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Constraint programming is a family of techniques for solving combinatorial problems, where the problem is modelled
as a set of decision variables (typically with finite domains) and a set of constraints that express relations among
the decision variables. One key concept in constraint programming is propagation: reasoning on a constraint or set
of constraints to derive new facts, typically to remove values from the domains of decision variables. Specialized
propagation algorithms (propagators) exist for many classes of constraints.

The concept of support is pervasive in the design of propagators. Traditionally, when a domain value ceases to
have support, it may be removed because it takes part in no solutions. Arc-consistency algorithms such as AC2001
[8] make use of support in the form of a single domain value. GAC algorithms such as GAC-Schema [7] use a tuple
of values to support each literal. We generalize these notions of support in two ways. First, we allow a set of tuples
to act as support. Second, the supported object is generalized from a set of literals (GAC-Schema) to an entire
constraint or any part of it.

We design a methodology for developing correct propagators using generalized support. A constraint is expressed
as a family of support properties, which may be proven correct against the formal semantics of the constraint. We
show how to derive correct propagators from the constructive proofs of the support properties. The framework is
carefully designed to allow efficient algorithms to be produced. Derived algorithms may make use of dynamic literal
triggers or watched literals [15] for efficiency. Finally, three case studies of deriving efficient algorithms are given.
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1. Introduction

In this paper we provide a formal development
of the notion of support in constraint satisfaction.
This notion is ubiquitous and plays a vital role in
the understanding, development, and implemen-
tation of constraint propagators, which in turn
are the keystone of a successful constraint solver.
While we focus on a formal development in this pa-
per, our purpose is not to describe formally what is
currently seen in constraint satisfaction. Instead,

we generalize the notion of support so that it can
be used in a wider variety of propagators. The re-
sult is the first step in a twin programme of devel-
oping a formal understanding of constraint algo-
rithms, while also developing notions such as gen-
eralized support which should lead to improved
constraint algorithms in the future.

The methodology presented here for formal de-
velopment of propagators is based on the proofs-
as-programs and propositions-as-types interpre-
tations of constructive type theory [11,17]. Like
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the earlier development in [9], the approach pre-
sented here uses a constructive type theory as
the formal framework for specifying and develop-
ing programs. There, the proofs were mechanically
checked in the Nuprl theorem prover [12], here the
development is formal but proofs have not been
mechanically checked.

The paper is structured as follows. In this sec-
tion, we introduce the key concepts used in our
method and give an overview of related work. In
Section 2 we define the basic mathematical con-
cepts used in the rest of the paper. In Section 3 we
define generalized support and present the method
for development of constraint propagators that are
correct by construction. In Section 4 we present
three case studies where we apply our method. In
the third case study we develop and implement a
new propagator that can be more efficient than the
existing propagator in a popular constraint solver.
Finally we conclude in Section 5.

1.1. Overview of the Constraint Satisfaction
Problem

A constraint is simply a relation over a set of
variables. Many different kinds of information can
be represented with constraints. The following are
simple examples: one variable is less than another;
a set of variables must take distinct values; task
A must be scheduled before task B; two objects
may not occupy the same space. It is this flexibility
which allows constraints to be applied to many
theoretical, industrial and mathematical problems.

The classical constraint satisfaction problem
(CSP) has a finite set of variables, each with a fi-
nite domain, and a set of constraints over those
variables. A solution to an instance of CSP is an as-
signment to each variable, such that all constraints
are simultaneously satisfied — that is, they are all
true under the assignment. Solvers typically find
one or all solutions, or prove there are no solu-
tions. The decision problem (‘does there exist a so-
lution?’) is NP-complete [1], therefore there is no
known polynomial-time procedure to find a solu-
tion.

1.2. Solving CSP

Constraint programming includes a great vari-
ety of domain specific and general techniques for
solving systems of constraints. Since CSP is NP-

complete, most algorithms are based on a search
which potentially explores an exponential number
of nodes. The most common technique is to in-
terleave splitting and propagation. Splitting is the
basic operation of search, and propagation simpli-
fies the CSP instance. Apt views the solution pro-
cess as the repeated transformation of the CSP
until a solution state is reached [1]. In this view,
both splitting and propagation are transforma-
tions, where propagation simplifies the CSP by re-
moving domain values that cannot take part in any
solution. A splitting operation transforms a CSP
instance into two or more simpler CSP instances,
and by recursive application of splitting any CSP
can be solved.

Systems such as Choco [22], IBM ILOG CPLEX
CP Optimizer [19] and Minion [14,15] imple-
ment highly optimized constraint solvers based on
search and propagation, and (depending on the
formulation) are able to solve large problem in-
stances quickly.

Our focus in this paper is on propagation al-
gorithms. A propagation algorithm operates on a
single constraint, simplifying the containing CSP
instance by removing values from variables in the
scope of the constraint. Values which cannot take
part in any solution are removed. For example, a
propagator for x ≤ y might remove all values of
x which are greater than the largest value of y.
Typically propagation algorithms are executed it-
eratively until none can make any further simpli-
fications.

1.3. Proofs to propagators

Researchers frequently invent new algorithms
and (sometimes) give proofs of correctness, of vary-
ing rigour. In this paper we provide a formal se-
mantics of CSP. This allows us to formally char-
acterize correctness of constraint propagators, and
therefore aid the proof of correctness of propaga-
tors. Following this, we lay the groundwork for
automatic generation of correct propagators. The
method is to write a set of support properties which
together characterize the constraint. Each prop-
erty is inserted into a schema, and a constructive
proof of the schema is generated. This proof is then
translated into a correct-by-construction propaga-
tor. This method is based on the concept of gen-
eralized support, described in the next section. Fi-
nally, we give examples of this method by deriving
propagators for the element, occurrenceleq and
occurrencegeq constraints.
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1.4. Generalized support

Central to this work is the notion of support.
This notion is used informally in many places (for
example, in the description of the algorithm GAC-
Schema [7]) and more formally by Bessière [5]. We
generalize the concept of support, and develop a
formal framework to allow us to produce rigorous
proofs of the correctness of propagators that ex-
ploit the generalized concept of support.

Support is a natural concept in constraint pro-
gramming. Constraint propagators remove unsup-
ported values from variable domains, thus simpli-
fying a CSP instance. Supported values cannot be
removed, since they may be contained in a solu-
tion. Thus a support is evidence that a value (or
set of values) may be contained in a solution. If no
support exists, it is guaranteed that a value (or set
of values) is not contained in any solution.

A support property characterises the supports of
a particular value (or set of values) for a particu-
lar constraint. For example, three support proper-
ties of an element constraint are given by Gent et
al. [15]. Each of these three properties is used to
create a propagator, such that the three propaga-
tors together achieve generalized arc consistency.
In this instance, writing down support properties
assisted in proving the propagators correct.

We show that correct support properties can
be used to create propagators that are correct by
construction. We describe a general propagation
schema, which is a description of what should be
proved when support is lost for a given support
property. This captures how propagators work in
practice. They are triggered when it is noted that
the current support is lost. The propagator then
seeks to re-establish support. This might be possi-
ble on the current domains, or it may need to nar-
row domains (i.e. remove some values of some vari-
ables), or it may be that no new support is possible
and the constraint is guaranteed to be false. The
propagation schema specialized for a given sup-
port property can be proven constructively. The
proof contains sufficient information to be trans-
lated into a correct propagator. We envisage two
main uses for such a propagator. For some con-
straints, it may be an efficient propagator that can
be used directly. Otherwise, the constructed prop-
agator may be used as part of an informal argu-
ment for the correctness of an efficient propagator.

1.5. Related Work

There are a number of items of related work
with related or similar goals, however the approach
taken in each case is quite different to our ap-
proach. Apt and Monfroy [2] generate propagation
rules such as X = s→ y 6= a, where X is a vector
of CSP variables, s is a vector of values within the
initial domain of X, y is a CSP variable and a is a
value in the initial domain of y. Rules correspond
directly to propagation in a constraint solver (ie
when X is assigned s, a is removed from the do-
main of y). A set of rules is generated for a given
constraint by a search over the (potentially very
large) space of possible rules. In contrast, our ap-
proach is much broader in that it is not restricted
to generating implication rules. Our framework al-
lows both the derivation of new propagators and
proof of correctness of existing ones.

Van Hentenryck, Saraswat and Deville [28] de-
signed indexicals, a high-level language for imple-
menting propagators. Indexicals allow straightfor-
ward and transparently correct implementations of
propagators for simple constraints, however there
is no way to implement sophisticated propaga-
tors for global constraints using indexicals. Tack,
Schulte and Smolka [27] presented a specification
language for constraints on finite set variables,
and an implementation language called set projec-
tors that is inspired by indexicals. They present
a method to automatically translate specifications
into set projectors. Our approach is much broader
than either indexicals or set projectors, since both
restrict the form of propagation algorithms that
can be implemented.

Beldiceanu, Carlsson and Petit [4] describe con-
straints using finite state automata extended with
counters. For a constraint C, the automaton for C
can check whether any given assignment satisfies
C. Beldiceanu, Carlsson and Petit give a method
to translate an automaton into a set of short con-
straints (a decomposition) such that propagating
them will propagate the original constraint C, and
there are (in some cases) guarantees of the strength
of propagation. The approach has been subse-
quently refined, for example by linking overlap-
ping prefixes and suffixes of constraints [3]. Their
approach generates decompositions of a particular
form, whereas in this paper our focus is on deriving
efficient propagators.
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Cohen, Jefferson and Petrie [20,10] studied the
properties of triggers, in particular comparing
static triggers with movable triggers on a number
of constraint classes and consistencies. They prove
lower bounds on the number of triggers required,
showing in most cases that many more static trig-
gers are required compared to movable triggers.
To do this they generalise the concept of support
in a similar way to us, however their work treats
each propagator as a monolithic black box whereas
we are interested in constructing propagators and
proving correctness and other properties of them.

2. Definitions and Notation

2.1. The Standard Mathematical Account

We start by giving the standard definition of a
constraint satisfaction problem (e.g. see [13,5]).
Formal definitions of the notations used here are
given below.

Definition 1 (Constraint Satisfaction Problem). A
Constraint Satisfaction Problem (CSP) is given by
a triple 〈X,σ,C〉 where X is a k-tuple of variables
X = 〈x1, · · · , xk〉 and σ is a signature (a function
σ : X → 2Z mapping variables in X to their corre-
sponding domains, such that σ(xi) ( Z is the finite
domain of variable xi.) C is a tuple of extensional
constraints C = 〈C1, · · · , Cm〉 where each Ci is of
the form 〈Y,RY 〉 where Y ⊆ X is a tuple of vari-
ables called the schema or scope of the constraint
Ci. Also, RY is a relation given by a subset of the
Cartesian products of the domains of the variables
in the scope Y and is called the extension of Ci.

Definition 2 (Satisfying tuple). We say a Z-tuple
τ satisfies constraint 〈Y,RY 〉 if Y ⊆ Z, and the
projection Y [τ ] is in RY (i.e. if the projection of
the scope Y from τ is in RY ).

Definition 3 (Solution). A solution to a CSP
〈X,σ,C〉 is a tuple τ , with schema X, such that τ
satisfies every constraint in C.

2.2. Variable Naming Conventions, Ranges, and
Literals

We use lower case letters (possibly subscripted
or primed) from near the end of the Latin alpha-
bet {w, x, y, z} to denote variables. We use Latin
letters {i, j, k} to denote integer indexes, and use

the Latin letters occurring early in the alphabet
{a, b, c, d} (possibly subscripted) to denote arbi-
trary integer values.

Ranges are defined as follows.

{b . . . c} def
= {a ∈ Z | b ≤ a ∧ a ≤ c}

We write 2A to denote the powerset (set of all
subsets) of A. A literal is a variable-value pair
(e.g. 〈x, 5〉).

2.3. Vectors

We use uppercase letters W,X, Y, Z, ... to de-
note vectors of variables. We use the Greek letters
{τ, τ ′, τ1, τ2 · · ·} to denote tuples of integer values.

We write finite vectors as sequences of values
enclosed in angled brackets, (e.g. 〈x, y, z〉). The
empty vector is written 〈〉. We take the operation
of prepending a single element to the left end of a
vector as primitive and denote this operation x ·Y .
We abuse this notation by writing X · Y for the
concatenation of vectors X and Y . We write |Y | to
denote the length of vector Y . Given a vector Y , we
write Y [i] to denote the (zero-based) ith element of
Y . This operation is undefined if i 6∈ {0 . . . |Y |−1}.

Membership in a vector is defined as follows.

z ∈ Y def
= ∃i ∈ {0 . . . |Y | − 1}. Y [i] = z

We will sometimes need to collect the set of indexes
to an element in a vector.

Y [[z]]
def
= {i ∈ {0 . . . |Y | − 1} | Y [i] = z}

Thus, 〈x, y, z, x〉[[x]] = {0, 3}. Note that Y [[z]] 6= ∅
iff z ∈ Y and also each index in Y [[z]] is a witness
for z ∈ Y .

If y ∈ Y , we write Y − y to denote the vec-
tor obtained from Y by deleting the leftmost oc-
currence of y from Y . Y − y = Y if y 6∈ Y . We
write Z − Y for the vector obtained by remov-
ing leftmost occurrences of all (y ∈ Y ) from Z.
Given a vector Z, we write {Z} to denote the
set of elements in Z and given a set of variables
S we write 〈S〉 to denote a vector of the vari-
ables in S; the reader may assume the variables in
〈S〉 occur in increasing lexicographic order. Inter-
section and union are defined on vectors by tak-

ing them as sets: X ∩ Y def
= 〈{X} ∩ {Y }〉; and

X∪Y def
= 〈{X} ∪ {Y }〉. We write Y ⊆ X to mean

{Y } ⊆ {X}, i.e. that every element in Y is in X
with no stipulations on relative lengths of X or Y
or on the order of their elements.
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2.4. Signatures

A signature σ is a function mapping variables

in X to their associated domains. Thus, signatures

are functions σ : X → 2Z where in practice, the

subset of integers mapped to is finite. Where σ and

σ′ are signatures mapping variables in X to their

finite integer domains:

σ′ vX σ
def
= ∀x ∈ X. σ′(x) ⊆ σ(x)

We write σ′ @X σ if σ′ vX σ and ∃x ∈ X : σ′(x) (
σ(x), i.e. if some domain of σ′ is a proper subset

of the corresponding domain of σ. We drop the

schema subscript when the schema is clear from

the context. We state the following without proof.

Lemma 1 (Signature Inclusion Well-founded). The

relation @ is well-founded if restricted to signa-

tures with finite domains.

2.5. Relations

In the description of a CSP given above, a con-

straint 〈Y,RY 〉 is a relation where the schema Y

gives the variable names and RY is the set of tuples

in the relation.

Given a signature σ mapping the variables in

schema Y to their domains, a relation 〈Y,RY 〉 is

well-formed with respect to σ iff the following con-

ditions hold:

i. All tuples in RY have length |Y |
ii. The values in each column come from the

specified domain for that column:

∀τ ∈ RY . ∀i ∈ {0 . . . |Y | − 1}. τ [i] ∈ σ(Y [i])

Schemata are vectors of variable names with no

restriction on how many times a variable may oc-

cur. Thus it is possible to have a wellformed re-

lation whose schema has common names for mul-

tiple columns. Given a signature σ over a schema

X, a tuple τ is called a X-tuple if 〈X, {τ}〉 is well-

formed w.r.t. σ. In this case, we write X−tupleσ(τ).

We write X−tupleσ for the set of tuples satisfying

this condition.

2.5.1. Tuple Coherency
Conceptually, relations provide a representation

for storing valuations (assignments of values to
variables) and so we must distinguish between
tuples which represent coherent valuations (even
when their schemata may contain duplicate vari-
able names) and tuples that do not. This motivates
the following definitions.

The wellformedness condition on relations re-
quires values in columns labeled by a variable come
from the domain of that variable, but does not
rule out cases where a single tuple with multiple
columns named by the same variable have different
values in those columns.

Example 1. Consider the relation

〈〈x, x, y〉, {〈1, 2, 3〉, 〈1, 1, 3〉, 〈2, 2, 3〉}〉

The variable x occurs twice in the schema and the
first tuple in the schema assigns different values to
x, this tuple is not coherent.

An X-tuple τ is coherent w.r.t. variable z iff the
following holds.

coh{X, z}(τ)
def
= ∀i, j ∈ X[[z]]. τ [i] = τ [j]

We say a tuple is incoherent w.r.t. z if it is not co-
herent. Note that this definition is sensible whether
z ∈ X or not. A simple consequence of the defini-
tion is that an X-tuple τ is incoherent w.r.t. vari-
able z iff

∃i, j ∈ X[[z]]. τ [i] 6= τ [j]

An X-tuple τ is coherent with schema Y iff it is
coherent w.r.t. all variables z ∈ Y .

coh{X,Y }(τ)
def
= ∀z ∈ Y. coh{X, z}(τ)

We say an X-tuple is incoherent with respect to
schema Y if it is not coherent w.r.t. Y . Only co-
herent tuples count as solutions (Def. 3).

Remark 1. In many constraint solvers, incoherent
tuples may arise during a computation, but they
are never counted among solutions. For example,
the Global Cardinality constraint

GCC(〈x, x, y〉, 〈1, 2〉, 〈(2 . . . 3), (1 . . . 2)〉)

(stating that value 1 occurs two or three times,
and value 2 occurs once or twice among vari-
ables 〈x, x, y〉) could generate the incoherent tuple
〈1, 2, 1〉 internally when using Règin’s algorithm
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[24].1 Generating incoherent tuples affects both the
internal state of a constraint propagator, and the
number of vertices in the search tree.

Strictly speaking, because incoherent tuples do
not count as solutions, the semantics could be spec-
ified simply disallowing them. However, this ap-
proach would rule out faithful finer grained rep-
resentations of the internal states of constraint
solvers which do generate incoherent tuples, for ex-
ample when searching for support. Based on this,
we have decided to include them although this adds
some complexity to the specification.

2.5.2. Selection
Selection is an operation mapping relations to

relations generating new ones from old by filtering
rows (tuples) based on predicates on the values in
the tuple.

Given a relation 〈Y,RY 〉 and an index i ∈
{0 . . . |Y | − 1}, and a value (say a), index selection
is defined as follows.

select (i=a)(RY )
def
= {τ ∈ RY | τ [i] = a}

The tuples selected from a relation by index se-
lection are not guaranteed to be coherent with re-
spect to schema Y .

Given a relation 〈Y,RY 〉, a variable x, and a
value a, value selection is defined as follows.

select (x=a)(RY )
def
=

{τ ∈ RY | ∀i ∈ Y [[x]]. τ [i] = a}

Thus a tuple τ is included in a selection
select (x=a)RY if and only if all columns of τ in-
dexed by x have value a, i.e. τ must be coherent
for x and those columns must have value a.

Lemma 2. [Selection Wellformed] For all well-
formed relations 〈Y,RY 〉 and all x, and all a ∈ Z,
the relation 〈Y, select (x=a)RY 〉 is well-formed.

Finally, we define coherent selection as follows.

selectY (RX)
def
= {τ ∈ RX | coh{X,Y }(τ)}

Coherent selection selects the tuples which are co-
herent with respect to Y .

1Règin’s algorithm [24] is polynomial-time and enforces
GAC iff the schema contains no duplicate variables. With

duplicate variables, enforcing GAC on GCC is NP-Hard [6],
therefore it is sensible to use Règin’s algorithm in this case
even though it will not enforce GAC.

2.5.3. Projection
Projection is an operation for creating new re-

lations from existing ones by allowing for the dele-
tion, reordering and duplication of columns. We
use a generalized version here that allows du-
plicate names. This is because many constraint
solvers (including Minion [14] for example) allow
schemata to contain duplicate names.

Lemma 3. [Projection maps exist] For all vectors
X and Y , if Y ⊆ X, then there exists a function
from the indexes of Y to the indexes of X (say
f ∈ {0 . . . |Y | − 1} → {0 . . . |X| − 1}) such that

∀i ∈ {0 . . . |Y | − 1}. Y [i] = X[f(i)]

Note that there is no restriction on the relative
lengths of X and Y , e.g. it is possible for any
of the following to hold: |Y | < |X|, |Y | = |X| or
|Y | > |X|. The projection maps are evidence wit-
nessing claims of the form Y ⊆ X. Furthermore,
because our model allows for duplicated columns,
there may be multiple projection maps witnessing
an inclusion Y ⊆ X.

Example 2. Consider

Y = 〈x4, x2, x2, x1, x3〉X = 〈x1, x2, x3, x4〉

then Y ⊆ X is witnessed by the projection map:

{〈0, 3〉, 〈1, 1〉, 〈2, 1〉, 〈3, 0〉, 〈4, 2〉}

Similarly, X ⊆ Y and is witnessed by the follow-
ing.

{〈0, 3〉, 〈1, 1〉, 〈2, 4〉, 〈3, 0〉}

Also 〈x2〉 ⊆ Y is witnessed by two functions,
{〈0, 1〉} and {〈0, 2〉}.

Lemma 4. [Tuple Projection] Given X and Y , if
Y ⊆ X is witnessed by f , for each X-tuple τ there
is a vector Yf (τ) : {0 . . . |Y | − 1} → Z such that

∀i ∈ {0 . . . |Y | − 1}. Yf (τ)[i] = τ [f(i)]

Corollary 1. [Tuple Projection Wellformed] Given
X and Y , if Y ⊆ X is witnessed by f , for each
X-tuple τ , Yf (τ) is a Y -tuple, i.e. |Yf (τ)| = |Y |
and all values in Yf (τ) are in their domains.

Whenever Y ⊆ X, projection maps f and g wit-
nessing this fact behave the same when used to in-
dex into tuples coherent with Y . This is illustrated
by the following example.
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Example 3. Suppose Y = 〈x, y〉 and X =
〈x, x, w, y, w〉 then there are two projections maps
witnessing Y ⊆ X, f = {〈0, 0〉, 〈1, 3〉} and g =
{〈0, 1〉, 〈1, 3〉}. Now, any length |X| = 5 tuple co-
herent with Y is of the form τ = 〈a, a, b, c, d〉 where
a, b, c, d ∈ Z. Thus, even though f(0) 6= g(0) the
following equalities hold:

τ [f(0)] = τ [0] = a = τ [1] = τ [g(0)]

This observation is made precise by the follow-
ing lemma.

Lemma 5. [Coherent Projection Unique] For all
X and Y , and for all projection maps f and g
witnessing Y ⊆ X, for all X-tuples τ coherent with
schema Y , Yf (τ) = Yg(τ).

Notational Remark 1. Since projections Z where
Z ⊆ X do not depend on the projection map they
are built from when the X-tuple τ is coherent with
Z, we will simply write Z(τ) in this case.

Lemma 6. [Projection Coherent] For all X, Y and
Z, if Y ⊆ X and if τ is an X-tuple coherent with
Z, then Y [τ ] is a Y -tuple coherent with Z.

So far we have defined projection of a single
tuple, potentially with repeated variables in the
schema. We lift the notation tuple-wise to relations
as given by the following definition.

Definition 4. [Relation Projection] Given X and
Y , and a wellformed relation 〈X,RX〉, if Y ⊆ X
is witnessed by f ,

Yf (〈X,RX〉) =

〈Y, {τ ∈ Z|Y | | ∃τ ′ ∈ RX . τ = Yf (τ ′)}〉

Lemma 7. [Relation Projection WF] For all well-
formed relations 〈X,RX〉 and all Y , Y ⊆ X hav-
ing a projection map f , the relation Yf (〈Y,RY 〉)
is well-formed.

2.5.4. Equivalence of Constraints
Now that we have relation projection, we are

able to define an equivalence of constraints which
does not depend on the ordering (or the length) of
schemata.

Definition 5. [Schema Equivalence]

X ≡ Y def
= X ⊆ Y ∧ Y ⊆ X

Schema equivalence requires only that X and
Y contain the same set of variables. The order of
variables and the number of duplicates are not re-
stricted.

Definition 6. [Constraint Equivalence]

〈X,RX〉 ≡ 〈Y,RY 〉
def
=

X ≡ Y ∧
Y ⊆ X is witnessed by projection map f∧
Yf (selectX(〈X,RX〉)) =

selectY (〈Y,RY 〉)

There are several steps to the constraint equiv-
alence definition. First, it is required that the
schemata are equivalent. Then we find a projection
map f that will be used to reorder the schema X to
match Y . Coherent selection is used to remove the
incoherent tuples of both constraints. The schema
X of the first constraint is reordered to match Y .
Finally, the two constraints are equivalent if they
have the same set of coherent tuples.

Incoherent tuples are removed before reordering
the schema X, therefore any projection map f will
produce the same set of reordered tuples (as in
Example 3).

2.6. Syntactic Definition of Relations

Constraints are rarely presented extensionally
but are instead described in some syntactic way.
We introduce the following notation to denote the
map from syntactic descriptions to their exten-
sional meanings.

Definition 7 (Semantics). Given a syntactic de-
scription of a constraint (say C) over schema X
and where σ is a signature consistent with X, we
will write [[C]]σ to denote its extension.

So, if we have a constraint Element(X, y, z)
where X is a vector of variables and y and z are
variables, and Element has a defined meaning, we
can write [[Element(X, y, z)]]σ to obtain its relation
within some signature σ.

3. Propagation and Support

Propagation is the process of narrowing the do-
mains of variables so that solutions are preserved.
This effectively shrinks the search-space and is one
of the fundamental techniques used in constraint
programming. It has been described ([13, pp. 17])
as a process of inference to distinguish it from
search. Most work on propagation considers the
constraints singly.
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Definition 8. [Generalized Arc Consistency] Given
a constraint C with schema X and a signature σ,
we say σ′ v σ is Generalized Arc Consistent iff

∀i ∈ {0 . . . |X| − 1}. ∀a ∈ σ(X[i]).
a ∈ σ′(X[i])↔ ∃τ ∈ [[C]]σ. τ [i] = a

If σ′ is Generalized Arc Consistent, we say it is
GAC.

Corollary 2. [Generalized Arc Consistency] Given
a constraint C and a signature σ, σ is GAC for C
iff

∀σ′ @ σ. [[C]]σ′ ⊂ [[C]]σ
i.e. if all signatures having strictly narrower do-
mains provide strictly fewer solutions for C than
σ.

Enforcing GAC is the strongest form of propa-
gation that considers constraints singly and acts
only on the variable domains. Other forms of con-
sistency (such as bound consistency) lie between
GAC and no change (i.e. σ′ = σ).

3.1. Support

The concept of support was introduced in Sec-
tion 1.4. Support is evidence that a set of domain
values (or a single value) are consistent for some
definition of consistency (for example, GAC) for
a particular constraint C. If a set of values have
no support, then they cannot be part of any so-
lution to C, and therefore can be eliminated from
variable domains without losing any solutions to
the CSP. The concept of support is central to the
process of propagation.

In [5, pp. 37] Bessière gives a description of when
a tuple supports a literal. We use a more expres-
sive model where support (or perhaps we should
call it evidence) is defined by sets of tuples. In
most cases, supports will be singletons (i.e. they
are simply represented by a set containing a single
tuple). However, some constraints require a set of
tuples to express the condition for support.

Example 4. Consider the AllDifferent constraint

C = AllDiff(x1, x2, x3)

with the signature σ : x1 ∈ {1, 2}, x2 ∈ {1, 2, 3, 4},
x3 ∈ {1, 2, 3, 4, 5}. AllDifferent means that each
variable must take a distinct value. This signature
is GAC. Given Bessière’s description of support
[5, pp. 37] (as used by general-purpose GAC al-

gorithms such as GAC-Schema [7]), each literal
in the signature would be supported by a tuple
containing the literal. Hence every literal is con-
tained in the support for C. However, not all lit-
erals are required; the following set is sufficient:
L = {〈x1, 1〉, 〈x1, 2〉, 〈x2, 2〉, 〈x2, 4〉, 〈x3, 2〉, 〈x3, 3〉,
〈x3, 5〉} [16, §5.2]. As long as all literals in L re-
main valid, in some smaller signature σ1 v σ, then
the constraint remains GAC. This can be used to
avoid calling the propagator, and therefore is im-
portant to capture in our definition of generalized
support.

Extensional constraints (sets of tuples) are inter-
preted disjunctively, i.e. as long as the set is non-
empty, a solution exists. Similarly, support exists
if the support set is non-empty. Our generaliza-
tion of support is to model it as a set of tuples in-
terpreted conjunctively i.e. they all must be valid
for support to exist. Thus, a generalized support
set is a disjunction of conjunctions (∃∀); we say
support exists if at least one support is present in
the set and all the tuples in that support are valid
w.r.t. variable domains.

We use the following as a simple running exam-
ple throughout this section.

Example 5. Consider the constraint x + y + z ≥
2 with initial signature σ : x, y, z ∈ {0, 1}. The
signature is GAC, and the constraint is satisfied
by three tuples:

[[x+ y + z ≥ 2]]σ =
{〈0, 1, 1〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}

3.1.1. Support Properties
A support property is a predicate that takes a set

of tuples and a signature, and identifies whether
the set of tuples is in fact a support. We will use
support properties to define the behaviour of prop-
agators.

Definition 9. [Support property] Given a schema
Y and signature σ over Y , a support property is a
predicate

P : signature → 2Z
|Y |
→ B

mapping signatures and sets of integer tuples of
length |Y | to a Boolean. We will sometimes write
the parameter indicating which signature P [σ] de-
pends on as a subscript Pσ or drop it entirely if
the property does not depend on a signature.
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Definition 10. [Support Set for a property P ]
Given a schema Y and a signature σ over Y and
a property of sets of Y -tuples, Pσ we define the
support set for P to be the set:

support〈Y,σ〉(P )
def
=

{S ⊆ Y−tupleσ | Pσ(S) ∧ ∀S′ ⊂ S. ¬Pσ(S′)}

Note that support sets are minimal w.r.t. the
property P since they contain no subset which also
satisfies the property.

Consider Example 5, the constraint x+y+z ≥ 2.
One support property is the following.

Pσ(S)
def
= ∃τ ∈ S.∑
τ ≥ 2 ∧ τ [0] = min(σ(x))

This property admits sets of tuples of any size as
long as one tuple satisfies the constraint, and the
value for x in that tuple is the minimum value
in σ(x). This support property corresponds to a
propagator that prunes the minimum value of x
whenever there is no supporting tuple containing
it. To enforce GAC, two other properties would be
required for y and z. The support set for Pσ is
support〈〈x,y,z〉,σ〉(P ) = {{〈0, 1, 1〉}}.

A collection of properties is supported if they all
are.

Definition 11. [Support for a collection of proper-
ties] If P = {P1, . . . , Pk} is a collection of proper-
ties sharing schema Y and σ is a signature over
Y , we write

support〈Y,σ〉(P)
def
=

∀P ∈ P. support〈Y,σ〉(P ) 6= ∅

3.1.2. Admissible Properties and Triggers
Our language for properties is unrestrained and

allows us to specify properties that are not sen-
sible for specifying propagators. Therefore an ad-
missibility condition is required. We define p-
admissibility as follows.

Definition 12. [P-admissibility] We say a property
P is p-admissible if it satisfies the following con-
dition.

∀σ. ∀σ′ v σ.
∀S ⊆ Y−tupleσ.

(Pσ(S) ∧ S ⊆ Y−tupleσ′)⇒ Pσ′(S)

In this case, we write p-admissible(P ).

P-admissibility is a kind of stability condition
on properties that guarantees that if a Pσ(S) holds
and the domain is narrowed to σ′, but no tuple is
lost from S because of the narrowing, then Pσ′(S)
must also hold. In the implementation of dynamic-
triggered propagators [15], it is implicitly assumed
that all supports are p-admissible.

Continuing example 5, the support property

Pσ(S)
def
= ∃τ ∈ S.

∑
τ ≥ 2 ∧ τ [0] = min(σ(x))

is p-admissible:
∑
τ ≥ 2 does not depend on σ,

and τ [0] = min(σ(x)) can only be falsified under
σ′ when the value min(σ(x)) is not in σ′(x). This
means τ is not in 〈x, y, z〉−tupleσ′ so the implica-
tion is trivially satisfied. Suppose S = {〈0, 1, 1〉}.
The only way Pσ′(S) can be false is if 0 /∈ σ′(x). In
this case, S contains a tuple that is not valid in σ′

therefore the p-admissibility property is trivially
true.

A constraint solver has a trigger mechanism
which calls propagators when necessary. Each
propagator registers an interest in domain events
by placing triggers. For example, if a propagator
placed a trigger on 〈x, a〉, then the removal of value
a in σ(x) would cause the propagator to be called.
(This is named a literal trigger [15], or neq event
[25].)

In this paper, we focus on literal triggers which
can be moved during search. We consider two dif-
ferent types of movable literal trigger: those which
are restored as search backtracks (named dynamic
literal triggers), and those which are not restored
(named watched literals [15]).

The definition of p-admissibility allows the use
of dynamic literal triggers, among other types.
Watched literals are preferable to dynamic literal
triggers because there is no need to restore them
when backtracking, which saves space and time.
However, it is not always possible to apply watched
literals. We define an additional condition on prop-
erties named backtrack stability, which is sufficient
to allow the use of watched literals.

Definition 13. [Backtrack Stability] We say a
property P is backtrack stable if it satisfies the
following condition.

∀S. ∀σ. ∀σ′ v σ.
S 6= ∅ ⇒
Pσ′(S)⇒ Pσ(S)

Backtrack stability states that any non-empty
support S under σ′ must remain a support for all
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signatures σ where σ is larger than σ′. This guar-
antees that a non-empty support S will remain
valid as the search backtracks. The empty support
indicates that the property is trivially satisfied;
this support is not usually valid after backtracking,
so it is excluded here.

Continuing example 5, the support property

Pσ(S)
def
= ∃τ ∈ S.

∑
τ ≥ 2 ∧ τ [0] = min(σ(x)) is

not backtrack stable because min(σ(x)) may not
be the same as min(σ′(x)).

Backtrack stability is in fact too strong: it is
not necessary for a support to remain valid for
all larger signatures, it is only necessary for it to
remain valid at signatures that are reachable on
backtracking. However it is sufficient for the pur-
poses of this paper.

Backtrack stability also depends on the form of
properties. The element support properties pre-
sented in Section 4.1.1 are not backtrack stable.
However, they can be reformulated to be backtrack
stable, by dividing them up as we show in Section
4.1.2.

For some property Pσ(S) the support S is ev-
idence that the constraint corresponding to P is
consistent. The intuition is that S remains valid
evidence until domains are narrowed to the ex-
tent that S 6⊆ Y−tupleσ′ (where σ′ v σ). This
is an efficiency measure: a constraint solver can
disregard the constraint corresponding to P until
S 6⊆ Y−tupleσ′ .

For example, the property Pσ(S)
def
= ∀b 6∈

σ(j).〈i, b〉 ∈ S is not p-admissible when j 6= i.

Definition 14. [Properties True and False] We de-
fine the constant properties True and False by lift-
ing them to functions of sets of tuples.

True(S) = True
False(S) = False

Lemma 8. [True singleton] For all Y and for every
signature σ over Y ,

support〈Y,σ〉(True) = {∅}
Note, that it might be assumed that if any of

the domains in σ are empty, then there should be
no support, even for the True property. Checking
for emptiness is not a function of support, but is
done at a higher level.

Lemma 9. [False Empty] For all Y and for every
signature σ over Y ,

support〈Y,σ〉(False) = ∅

Corollary 3. [True and False are p-admissible] The

properties True and False are p-admissible.

We can combine supports by taking the conjunc-

tions or disjunctions of their properties.

Definition 15. We define the conjunction and dis-

junction of support properties as follows.

(P ∧Q)σ(S)
def
= Pσ(S) ∧Qσ(S)

(P ∨Q)σ(S)
def
= Pσ(S) ∨Qσ(S)

We state the following lemma without proof.

Lemma 10. [∧ and ∨ are p-admissible] Given

a schema Y and signature σ for Y and two p-

admissible properties P and Q, then (P ∧ Q) and

(P ∨Q) are p-admissible as well.

3.1.3. Extensional Support for Literals

Definition 16. [Support Property (for a Literal)]

Given a schema Y , a signature σ over Y , and a

literal 〈i = a〉, then: 〈i = a〉 denotes the property

supporting this literal and is given by:

〈i = a〉(S)
def
= ∃τ ∈ S. τ [i] = a

The support set for 〈i = a〉 is simply the set

support〈Y,σ〉(〈i = a〉).

Corollary 4. If S ∈ support〈Y,σ〉(〈i = a〉) then S is

a singleton.

Proof. Assume S ∈ support〈Y,σ〉(〈i = a〉) then

〈i = a〉(S) holds, i.e. we know ∃τ ∈ S.τ [i] = a.

Thus |S| ≥ 1. Now, we assume that |S| > 1 and

show a contradiction. There is at least one tuple

in S, such that τ [i] = a. If there is any other tuple

τ ′ ∈ S where τ 6= τ ′ then 〈i = a〉(S−{τ ′}) holds as

well, and since this set is smaller, S was not mini-

mal and so was not a support as we assumed.

Lemma 11. [Literals are p-admissible] Given a

schema Y and a signature σ on Y , if i ∈
{0 . . . |Y | − 1} and a ∈ σ(Y [i]) then 〈i = a〉 is a

p-admissible property.

Proof. Note that 〈i = a〉 does not refer to σ at all

and so is p-admissible.
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3.1.4. Generalized Support - Evidence
Literal support captures support for variable-

value pairs. Generalized support is support for
some property not necessarily representable by a
single tuple. Thus, if any tuple in a generalized
support is lost, then the support no longer holds.
In example 4 (GAC AllDifferent) we gave a list of
literals as evidence that an AllDifferent constraint
is GAC. A list of literals would be represented as
a generalized support in our framework by using
the support property for a literal (for each literal
individually) then finding support for a collection
of properties (as in Defn. 11).

Constraint solvers typically allow movable trig-
gers to be placed on literals, so the connection
between literals and our definition of generalized
support is important for this paper. A generalized
support may be less compact than the set of liter-
als it represents. However, the implementation of
a propagator may correctly place triggers on the
set of literals. Generalized support is merely an
abstraction used in our framework.

3.2. Soundness and Completeness of a Collection
of Propagators

Propagators narrow domains to minimize the
search space and provide evidence that the nar-
rowed domains have not eliminated any solutions.
Constraints may be implemented by a collection
of propagators. To show that the propagators are
correct with respect to the constraint they support
we show they are sound and complete.

3.2.1. Soundness
Soundness says that for the most restricted non-

empty signatures (ones where all domains in the
signature have been narrowed to a singleton) the
propagator must be able to distinguish between
the constraint being empty or inhabited by a sin-
gle tuple. If support is non-empty at a singleton
domain then the constraint must be true there as
well. The definition of soundness presented here is
related to the one in [27].

Definition 17. [Propagator Soundness] Given a
constraint C with schema Y and a set of properties
P = {P1, · · · , Pm} we say P is sound with respect
to the constraint C if the following holds:

∀σ. singleton(σ)⇒
(support〈Y,σ〉(P)⇒ [[C]]σ 6= ∅)

Thinking of support as evidence for truth, one
might expect soundness to be characterized as fol-
lows:

∀σ. support〈Y,σ〉(P)⇒ [[C]]σ 6= ∅

This is too strong. At a non-singleton signature,
support is an approximation to truth. For example,
even though a constraint may fail in a particular
non-convex domain (i.e. the domain has gaps), a
propagator that operates on domain bounds may
not recognize the domain is not convex until the
signature has been narrowed further.

3.2.2. Completeness
Completeness guarantees that if the extensional

representation of a constraint is non-empty at a
signature σ then there is support for the family of
properties P. The wrinkle on this scheme is that
the support may not exist at σ itself, but only
at some refined σ′ v σ. If so, we insist that the
constraint has not lost any tuples at the refined
signature σ′.

Definition 18. [Propagator Completeness] Given a
constraint C with schema Y and a set of proper-
ties P = {P1, · · · , Pm} we say P is complete with
respect to the constraint C if the following holds:

∀σ. [[C]]σ 6= ∅ ⇒
∃σ′ v σ.

[[C]]σ ⊆ [[C]]σ′ ∧ support〈Y,σ′〉(P)

If P is complete we write complete(P).

Theorem 1. [Local Completeness] Given a set of
properties P = {P1, · · · , Pk} defined over schema
Y , if each singleton {Pi} is complete then P is
complete.

Proof. If P is supported at σ, then use wit-
ness σ for σ′ and completeness trivially holds.
Suppose there is no support for P at σ where
[[C]]σ 6= ∅. Choose one of the Pi ∈ P such that
¬support〈Y,σ〉(Pi) and let σ′, σ′ @ σ be the signa-
ture claimed to exist in the proof of completeness
of Pi. By completeness of {Pi}, [[C]]σ ⊆ [[C]]σ′ . If
there is support for P at σ′ then P is complete.
If not, iterate this process by choosing another
Pk ∈ P that is not supported at σ′. The fixed-point
of this process must yield a signature σ̂ such that
support〈X,σ̂〉(P). The fixed-point exists because @
is a well-founded relation on signatures.
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Our definition of completeness ensures that a
propagator derived from a support property does
not fail early, therefore it is merely a correctness
property. It is similar in intention to Maher’s defi-
nition of weak completeness [21], although Maher’s
definition only applies to singleton domains.

Soundness and completeness as defined here are
the minimum conditions required for a propagator
to operate correctly, thus popular notions of con-
sistency such as GAC, bound(Z) and bound(R) are
sound and complete, and therefore are supported
in our framework. Soundness and completeness are
satisfied by very simple support properties such as:

Pσ(S)
def
= (¬singleton(σ)→ S 6= ∅)
∧ (singleton(σ)→ [[C]]σ 6= ∅)

This property corresponds to a propagator that
waits until all variables are assigned before check-
ing the constraint. Any practical propagator is
stronger than this.

Soundness and completeness are not the only
options for characterizing the correctness of a set
of generalized support properties. For example, in
[15] it is shown that a set of properties imply the
domain is GAC. Other forms of consistency such as
bound consistency could also serve as correctness
conditions for a set of properties.

3.3. Formal Development of Constraint
Propagators

The methodology for formal development of
propagators for a constraint C is as follows:

i. Describe a set of support properties (P =
{P1, . . . , Pk}) that characterize constraint C
and prove that they are p-admissible.

ii. For each property Pi, give a constructive
proof of the propagation schema given in
Def. 19. The computational content of these
proofs gives a correct-by-construction algo-
rithm for each propagator.

iii. Prove the soundness and completeness of P
with respect to C. This shows the collec-
tion of propagators are correct w.r.t. the con-
straint C. This proof often reuses the propa-
gation schema proofs.

3.3.1. The Propagation Schema
We present the following schematic formula

whose constructive proofs capture the methods of
generating support for a particular property P .

Definition 19. [Propagation Schema] Given a sig-
nature σ, a schema X, and a p-admissible property
P , constructive proofs of the following statement
yield a propagator for P .

∀S ∈ support〈X,σ〉(P ).

∀σ1 v σ. nonempty(σ1)⇒
S 6∈ support〈X,σ1〉(P )⇒
findNewSupport(X,P, σ1)
∨ noNewSupport(X,P, σ1)

When an existing support S has been lost in a sig-
nature σ1 v σ, a new support and a new signature
σ2 v σ1 are found in findNewSupport. Otherwise,
noNewSupport states that there is no new support
to be found.

findNewSupport(X,P, σ1)
def
=

(∃σ2 v σ1. nonempty(σ2) ∧
∃S′ ∈ support〈X,σ2〉(P ).

∀σ3. σ2 @ σ3 v σ1 ⇒ support〈X,σ3〉(P ) = ∅)

noNewSupport(X,P, σ1)
def
=

∀σ2 v σ1. nonempty(σ2)⇒
support〈X,σ2〉(P ) = ∅

We are interested in constructive proofs2 of the
propagator schema when P is instantatied to indi-
vidual support properties.

Given a p-admissible support property P , a con-
structive proof of the propagator schema yields a
function that takes as input a set S, evidence that
S ∈ support〈X,σ〉(X), a signature σ1 and evidence
that σ1 v σ, evidence that S 6∈ support〈X,σ1〉(P )
and returns one of two items:

i.) a new signature σ2, together with evidence that
σ2 v σ1, a set of tuples S′ and evidence that
S′ ∈ support〈X,σ2〉(P ) and evidence that σ2 is
maximal.

ii.) Evidence that there is no support for P in σ1
or for any smaller signature.

Lemma 12. [non-empty in propagation schema]
In the propagation schema, if we assume the an-
tecedent S /∈ support〈X,σ1〉(P ) for σ1 v σ then
S 6= ∅.

2There is a classical proof of propagator schema that is
independent of the property P and carries no interesting

computational content.
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Proof. Because property P is p-admissible, if we
have ∅ ∈ support〈X,σ〉(P ) then ∀σ1 v σ. ∅ ∈
support〈X,σ1〉(P ).

4. Generating Propagators

In this section we present three case studies of
applying our methodology.

4.1. A Propagator for the Element Constraint

The element constraint is widely useful in spec-
ifying a large class of constraint problems. It has
the form element(X, y, z) where X is a vector of
variables and y and z are variables. The meaning
of the element constraint is the set of all coherent
tuples on the schema 〈X · y · z〉 of the following
form.

τ = 〈v1, · · · , vi−1, j, vi+1, · · · , vk, i, j〉

Thus, τ [k + 1] = i indexes 〈v1, · · · , vk〉 and τ [k +
2] = τ [i].

Definition 20. [Element Semantics]

[[element(X, y, z)]]σ = 〈〈X · y · z〉, R〉
where
R = {τ ∈ 〈X · y · z〉−tupleσ |
k = |X| ∧ τ [k + 1] ∈ {1..k}
∧ τ [k + 2] = τ [τ [k + 1]]}

The element constraint is widely used because it
represents the very basic operation of indexing a
vector [18]. For example, Gent et al. model Lang-
ford’s number problem and quasigroup table gen-
eration problems using element [15].

In [15, pp. 188] three properties to establish
GAC for the element constraint are characterized.
We restate theorem 1 from that paper here:

Theorem 2. [Theorem 1 of reference [15]] Given a
constraint of the form Element(X, y, z), domains
given by a signature σ are Generalized Arc Con-
sistent if and only if all of the following hold.

∀i ∈ σ(y). σ(y) = {i} ⇒ σ(X[i]) ⊆ σ(z) (1)
∀i ∈ σ(y). σ(X[i]) ∩ σ(z) 6= ∅ (2)

σ(z) ⊆
⋃

i∈σ(y)

σ(X[i]) (3)

4.1.1. Support Properties
Each of the three properties above can be char-

acterized as support properties.

Definition 21. [Element Support Properties] With
a schema X and variables y and z and a signature
σ, there are three properties corresponding to three
propagators for establishing GAC for the element
constraint Element(X, y, z). Let k be |X|, then k+
1 is the index of y and k + 2 is the index of z in
the schema (X · y · z).

P1[σ](S)
def
=

(∃i, j ∈ σ(y).
i 6= j ∧ 〈k + 1, i〉 ∈ S ∧ 〈k + 1, j〉 ∈ S)
∨ ∀i ∈ σ(y). ∀a ∈ σ(X[i]). 〈k + 2, a〉 ∈ S

P2[σ](S)
def
= ∀i ∈ σ(y). ∃a ∈ σ(z).

〈i, a〉 ∈ S ∧ 〈k + 2, a〉 ∈ S
P3[σ](S)

def
= ∀a ∈ σ(z). ∃i ∈ σ(y).

〈i, a〉 ∈ S ∧ 〈k + 1, i〉 ∈ S
Note that for property P1, the first disjunct is

true iff the domain of the index variable y has
more than one element, |σ(y)| > 1. Support for
this disjunct is a pair of literals 〈k + 1, i〉 and
〈k + 1, j〉 where i, j ∈ σ(y), i 6= j.3 Logically,
(∃i, j ∈ σ(y). i 6= j) is equivalent, but for our
purposes we must provide p-admissible support.
Once the domain of the index variable is a single-
ton (σ(y) = {i}), the second disjunct of P1 may
be satisfied. This disjunct is supported by a set
of |σ(X[i])| literals of the form 〈k + 2, a〉, one lit-
eral for each a ∈ σ(X[i]). This is evidence for
σ(X[i]) ⊆ σ(z) since k + 2 is the index of z in the
schema (X · y · z).

Property P2 is supported iff σ(X[i]) ∩ σ(z) is
non-empty for every i ∈ σ(y). The support is 2m
literals where m = |σ(y)|, two for each i ∈ σ(y).
These have the form 〈i, a〉 and 〈k + 2, a〉 where a
is some value in σ(z). If there is no support, then
σ(X[i]) ∩ σ(z) = ∅.

Property P3 is supported iff σ(z) ⊆
⋃
i∈σ(y)

σ(X[i]). The support is a set of 2m literals where
m = |σ(z)|, two for each a ∈ σ(z). The literals
have the form 〈i, a〉 and 〈k + 1, i〉 where i is some
value in σ(y). If there is no support then for some
a ∈ σ(z), for all i a 6∈ σ(X[i]).

3This specification corresponds to a set of dynamic literal
triggers [15]. Ideally a static assignment trigger would be

used for P1, which would trigger the propagator when y
is assigned. However, assignment triggers are outside the
scope of this paper.
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It is easy to prove that the three properties act
as intended:

Theorem 3. Given a signature σ, we have:

– (1) is true if and only if ∃S. P1[σ](S)
– (2) is true if and only if ∃S. P2[σ](S)
– (3) is true if and only if ∃S. P3[σ](S)

Proof. The if directions are all easy. For (1), if the
first disjunct of P1 is satisfied then |σ(y)| > 1 so
(1) is vacuous. If the second disjunct is satisfied,
it ensures that σ(X[i]) ⊆ σ(z). If P2(S) is true
then, for each element of the domain of the index
variable y, there is a value a ∈ σ(X[i]) ∩ σ(z),
establishing (2). If P3(S) is true then, for any value
a in σ(z) there is a value i of the index variable
with a ∈ σ(X[i]), proving that (3) holds.

For Only if, first suppose that (1) is true. If
|σ(y)| > 1 then we can find i, j to satisfy the first
disjunct of P1, and set S = {〈k + 1, i〉, 〈k + 1, j〉}.
Otherwise, we have σ(y) = {i} and σ(X[i]) ⊆
σ(z). We can thus set S = {〈k + 2, a〉|a ∈
σ(X[i])}.

Suppose (2) is true. We have σ(X[i])∩ σ(z) 6= ∅
for each i ∈ σ(y). So for each i there is thus some
ai with ai ∈ σ(X[i]) ∩ σ(z). We can thus set S =
{〈i, ai〉, 〈k + 2, ai〉|i ∈ σ(y)}.

Suppose (3) is true. Since σ(z) ⊆
⋃

i∈σ(y)

σ(X[i]),

we have for each a ∈ σ(z) some ia such that
ia ∈ σ(y) and a ∈ σ(X[ia]). We can thus set
S = {〈ia, a〉, 〈k + 1, ia〉 | a ∈ σ(z)}.

4.1.2. P-admissibility and Backtrack Stability
Following our methodology, we first prove that

properties P1, P2 and P3 are p-admissible.

Lemma 13. [P1 is p-admissible]

p-admissible(P1)

Proof. We case split on the disjuncts of P1. The
first disjunct requires distinct values i, j ∈ σ(y).
Assuming S ⊆ 〈X · y · z〉−tupleσ′ , i, j ∈ σ′(y) be-
cause the two necessary literals are in S, therefore
P1[σ′](S) holds.

For the second disjunct of P1, since σ′ v σ
we can see that σ′(y) ⊆ σ(y) and ∀i. σ′(X[i]) ⊆
σ(X[i]), therefore all necessary literals are present
in S and P1[σ′](S) holds.

Lemma 14. [P2 is p-admissible]

p-admissible(P2)

Proof. Since σ′ v σ, σ′(y) ⊆ σ(y) therefore there
are fewer (or the same) values of i to consider un-
der σ′. Assuming S ⊆ 〈X · y · z〉−tupleσ′ , for each
i, 〈k + 2, a〉 ∈ S therefore a ∈ σ′(z) and P2[σ′](S)
holds.

Lemma 15. [P3 is p-admissible]

p-admissible(P3)

Proof. The proof is the same as above, with z and
y exchanged, i and a exchanged, and k+ 1 substi-
tuted for k + 2.

P1, P2 and P3 are not backtrack stable accord-
ing to Def. 13. However, P2 and P3 can be straight-
forwardly reformulated to be backtrack stable: the
universal quantifier is expanded to a conjunction
using the initial signature, then each conjunct is
made into an individual property, subscripted by
i or a respectively. For example, P2 is transformed
as follows.

P2,i[σ](S)
def
= i ∈ σ(y) ⇒

(∃a ∈ σ(z). 〈i, a〉 ∈ S ∧ 〈k + 2, a〉 ∈ S)

Each of these smaller properties then requires
two literals as support, or (if i /∈ σ(y)) the empty
set, and they are backtrack stable. P1 can be re-
formulated to be backtrack stable, by expanding
out the universal quantifiers in the same way as for
P2. P1 would be subscripted by i and a, ∀i ∈ σ(y)
replaced with i ∈ σ(y) ⇒, and the same for
∀a ∈ σ(X[i]). These reformulations give a large set
of properties, so for the sake of simplicity we use
the original P1, P2 and P3.

4.1.3. Proofs of the Propagation Schema
Now that we have established p-admissibility for

each of P1, P2 and P3 we prove the instances of
the propagator schema for each of them.

Theorem 4 (P1 Support Generation). We consider
P1 on constraint Element(X, y, z). We claim that
Def. 19 (propagation schema) holds for P1.

Proof. Let C be an element constraint of the form
Element(X, y, z) where |X| = k and let σ and σ1
be signatures mapping the variables in X.y.z to
their respective domains. We claim the following:

∀S ∈ support〈X.y.z,σ〉(P ).

∀σ1 v σ. nonempty(σ1)⇒
S 6∈ support〈X.y.z,σ1〉(P )⇒
findNewSupport(X.y.z, P, σ1)
∨ noNewSupport(X.y.z, P, σ1)
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findNewSupport(X.y.z, P, σ1)
def
=

(∃σ2 v σ1. nonempty(σ2) ∧
∃S′ ∈ support〈X.y.z,σ2〉(P ).

∀σ3. σ2 @ σ3 v σ1 ⇒ support〈X.y.z,σ3〉(P ) = ∅)

noNewSupport(X.y.z, P, σ1)
def
=

∀σ2 v σ1. nonempty(σ2)⇒
support〈X.y.z,σ2〉(P ) = ∅

The proof consists of constructing σ2 and S′ for
all cases, given σ1. When σ2 @ σ1, we also prove
that σ2 is maximal (i.e. there exists no σ3).

|σ1(y)| > 1⇒
S′ = {〈k + 1,min(σ1(y))〉, 〈k + 1,max(σ1(y))〉}
∧ σ2 = σ1

σ1(y) = {i} ⇒
σ2(X[i]) = σ1(z) ∩ σ1(X[i])
∧ (∀x ∈ 〈X · y · z〉. x 6= X[i] ⇒

σ2(x) = σ1(x))
∧ S′ =

⋃
b∈σ2(X[i]){〈k + 2, b〉}

For the second case above, it remains to be shown
that σ2 is nonempty and maximal. We prove that
σ2 is maximal. For all values b ∈ σ2(X[i]), a sup-
porting literal 〈z, b〉 is required in S′. Therefore, P1

implies that σ2(X[i]) ⊆ σ2(z), hence σ2(X[i]) =
σ1(z)∩σ1(X[i]) is maximal. For all other variables
w, σ2(w) = σ1(w), therefore σ2 is maximal under
v.

If σ2(X[i]) = ∅ (i.e. σ1(z) ∩ σ1(X[i]) = ∅), σ2
is empty. Since σ2 is the maximal one which sat-
isfies P1, the second disjunct (noNewSupport) of
the consequent of the schema holds.

Theorem 5 (P2 Support Generation). We consider
P2 on constraint Element(X, y, z). We claim that
Def. 19 (propagation schema) holds for P2.

Proof. Let k = |X|, and σ1 and σ2 be signatures
mapping the variables in X.y.z to their respective
domains. The proof is by constructing σ2 and S′

to satisfy the first disjunct of the consequent of the
schema.

σ2(y) = {i ∈ σ1(y) | ∃a ∈ σ1(z). a ∈ σ1(X[i])}
∀x ∈ 〈X.z〉 σ2(x) = σ1(x)
S′ =

⋃
i∈σ2(y)

{〈i, a〉, 〈k + 2, a〉}

σ2 is maximal: the constructed σ2 is identical to
σ1 except for the set σ2(y). For each value i of
σ2(y), P2 requires that there exists a value a in the
domains of X[i] and z. σ2(y) is the maximal subset

of σ1(y) which satisfies this condition, therefore σ2
is maximal under v.

If σ2 is empty, then (since σ2 is maximal) the
second disjunct of the consequent of the schema
holds.

Theorem 6 (P3 Support Generation). We consider
P3 on constraint Element(X, y, z). We claim that
Def. 19 (propagation schema) holds for P3.

Proof. Let k = |X|, and σ1 and σ2 be signatures
mapping the variables in X.y.z to their respective
domains. The proof is by constructing σ2 and S′

to satisfy the first disjunct of the consequent of the
schema.

σ2(z) = {a ∈ σ1(z) | ∃i ∈ σ1(y). a ∈ σ1(X[i])}
∀x ∈ X.y. σ2(x) = σ1(x)
S′ =

⋃
a∈σ2(z)

{〈i, a〉, 〈k + 1, i〉}

The constructed σ2 is identical to σ1 except for the
set σ2(z). For each value a of σ2(z), P3 requires
that there exists an index i such that a ∈ σ2(X[i])
and i ∈ σ2(y). σ2(z) is the maximal subset of σ1(y)
which satisfies this condition, therefore σ2 is max-
imal under v.

If σ2 is empty, then (since σ2 is maximal) the
second disjunct of the consequent of the schema
holds.

4.1.4. Soundness and Completeness
Now we prove that the conjunction of the el-

ement support properties (Def. 21) is sound and
complete using the semantics of element (Def. 20).
We will write Pe for the set {P1, P2, P3}.

Lemma 16. [Pe is sound]

∀σ. singleton(σ)⇒
(support〈X.y.z,σ〉(Pe)⇒ [[element(X, y, z)]]σ 6= ∅)

Proof. Let σ be an arbitrary singleton signature.
Since σ is a singleton it encodes a single tu-
ple (say τ). Assume support〈X.y.z,σ〉(Pe) holds.
That is, supports for P1[σ], P2[σ] and P3[σ] are
non empty. Now, consider P1. Since |σ(y)| =
1 we know the first disjunct can not hold and
so we must have support for the second. Since
σ(y) 6= ∅ we know that there is a single tuple
supporting the second disjunct of P1 and since
|σ(X[i])| = 1, to support P1, τ must have the
form 〈x1, · · · , xi−1, a, xi+1, · · · , xk, i, a〉. This same
tuple supports P2 and P3. This tuple is clearly in
[[element(X, y, z)]]σ and so soundness holds.
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Theorem 7. [{P1} complete]

∀σ. [[element(X, y, z)]]σ 6= ∅ ⇒
∃σ′ v σ.

[[element(X, y, z)]]σ′ = [[element(X, y, z)]]σ
∧ support〈X.y.z,σ′〉({P1})

Proof. Assume [[element(X, y, z)]]σ 6= ∅ for ar-
bitrary σ. If support〈X.y.z,σ〉(P1) 6= ∅ then the
theorem is trivially true, so we assume that
support〈X.y.z,σ〉(P1) = ∅ and construct a signature
σ′ that does not eliminate any solutions from the
constraint and in which P1 has support.

The first disjunct of P1 is supported whenever
|σ(y)| > 1 and so if P1 is not supported σ(y) = {i}
or σ(y) = ∅; by assumption no domain of σ is
empty and so σ(y) = {i}. To falsify the second
disjunct of P1 when σ(y) = {i}, there must be
some a ∈ σ(X[i]) such that the literal 〈k + 2, a〉
can not be supported. This happens for any a ∈
σ(X[i]) where a 6∈ σ(z). Let σ1 be a signature that
is just like σ except that

σ1(z) = σ(z) ∩ σ(X[i])

Since the constraint is non-empty the intersection
is non-empty. The second disjunct of P1 supports
this new signature so it supports P1. Clearly σ1 v
σ and so it only remains to show that the meaning
of the constraint does not change under the new
signature. It is enough to show that

[[element(X, y, z)]]σ ⊆ [[element(X, y, z)]]σ1

Assume τ ∈ [[element(X, y, z)]]σ. Then τ ∈
〈X · y · z〉−tupleσ is coherent and is of the form

τ = 〈x1, · · · , xi−1, a, xi+1, · · · , xk, i, a〉

Since τ is an 〈X · y · z〉−tupleσ, we know τ [j] ∈
σ(X[j]) for all j ∈ {1..k + 2}. To construct σ1
we simply eliminated elements b ∈ σ(z) such that
b 6∈ σ(X[i]) so since a ∈ σ(X[i]), a ∈ σ1(X[i]) and
a ∈ σ1(z) and so τ ∈ [[element(X, y, z)]]σ1 .

Theorem 8. [{P2} complete]

∀σ. [[element(X, y, z)]]σ 6= ∅ ⇒
∃σ′ v σ.

[[element(X, y, z)]]σ′ = [[element(X, y, z)]]σ
∧ support〈X.y.z,σ′〉({P2})

Proof. Note that if P2[σ] is unsupported then
σ(X[i]) ∩ σ(z) = ∅. But since we assume that
[[element(X, y, z)]]σ 6= ∅, this is impossible and so
P2[σ] must be supported and completeness triv-
ially holds.

Theorem 9. [{P3} complete]

Proof. If there is no support for P3[σ] then

∃a ∈ σ(z). ∀i ∈ σ(y). a 6∈ σ(X[i])

Just let σ′ be the same as σ except that we remove
all such elements from the domain of z in σ′.

σ′(z) = σ(z) ∩
⋃

i∈σ(y)

σ(X[i])

Clearly σ′(z) ⊂ σ(z). The elements that have been
removed could not be included in a solution of
[[element(X, y, z)]]σ and so we have lost no answers.
Thus, we have shown P3 is complete.

Corollary 5. [Pe is complete]

Proof. The completeness of Pe follows from local
completeness (Thm. 1) and the completeness of
P1, P2 and P3.

4.1.5. Discussion
The propagators derived here to enforce GAC

on the element constraint are not identical to those
presented by Gent et al. [15]. However they do fol-
low the same general scheme. The main difference
is that the propagators here use dynamic literal
triggers in place of watched literals and a static as-
signment trigger. The concept of generalized sup-
port has allowed us to create these propagators
within one formal framework.

4.2. Triggering the AllDifferent Constraint

The AllDifferent constraint is widely used and
has a powerful GAC propagator introduced by
Régin [23]. In this section we give a sketch of how
the propagator may be represented in our frame-
work. The propagator is based on graph theory. It
establishes GAC in a single invocation, but can be
expensive. AllDifferent ensures that each variable
in the schema takes a different value, as defined
below.

Definition 22. [AllDifferent Semantics]

[[AllDiff(X)]]σ = 〈X,R〉
where
R = {τ ∈ X−tupleσ |
∀i, j ∈ {0 . . . |X| − 1}. i 6= j →
τ [i] 6= τ [j]}
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Gent, Miguel and Nightingale [16] presented a
method for using dynamic literal triggers with
Régin’s algorithm. The key idea is to construct a
set of literal supports such that (while all the lit-
eral supports are valid) the algorithm will always
follow the same trajectory and therefore no new
value deletions are necessary to maintain GAC.

Given that the algorithm enforces GAC in a sin-
gle call, it is most appropriate to represent it with
a single support property. The support property is
very simple and essentially treats the propagator
as a black box. Our goal is to capture the inter-
action between the propagator and the rest of the
solver, not to represent the entire propagator as
we did for the Element constraint.

Definition 23. [AllDifferent Support Property]
Given a schema X and a signature σ over X,
we define a support property for the constraint
C = AllDiff(X). GAC(σ) is true iff σ is a GAC
signature w.r.t. C. Let Prop(σ) be the set of literal
supports defined by Gent et al. [16, Sec. 5.2].

P [σ](S)
def
=

GAC(σ)∧
∀〈i, a〉 ∈ Prop(σ). 〈i, a〉 ∈ S

In Example 4 we gave an example of Prop(σ) for
a small AllDifferent with three variables. Prop(σ)
contained at least two literals of each variable. In
fact, Prop(σ) always contains at least two literals
of every variable that has more than one value in
σ. Therefore all supports S will contain more than
one tuple (except in the case where all variables
are assigned).

4.2.1. P-admissibility
We make an informal argument that P [σ](S) is

p-admissible. For the most part this is done by re-
ferring to proofs in Gent et al. [16]. To establish p-
admissibility of P [σ](S), we need to ensure that for
all σ′ v σ where S is still valid (i.e. S ∈ X−tupleσ′),
the two parts of the support property remain true:
the smaller signature σ′ is GAC; and S contains
the set of literals returned by Prop(σ′).

Gent et al. prove that the algorithm will make no
value deletions under σ′ [16, Sec. 5.2] since σ′ con-
tains all the literals in Prop(σ). Therefore σ′ must
be GAC by correctness of the algorithm. This gives
us the first part of the support property: GAC(σ′).
As part of the proof, it is shown that a DFS pro-
cedure on a digraph can perform the exact same
search under σ′ as it does under σ. Here we as-

sume that the DFS does perform the same search
(which can be achieved by fixing the order of the
vertices). The sets of literals Prop(σ) and Prop(σ′)
are produced directly by the DFS, and (under our
assumption) will be equal. Therefore the second
part of the stability property is true.

4.2.2. Propagation Schema, Soundness and
Completeness

We sketch a proof of the propagation schema for
P [σ](S). Given an existing support S under sig-
nature σ, and a smaller signature σ1 v σ where
S is no longer a support, the propagation schema
has two cases: construction of the largest possi-
ble σ2 v σ1 where σ2 is GAC, and creation of a
new support S′; or failure when GAC would empty
the variable domains. By correctness of the GAC
propagator for AllDifferent [23] and correctness of
the dynamic literal triggers [16], the GAC propa-
gator may be used as a constructive proof of the
propagation schema.

Ordinarily we would prove soundness and com-
pleteness of a collection of properties. However,
since we have a single property that precisely en-
forces GAC, these proofs are not necessary be-
cause both soundness and completeness are conse-
quences of GAC.

4.2.3. Discussion
We have shown that our framework is suffi-

ciently general to capture the triggering of the
GAC AllDifferent propagator. GAC AllDifferent
differs substantially from Element, yet our frame-
work can represent both.

4.3. New Watched Literal Propagators for
Occurrence Constraints

The two constraints occurrenceleq(X, a, c) and
occurrencegeq(X, a, c) (very similar to atmost

and atleast) restrict the number of occurrences
of a value in a vector of variables. If occ(X, a) is the
occurrences of value a in X, occurrenceleq states
that occ(X, a) ≤ c and occurrencegeq states that
occ(X, a) ≥ c.

Occurrence constraints arise in many problems.
For example, in a round-robin tournament sched-
ule, it may be required that no team plays more
than twice at each stadium [29], represented by
occurrenceleq constraints. In car sequencing (car
factory scheduling), occurrence constraints may be
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used to avoid placing too much demand on a work-
station [26].

First we present the formal semantics of occur-
renceleq and occurrencegeq, followed by support
properties for the two constraints.

Definition 24. [Occurrenceleq Semantics]

[[occurrenceleq(X, a, c)]]σ = 〈X,RX〉 where
RX = { τ ∈ X−tupleσ |

|{i | τ [i] = a}| ≤ c }
Definition 25. [Occurrencegeq Semantics]

[[occurrencegeq(X, a, c)]]σ = 〈X,RX〉 where
RX = { τ ∈ X−tupleσ |

|{i | τ [i] = a}| ≥ c }
4.3.1. Support Properties
Definition 26. [Occurrence Support Properties]
Given a schema X, value a and occurrence count c,
Pl is the support property for the occurrenceleq
constraint, and similarly Pg is the property for
occurrencegeq.

Pl[σ](S)
def
= (∃I ⊆ {1 . . . |X|}.
|I| = (|X| − c+ 1)∧
∀i ∈ I. ∃b 6= a. 〈i, b〉 ∈ S)
∨
(∃I ⊆ {1 . . . |X|}.
|I| = (|X| − c) ∧
∀i ∈ I. a /∈ σ(X[i]))

Pg[σ](S)
def
= (∃I ⊆ {1 . . . |X|}.
|I| = (c+ 1) ∧
∀i ∈ I. 〈i, a〉 ∈ S)
∨
(∃I ⊆ {1 . . . |X|}.
|I| = c ∧
∀i ∈ I. @b ∈ σ(X[i]). b 6= a)

Pg is slightly simpler, so we consider it first.
There are two forms of support which can satisfy
Pg, corresponding to the two disjuncts. The first
disjunct can be satisfied if c + 1 variables have a
in their domain, by a support set which contains
c+ 1 literals mapping distinct variables to a. The
second disjunct is satisfied if c variables are set to
a. In this case, S may be empty.

When it is no longer possible to satisfy the first
disjunct, a corresponding propagator must narrow
the domains to satisfy the second disjunct, by set-
ting c variables to a. At this point, the constraint
is trivially satisfied so S may be empty.
Pl is very similar, and essentially works in the

same way except that it requires |X| − c non-
occurrences of a rather than c occurrences of a.

4.3.2. P-admissibility and Backtrack Stability
We now prove that both properties meet the p-

admissibility requirement.

Theorem 10. [Pl is p-admissible] The property Pl
is p-admissible according to Def. 12.

Proof. We case split on the disjuncts of Pl. The
first disjunct does not refer to σ′, and (since S has
not changed) it remains true. The second disjunct
is satisfied by S = ∅ only when the constraint is
a tautology. Since a /∈ σ(X[i]) and σ′ v σ, then
a /∈ σ′(X[i]) and the property remains true.

Theorem 11. [Pg is p-admissible] The property Pg
is p-admissible according to Def. 12.

Proof. We case split on the disjuncts of Pg. The
first disjunct does not refer to σ′, and (since S has
not changed) it remains true. The second disjunct
is satisfied by S = ∅ only when the constraint is a
tautology. Since σ(X[i]) ⊆ {a} and σ′ v σ, then
σ′(X[i]) ⊆ {a} and the property remains true.

In order for the two propagators to make use of
watched literals, we must prove that both proper-
ties are backtrack stable. The watched literals rep-
resenting a support are not backtracked, so a sup-
port must remain a support as search backtracks
(and the domains are widened).

Theorem 12. [Occurrence Backtrack Stable] The
two occurrence support properties are backtrack
stable according to Def. 13.

Proof. For both properties, the second disjunct is
irrelevant because it is satisfied by S = ∅ only
when the constraint is a tautology. The support
∅ is not required to be backtrack stable. In both
properties the first disjunct requires a fixed num-
ber (|X|−c+1 or c+1) of literals to be in S (with
variable indices I). It is clear that for any σ′ where
σ v σ′, the same I may be used to discharge the
existential, and S will be valid w.r.t σ′.

4.3.3. Proofs of the Propagation Schema
Now we give a constructive proof of the propaga-

tion schema for Pl. Recall that the computational
content of the proof is a propagator for Pl.

Theorem 13 (Pl Support Generation). We con-
sider Pl on constraint occurrenceleq(X, a, c).
We claim that Def. 19 (propagation schema) holds
for Pl.
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Proof. Let σ1 and σ2 be signatures mapping the
variables in X to their respective domains. S and
σ1 v σ are universally quantified in the schema,
therefore we use them as givens. We assume that
S /∈ support〈X,σ1〉(Pl) and prove the consequent by
constructing S′ and σ2. By lemma 12, S 6= ∅. The
second disjunct of Pl would be satisfied by S = ∅,
therefore S corresponds to the first disjunct of Pl.
S contains one literal for each index in I. At

least one item in S is invalid (by the antecedant).
The proof proceeds by constructing I ′ and corre-
sponding S′ and σ2 to satisfy the first disjunct of
Pl if possible. Otherwise, the second disjunct is
satisfied by constructing σ2 and S′ = ∅.

I1 = {i | 〈i, b〉 ∈ S ∧ (∃b 6= a. b ∈ σ1(X[i]))}
I2 = {i | i /∈ I1 ∧ (∃b 6= a. b ∈ σ1(X[i]))}
I3 = I1 ∪ I2

|I3| > (|X| − c)⇒
(I ′ ⊆ I3 ∧ |I ′| = (|X| − c+ 1)
∧ S′ = {〈i, b〉 | i ∈ I ′

∧ b ∈ σ1(X[i]) ∧ b 6= a}
∧ σ2 = σ1)

|I3| = (|X| − c)⇒
S′ = ∅ ∧
(∀i /∈ I3. σ2(X[i]) = σ1(X[i])) ∧
(∀i ∈ I3. σ2(X[i]) = σ1(X[i]) \ {a})

σ2 is maximal in both of the above cases: in the
first case, σ2 = σ1, and in the second case only the
necessary values are removed to satisfy the second
disjunct of Pl.

When |I3| < (|X| − c), Pl is false and remains
false for all σ2 v σ1 (by construction of I1 and I2).
Hence the second disjunct of the consequent of the
schema is satisfied.

The proof explicitly re-uses variable indices but
not b values from S. This fits well with Minion’s
watched literal implementation, which notifies the
propagator once for each invalid literal in S. How-
ever, the proof does not require the use of watched
literals, it allows many concrete implementations
and may be used with any propagation-based
solver.

It is straightforward to prove the propagation
schema for Pg, based on the proof for Pl.

Theorem 14 (Pg Support Generation). We con-
sider Pg on constraint occurrencegeq(X, a, c).
We claim that Def. 19 (propagation schema) holds
for Pg.

Proof. The proof is the same as the proof of Pl,
with c substituted for |X|−c in all places, and (a ∈
σ1(X[i])) substituted for (∃b 6= a. b ∈ σ1(X[i])),
and {a} substituted for σ1(X[i]) \ {a}.

This proof also re-uses variable indices from S
and thus fits well with Minion’s watched literal
infrastructure.

4.3.4. Soundness and Completeness
Now we prove the soundness and completeness

of both properties, and hence the correctness of
the two propagators.

Lemma 17. [Occurrenceleq Sound]

∀σ. singleton(σ)⇒
(support〈X,σ〉(Pl)⇒
[[occurrenceleq(X, a, c)]]σ 6= ∅)

Proof. Let σ be an arbitrary singleton signature.
Since σ is a singleton it encodes a single tuple (say
τ). Assume support〈X,σ〉(Pl) holds. Let b be the
number of occurrences of a in τ .

Since σ is singleton, the first disjunct of Pl im-
plies the second disjunct. (Assume I satisfies the
first disjunct. I ′ ⊆ I where |I ′| = (|X| − c) is
used to satisfy the second disjunct.) Therefore
support〈X,σ〉(Pl) implies the second disjunct of Pl
is satisfied (by the empty support). Hence, at least
|X| − c elements of τ are not equal to a, so b ≤ c.
By Def. 24, RX = {τ} and the lemma holds.

The proof that Pg is sound proceeds by the same
argument, with |X| − c replaced with c, ‘not equal
to a’ replaced with ‘equal to a’ and ≤ replaced
with ≥.

Lemma 18. [Occurrenceleq Complete]

C = occurrenceleq(X, a, c)
∀σ. [[C]]σ 6= ∅ ⇒
∃σ′ v σ. [[C]]σ ⊆ [[C]]σ′

∧ support〈X,σ′〉(Pl)

Proof. Assume [[C]]σ 6= ∅ for arbitrary σ. If
support〈X,σ〉(Pl) then σ′ = σ and completeness
trivially holds. Otherwise, by the proof of the
propagation schema for Pl, there exists a σ′ @
σ (named σ2 there) such that support〈X,σ′〉(Pl).
Since σ′ 6= σ, σ′ is constructed in the case where
|I3| = (|X| − c). σ′ is the same as σ except for
indices I3, where the value a is removed if present.
For all i /∈ I3, σ(i) = {a} therefore corresponding
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elements of all tuples τ ∈ [[C]]σ also equal a. No
other element of τ can be a (by Def. 24), therefore
no tuples are invalidated, [[C]]σ′ = [[C]]σ and the
lemma holds.

Once again, the proof that Pg is complete follows
the same argument. For Pg, |I3| = c and for all
indices i ∈ I3, σ′(i) = {a}. For other indices, the
constructed σ′ is equal to σ and does not contain
a. By Def. 25, all tuples τ ∈ [[C]]σ must equal a at
all indices I3, therefore no tuples are invalidated
under σ′ and [[C]]σ′ = [[C]]σ.

4.3.5. Empirical Evaluation
The occurrence propagators implemented in

Minion 0.12 use static triggers. Therefore they may
be invoked when support has not been lost. By
comparison, these watched literal propagators are
only invoked when one of the literals in the support
is lost.

We implemented the occurrenceleq(X, a, c)
propagator described by the proof of Theorem 13
in Minion 0.12. The propagator re-uses literals
〈i, b〉 from S when constructing S′, allowing it
to leave the corresponding watched literals in
place. When a literal 〈i, b〉 in S is invalid, the
propagator scans through X[{i . . . |X| − 1}] then
X[{0 . . . i− 1}] to find a replacement literal. The
propagator (referred to as WatchedProp) was con-
structed from the proof in less than 3 hours pro-
grammer time.

We compare against the existing propagator for
occurrenceleq (StaticProp) provided in Minion
0.12, which uses static assignment triggers (i.e. the
propagator is notified when any variable in scope
becomes assigned).

We constructed a benchmark CSP as follows.
We have a vector of variables X where |X| = 100,
and initial signature σ where ∀i. σ(X[i]) = {1, 2}.
The constraints are as follows:

∀i ∈ {80..98}. (X[i] 6= X[i+ 1])

and 100 copies of the constraint:

occurrenceleq(X, 1, 90)

The occurrence constraint is duplicated to allow
accurate measurement of its efficiency. This CSP
is solved to find all solutions.

The solver branches on variables in X in index
order, and branches for 1 before 2. Once variable
X[80] is assigned by search, the remaining vari-
ables are assigned by propagation on the 6= con-

straints. As search progresses, the value of each
variable in X[{80 . . . 99}] alternates between 1 and
2.

WatchedProp watches 11 literals of the form
〈i, 2〉. Early in the search, most of these literals
will necessarily involve variables X[{80 . . . 99}], a
pathological case for WatchedProp. As search pro-
gresses, more variables in X[{0 . . . 79}] will be as-
signed 2, therefore the performance of Watched-
Prop should improve.

Table 1 shows that StaticProp scales approx-
imately linearly in the number of search nodes
explored, but WatchedProp speeds up as search
progresses. With a limit of 100 million nodes,
WatchedProp is more than twice as fast as Stat-
icProp.

4.3.6. Discussion
We have shown that our framework can be used

to create highly efficient watched literal propaga-
tors for occurrence constraints, and that these out-
perform conventional propagators that use static
triggers. There is no requirement for the propaga-
tors to maintain GAC. In this case we have proven
that the propagators are sound and complete,
the most basic requirements for correctness. The
framework is entirely agnostic about whether the
propagator maintains GAC, some form of bound
consistency or indeed some custom consistency
that is specific to the type of constraint.

5. Conclusions and Future Work

This paper has made a number of contributions
to the formal study of constraint solving, in partic-
ular of propagation in constraint solving. We have
shown that we can define formally a notion of gen-
eralized support, which generalizes the standard
notion of support in constraint satisfaction. This
generalization allows us to work with propagators
that might not have been seen as using support.
Since our definition is so general, we introduced
the notion of p-admissible support properties. The
definition of p-admissibility corresponds to the use
of a particular kind of trigger within the constraint
solver. Triggers are events which cause propagators
to be called within the solver, and p-admissibility
guarantees that any event which might cause sup-
port to be lost is observed by some trigger. In
this paper we have focussed on a definition of p-
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Search node limit (n) WatchedProp time (s) StaticProp time (s)

100,000 1.72 1.20

1,000,000 12.40 11.54

10,000,000 86.13 120.31

100,000,000 518.81 1205.07

Table 1

Times for the WatchedProp and StaticProp algorithms, me-

dian of 16 runs on a dual processor Intel Xeon E5520 at
2.27GHz.

admissibility corresponding to literal triggers (that
are activated by deletion of a particular value from
the domain of a variable). We have given a for-
mal description of constraint propagation. Given
a p-admissible support property, we have defined
the propagation schema. A constructive proof of
the propagation schema shows how a propagator
can be constructed to find new support when sup-
port is lost. We have given examples of this for
the specific constraints element, occurrenceleq
and occurrencegeq, and sketched an example for
AllDiff.

Our work on propagators is not merely a for-
malisation of existing standard usage in constraint
programming. We are not aware of a definition of
support as general as ours within constraints. The
notion of generalized support should be directly
useful in constraints, enabling a much better un-
derstanding of propagation algorithms in the con-
straint community. Our hypothesis is that almost
all propagators used in constraint solvers can be
seen as reasoning with some form of support prop-
erty, even though most propagators are not cur-
rently presented as doing so. Once this hypothe-
sis is confirmed, we can present propagation algo-
rithms in a much more uniform fashion, as well as
building constraint solvers to exploit these propa-
gation algorithms. Thus our intended future work
consists of two strands: first continuing the for-
mal development we have started here, and second
demonstrating the application of our work to the
constraints community.
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