result in no other value removals, and so



Instance Families

Car seq model A
Car seq model AB

Car seq model B
35 + EFPA

Magic sequence

4 ronX+

Sports scheduling

08
0.7

0.01 0.1 1 10 100 1000 10000

Figure 2: Speedup of dynamic partitioning compared to the
baseline Régin’s algorithm, in the same format as Figure 1.

work processing them is wasted. She introduces the concept
of an important edge of the residual graph. An important edge
is one whose removal causes the pruning of some variable-
value pair. Therefore, when an unimportant edge is removed,
it is not necessary to run the propagator.

There are approximately 3 important values per variable at
any time, regardless of domain size. We found that exploiting
important edges is useful with the basic algorithm, but when
combined with other optimisations it does not repay its over-
head in our experiments. It is possible that when the target
variables have a large number of values this idea will come
into its own.

Combining Optimisations

Overall I found that the following optimisations work well
together: incrementally updating the maximum flow, incre-
mentally maintaining an internal representation of the flow
network, and dynamic partitioning. With these optimisations
the experiments show a mean speed up of 4.11 times, and a
maximum of 20.9 times while performing an identical search.

Pruning the Cardinality Variables

The paper compares three algorithms for pruning the cardi-
nality variables. The simplest (Simple) counts the occur-
rences of each value in the target variables’ domains. The
second (Sum) combines Simple with an additional constraint
stating that the cardinality variables sum to r (where 7 is the
number of target variables).! Sum is only correct when the
EGCC covers every value in the domain of the target vari-
ables. The third (Flow) uses a strong network flow algorithm
by Quimper [Quimper et al., 2004]. The following table com-
pares the three. For each cardinality algorithm, it shows the
number of instances solved, and the number of instances with
a reduced node count vs the weaker algorithms.

'Sum is the method implemented in the Gecode solver (Guido
Tack, personal communication).

Instance Families
Car seq model A
100000 Car seq model AB
Car seq model B
EFPA
Magic sequence
sports

>

10000

4p>podxX+

1000

100

DHIBKHE] RDEMEERY- 1 D>

©

v
0® 0® o%P ® O

0.01 0.1 1 10 100 1000 10000

Figure 3: Time comparison between EGCC-Sum and Occur-
rence. The z-axis is the time taken by Occurrence, and the
y-axis is the proportion of total times, Occurrence divided by
EGCC-Sum. The timeout was 1800s.

Instances Saved nodes Saved nodes
solved vs Simple vs Sum
(of 194)
Simple 108 — —
Sum 109 20 —
Flow 111 33 23

Sum adds very little overhead and is usually worthwhile
compared to Simple. Flow on the other hand is very expen-
sive and is not normally worthwhile, but it does solve two
instances that Sum cannot.

Comparing to a Decomposition

The Occurrence constraint takes an array of target variables,
one cardinality variable and a value. It constrains the cardi-
nality variable to be the number of occurrences of the value
in the array. EGCC trivially decomposes into one Occur-
rence constraint for each value of interest. Figure 3 compares
EGCC (with Sum) to Occurrence. As expected, EGCC can
solve many instances where Occurrence hits the time limit.
EGCC can be orders of magnitude faster by reducing search.
For some EFPA instances EGCC is not effective, and on these
instances EGCC is at most 1.66 times slower than Occur-
rence.

Summary

The paper presented an extensive survey of propagation meth-
ods for the EGCC constraint, studying the pruning of both tar-
get variables and cardinality variables, surveying many meth-
ods from the literature and presenting some methods that have
not been previously reported.

I focused on generalized arc-consistency for the target vari-
ables (GAC-On-X) and evaluated two basic algorithms from
the literature along with five optimizations found in the liter-
ature, and two novel optimizations. In each case I have re-
ported on their implementation and given an empirical analy-
sis of their behaviour. While it was impossible to experiment
with every possible combination of optimizations, I took care
to compare each optimization against an appropriate baseline
method, and to avoid straw men. Particular attention was



paid to evaluating combinations of optimizations, which is
(naturally) not usually a feature of papers that propose opti-
mizations. The experiments presented here comprise easily
the deepest experimental analysis of GAC-On-X algorithms.
Based on them, I was able to conclude that some optimiza-
tions are key and others are less generally useful.

I would like to draw particular attention to the results with
dynamic partitioning, a novel generalization of an optimiza-
tion for AllDifferent [Gent et al., 2008]. With EGCC dy-
namic partitioning was 1.56 times faster on average, with a
maximum of 5.6 times. The largest gains were seen on the
most difficult instances where the solver timed out. The gain
for EGCC is less pronounced than for AllDifferent [Gent et
al., 2008], albeit on entirely different benchmarks, and with a
different combination of other optimizations.

For the best combination of optimizations, I found a mean
improvement of more than 4 times in runtime over a careful
but unoptimized implementation of Régin’s algorithm. This
confirms that optimizations are an essential part of a practical
implementation of EGCC.

Regarding the cardinality variables, I was able to confirm
that the implied sum constraint used by Gecode is indeed
valuable, and also that the stronger flow-based pruning algo-
rithm given by Quimper et al [Quimper ef al., 2004] can also
be valuable, since it solves more instances within a time limit
than either other method.

Finally, a fast variant of EGCC is typically orders of mag-
nitude better than a set of occurrence constraints. Even when
EGCC propagation was not effective, it slowed the solver
down by only 1.66 times or less in the experiments.

Acknowledgements

I owe a debt to many people for helpful discussions, in par-
ticular Ian Gent, Ian Miguel, and Guido Tack. I would also
like to thank Ian Gent and Ian Miguel for comments on a
draft of this paper. I thank Chris Jefferson for helpful discus-
sions and for pointing out that EGCC cannot be entailed, and
Andrea Rendl for use of Tailor [Gent et al., 2007] for generat-
ing benchmarks. This work was supported by EPSRC grants
EP/E030394/1 and EP/H004092/1.

References

[Berge, 1973] Claude Berge. Graphs and Hypergraphs.
North-Holland Publishing Company, 1973.

[Cormen et al., 1990] Thomas H. Cormen, Charles E. Leis-
erson, and Ronald L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[Gent et al., 2007] Tan P. Gent, Ian Miguel, and Andrea
Rendl. Tailoring solver-independent constraint models: A

case study with Essence’ and Minion. In Proceedings of
SARA 2007, pages 184—-199, 2007.

[Gent et al., 2008] Tan P. Gent, Ian Miguel, and Peter
Nightingale. Generalised arc consistency for the alldiffer-
ent constraint: An empirical survey. Artificial Intelligence,
172(18):1973-2000, 2008.

[Huczynska et al., 2009] Sophie Huczynska, Paul McKay,
Ian Miguel, and Peter Nightingale. Modelling equidis-

tant frequency permutation arrays: An application of con-
straints to mathematics. In Proceedings CP 2009, pages
50-64, 2009.

[Katriel and Thiel, 2005] Irit Katriel and Sven Thiel. Com-
plete bound consistency for the global cardinality con-
straint. Constraints, 10(3):191-217, 2005.

[Katriel, 2006] Irit Katriel. Expected-case analysis for de-
layed filtering. In J. Christopher Beck and Barbara M.
Smith, editors, CPAIOR, volume 3990 of Lecture Notes
in Computer Science, pages 119-125. Springer, 2006.

[Nightingale, 2011] Peter Nightingale. The extended global
cardinality constraint: An empirical survey. Artificial In-
telligence, 175(2):586-614, 2011.

[Quimper et al., 2003] Claude-Guy Quimper, Peter van
Beek, Alejandro Lépez-Ortiz, Alexander Golynski, and
Sayyed Bashir Sadjad. An efficient bounds consistency al-
gorithm for the global cardinality constraint. In Proceed-
ings 9th Principles and Practice of Constraint Program-
ming (CP 2003), pages 600-614, 2003.

[Quimper et al., 2004] Claude-Guy Quimper, Alejandro
Lo6pez-Ortiz, Peter van Beek, and Alexander Golynski.
Improved algorithms for the global cardinality constraint.
In Proceedings 10th Principles and Practice of Constraint
Programming (CP 2004), pages 542-556, 2004.

[Régin and Puget, 1997] Jean-Charles Régin and Jean-
Francois Puget. A filtering algorithm for global
sequencing constraints. In Proceedings 3rd Constraint
Programming (CP 97), pages 32-46, 1997.

[Régin, 1994] Jean-Charles Régin. A filtering algorithm for
constraints of difference in CSPs. In Proceedings 12th
National Conference on Artificial Intelligence (AAAI 94),
pages 362-367, 1994.

[Régin, 1996] Jean-Charles Régin. Generalized arc consis-
tency for global cardinality constraint. In Proceedings 13th
National Conference on Artificial Intelligence (AAAI 96),
pages 209-215, 1996.

[Simonis, 2009] Helmut Simonis. A hybrid constraint model
for the routing and wavelength assignment problem. In
Proceedings of CP-2009, pages 104-118, 2009.

[Tarjan, 1972] Robert Endre Tarjan. Depth-first search and
linear graph algorithms. SIAM Journal on Computing,
1(2):146-160, 1972.

[Wallace, 1996] Mark Wallace. Practical applications of

constraint programming. Constraints, 1(1/2):139-168,
1996.



