Consistency for Quantified Constraint
Satisfaction Problems

Peter Nightingale

School of Computer Science, University of St Andrews, Scotland, KY16 9SX
pn@dcs.st-and.ac.uk

Abstract. The generalization of the constraint satisfaction problem with
universal quantifiers is a challenging PSPACE-complete problem, which
is interesting theoretically and also relevant to solving other PSPACE
problems arising in AI, such as reasoning with uncertainty, and multi-
player games. I define two new levels of consistency for QCSP, and give
an algorithm to enforce consistency for one of these definitions. The al-
gorithm is embedded in backtracking search, and tested empirically. The
aims of this work are to increase the facilities available for modelling and
to increase the power of constraint propagation for QCSPs. The work is
motivated by examples from adversarial games.

1 Introduction

The finite quantified constraint satisfaction problem (QCSP) is a generalization
of the finite constraint satisfaction problem (CSP), in which variables may be
universally quantified. QCSP can be used to model problems containing uncer-
tainty, in the form of variables which have a finite domain but whose value is
unknown. Therefore a QCSP solver finds solutions suitable for all values of these
variables. A QCSP has a quantifier sequence which quantifies (existentially, 3, or
universally, V) each variable in the instance. For each possible value of a univer-
sal variable, we find a solution for the later variables in the sequence. Therefore
the solution is no longer a sequence of assignments to the variables, but a tree
of assignments where the variables are set in quantification order, branching for
each value of the universal variables. This is known as a strategy, and can be
exponential in size. This generalization increases the computational complex-
ity (under the usual assumption that PCNPCPSPACE): QCSP is PSPACE-
complete. QCSP can be used to model problems from areas such as planning
with uncertainty and multiplayer games. Intuitively, these problems correspond
to the question: Does there exist an action, such that for any eventuality, does
there exist a second action, such that for any eventuality, etc, I am successful?
Actions are represented with existential variables, and eventualities with uni-
versals. Bordeaux and Monfroy [3] and Mamoulis and Stergiou [1] define levels
of consistency for various quantified constraints of bounded arity. I introduce a
general consistency algorithm for quantified constraints of any arity, based on
Bessiére and Régin’s GAC-Schema [4].

Connect-4 For example consider the Connect-4 endgame in figure 1. The aim
of Connect-4 is to make a line of four counters, vertically, horizontally or diag-
onally. The two players take turns, and can only place a counter at the bottom
of a column on the board. It is grey to move, and it can be seen that columns
2 and 4 are the only moves allowing grey to win in 3 moves if black defends
perfectly. The five such winning sequences are 2-2-4-4-5, 2-2-5-4-4, 4-4-5-2-2, 4-
4-5-2-6 and 4-4-5-6-2. As shown below the figure, this problem can be modelled
as a QCSP, with 5 variables representing the column numbers of the 5 moves,
with just one 5-ary constraint representing that grey wins (i.e. the constraint
is satisfied iff grey wins, thus all the rules of the game are exactly encoded in
one constraint). This is similar to a 5-move lookahead constraint, but with the
additional restriction that grey must win within the 5 moves. Ideally, the prop-
agation algorithm would restrict all three of the grey move variables. Ignoring
the quantification and applying GAC infers nothing. I define two stronger lev-
els of consistency, WQGAC, which infers that greyl € {2,4}, and the stronger
SQGAC, which also infers grey2 € {4,5}, and grey3 € {2,4,5,6}. I give an
algorithm for WQGAC in section 3.

2 Defining Quantified Generalized Arc Consistency

A flavour of the definitions of weak and strong quantified generalized arc consis-
tency is given below, based on the full definitions in [8]. X¢ is the variables within
the scope of the constraint C'. Cg is the set of supporting tuples of the constraint
C, with each tuple sorted in quantification order. The domain of variable z; is
D;.

Definition 1. Support

Given some constraint C, a value a € D; for a variable x; € X¢o has domain
support in C iff there exists a tuple t € Cg such that t; = a ' and Vz; € Xo :
t; € D;. Similarly, o partial assignment p (which is o set of pairs (x;,a)) over
C has domain support in C iff there exists a tuple t € C's such that for all pairs
(®i,a) inp, t; =a andVx; € Xc : t; € D;.

! t4 is used to refer to the element of ¢ corresponding to variable zy.

. . dgreylVblackl3dgrey2Vblack2dgreys :
® ®

greywins(greyl, blackl, grey2, black2, grey3)

Fig. 1. Connect-4 endgame

Definition 2. Weak Quantified GAC

A constraint C is weak quantified GAC (WQGAC) iff for each variable x €
Xc and value a € D,, with inner universal variables x;,zj,..., each partial
assignment p = {(z, a), (z;,b)|b € D;,{x;,c)|c € Dj,...]} has domain support.

For the example in figure 1, WQGAC is able to prune the following values from
greyl : 1,3,5,6,7, but is unable to prune the other existential variables.

Definition 3. Strong Quantified GAC

A constraint C is strong quantified GAC (SQGAC) iff for each variable x €
Xc and value a € D,, with inner universal variables x;,x;,..., each partial
assignment p = {(z,a),(z;,b)|b € D;,(z;,c)|c € Dj,...} has domain support
and all the supporting tuples can form part of the same strategy. For any two
supporting tuples T and 7' this is the case iff IV < X : 7 = 7] AT\ # T\ AV(2))
(i.e. the leftmost difference between the tuples must correspond to a universal
variable).

For the example in figure 1, an algorithm enforcing SQGAC would be able to
prune from all three existential variables, in contrast to WQGAC. An SQGAC
algorithm would infer grey2 € {4,5}, and grey3 € {2,4,5,6}.

3 A general algorithm for enforcing WQGAC

This section describes the proposed WQGAC-Schema, algorithm, derived from
GAC-Schemal4], a successful framework for GAC. In this section most attention
will be given to the differences between WQGAC-Schema and GAC-Schema.
On constraints with no universal variables, the behaviour of WQGAC-Schema,
is identical to GAC-Schema.

The main change to GAC-Schema is to replace the notion of support to match
the definition of WQGAC: that a value of some variable must be supported for
all sequences of values of inner universal variables. This change does not alter
the time complexity. The space complexity increases to O(nd™). The modified
data structure Sc is described below (S and lastc are modified likewise [8]), to
be compared with [4].

Sc(p) contains tuples that have been found to satisfy C' and which include
the partial assignment p. Each tuple supports n partial assignments, so when
a tuple is found, it is added to all n relevant sets in S¢. The current support
7 for p is included, and is removed when it is invalidated. Domain removals
may invalidate other tuples A # 7 contained in S¢, but A may not be removed
immediately, so when searching for a new current support for p, Sc(p) may
contain invalid tuples.

In all cases the full description of a procedure is given in [8]. To propagate
a pruned value (z,a), the procedure is summarized here. For all tuples ¢ in S¢
which contain (z,a), t is removed from Sc¢. If this leaves a partial assignment
p unsupported, a new support is sought by calling seekNextSupport(). This
procedure is specific to the constraint type.

| Action | Tuples tested|Total tested %|Values pruned |CPU time]

establishWQGAC() 2196 greyl:1,3,5,6,7 0.046s

assert greyl # 2 207 15.2% none 0.008s

assert blackl = 4 151 grey2:1,2,3,4,6,7 and| 0.016s
grey3:1,3,4,5,7

Table 1. Connect-4 results

Predicates The constraint is defined by an arbitrary expression for which no
specific propagation algorithm is known. The user provides a black box function
fc (1), which returns true iff the tuple 7 satisfies the constraint, false otherwise.
The only change from the GAC-Schema version in [4] is that the variable y and
value b have been replaced everywhere with partial assignment p. The basic idea
is that supporting tuples are tested in lexicographic order against f¢, skipping
forward whenever possible.

Positive constraints Here the set of allowed tuples (Cgs) is given explicitly.
This is slightly altered from the algorithm given by Bessiére and Régin [4], with
the data structure from Mohr and Masini [7]. The set Cs is sorted by partial
assignment, to match the requirements of supporting a value. For each pair
{z;,a), the tuples matching {x;,a) are divided into each possible sequence of inner
universal assignments. (This does not increase the asymptotic space consumption
because each tuple of length n has n references to it.) The seekNextSupport
procedure simply returns the next valid tuple in the relevant list.

Negative constraints The set of disallowed tuples is given explicitly. Bessiére
and Régin give an efficient method based on hashing which uses the predicate
instantiation and can be used without modification [4].

Testing WQGAC-Schema on a Connect-4 endgame To illustrate the
strength of WQGAC and the efficiency of WQGAC-Schema, I use the running
example (figure 1). The predicate instantiation of WQGAC-Schema is used. To
my knowledge, there is no way of representing the quintary constraint with
shorter constraints without losing propagation, hence there is no direct compar-
ison to be made. Grey can win in three moves if black defends perfectly, and
in two moves if black makes a mistake. There are five winning sequences where
black defends perfectly: 2-2-4-4-5, 2-2-5-4-4, 4-4-5-2-2, 4-4-5-2-6 and 4-4-5-6-2.
Table 1 shows three consecutive actions on the greywins constraint. (Asserting a
value includes calling propagate to exhaustion.) CPU times are given for an im-
plementation in Java, running with the Java 5.0 HotSpot compiler on a Pentium
4 3.06GHz with 1GB of memory. Although some attention was paid to efficiency
in the implementation, this was not the main concern and the CPU times could
be improved. Only 15.2% of the tuples were tested against the predicate, showing
that WQGAC-Schema is effective in jumping over irrelevant tuples.

Testing WQGAC-Schema with noughts and crosses WQGAC-Schema is
embedded in a simple backtracking search for QCSP. An experiment based on
noughts and crosses (tic-tac-toe) is described in the technical report [8]. First the
game is modelled with 9 move variables (with alternating quantification) each
with domain size 9, and board state variables for each move. The pure value
rule [2] is dynamically applied to universal variables, so that values representing
cheating moves are not explored. The question encoded is: can the first player
win under any circumstances, to which the answer is no. All constraints are im-
plemented using WQGAC-Schema-+predicate. The longest constraints are arity
10, for detecting the winning condition. The search explored 4107 internal nodes
in 26.205s, taking on average 6.38ms per node. This is compared to a similar
model, with the final 3 moves eliminated and replaced with one large constraint
of arity 12. Three constraints of arity 10 are removed. The number of internal
nodes is reduced to 3403, explored in 13.782s, on average 4.05ms per node. To
an extent, this shows the potential of consolidating a set of constraints into a
single high-arity constraint, because better propagation is achieved and the time
to reach local consistency at each node is reduced.

4 Conclusion and acknowledgments

Generalized arc-consistency has been well studied and is very important in CSP.
I have defined for QCSP two new levels of consistency based on GAC, and have
developed an algorithm for one. This was briefly tested on game problems.

This work is funded by EPSRC, and I would like to thank my supervisor
Tan Gent, the anonymous reviewers and Ian Miguel, who made many helpful
comments on this paper.

References

1. Nikos Mamoulis and Kostas Stergiou, Algorithms for Quantified Constraint Satis-
faction Problems, in Proc. of the 10th CP, pages 752-756, 2004.

2. Tan P. Gent, Peter Nightingale and Kostas Stergiou, QCSP-Solve: A Solver for Quan-
tified Constraint Satisfaction Problems, to appear in Proc. of the 19th IJCAI 2005.

3. Lucas Bordeaux and Eric Monfroy, Beyond NP: Arc-Consistency for Quantified
Constraints, in Proc. of the 8th CP, pages 371-386, 2002.

4. Christian Bessiére and Jean-Charles Régin, Arc consistency for general constraint
networks: preliminary results, in Proc. of the 15th IJCAI pages 398-404, 1997.

5. Ian Gent and Andrew Rowley, Encoding Connect-4 using Quantified Boolean For-
mulae, APES Technical Report APES-68-2003, 2003.

6. Alejandro Lopez-Ortiz, Claude-Guy Quimper, John Tromp and Peter van Beek, A
Fast and Simple Algorithm for Bounds Consistency of the AllDifferent Constraint,
in Proc. of the 18th IJCAI, pages 306-319, 2003.

7. Roger Mohr and Gérald Masini, Good Old Discrete Relaxation, in Proc. of the 8th
ECAI pages 651-656, 1988.

8. Peter Nightingale, Consistency for Quantified Constraint Satisfaction Problems, CP-
Pod Technical Report CPPOD-11-2005, 2005. Available from http://www.dcs.st-
and.ac.uk/~cppod/publications/reports/

