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Abstract

When solving a combinatorial problem using Constraint Programming (CP) or Sat-
isfiability (SAT), modelling and formulation are vital and difficult tasks. Even an ex-
pert human may explore many alternatives in modelling a single problem. We make
a number of contributions in the automated modelling and reformulation of constraint
models. We study a range of automated reformulation techniques, finding combina-
tions of techniques which perform particularly well together. We introduce and de-
scribe in detail a new algorithm, X-CSE, to perform Associative-Commutative Com-
mon Subexpression Elimination (AC-CSE) in constraint problems, significantly im-
proving existing CSE techniques for associative and commutative operators such as +.
We demonstrate that these reformulation techniques can be integrated in a single au-
tomated constraint modelling tool, called Savile Row, whose architecture we describe.
We use Savile Row as an experimental testbed to evaluate each reformulation on a set
of 50 problem classes, with 596 instances in total. Our recommended reformulations
are well worthwhile even including overheads, especially on harder instances where
solver time dominates. With a SAT solver we observed a geometric mean of 2.15 times
speedup compared to a straightforward tailored model without recommended reformu-
lations. Using a CP solver, we obtained a geometric mean of 5.96 times speedup for
instances taking over 10 seconds to solve.

1. Introduction

In numerous contexts today we are faced with making decisions of increasing size
and complexity, where many different considerations interlock in complex ways. Con-
sider, for example, a staff rostering problem to assign staff to shifts while respecting
required shift patterns and staffing levels, physical and staff resources, and staff work-
ing preferences. The decision-making process is often further complicated by the need
also to optimise an objective, such as to maximise profit or to minimise waste.

It is natural to characterise such problems as a set of decision variables, each rep-
resenting a choice that must be made in order to solve the problem at hand (e.g. which
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ozgur.akgun@st-andrews.ac.uk (Özgür Akgün), ian.gent@st-andrews.ac.uk (Ian P.
Gent), caj21@st-andrews.ac.uk (Christopher Jefferson), ijm@st-andrews.ac.uk (Ian
Miguel), jlps@st-andrews.ac.uk (Patrick Spracklen)

Preprint submitted to Artificial Intelligence June 16, 2017



staff member is on duty for the Friday night shift), and a set of constraints describing
allowed combinations of variable assignments (e.g. a staff member cannot be assigned
to a day shift immediately following a night shift). A solution is an assignment of a
value to each variable satisfying all constraints. Many decision-making and optimisa-
tion formalisms take this general form, including: constraint programming (CP) [61],
propositional satisfiability (SAT) and its extensions [10], and operations research ap-
proaches, particularly Mixed Integer Programming (MIP) [32]. These approaches have
much in common, but differ in the types of decision variables and constraints they
support, and the inference mechanisms used to find solutions.

In all of these formalisms the model of the problem is crucial to the efficiency with
which it can be solved. A model in this sense is the set of decision variables and con-
straints chosen to represent a given problem. There are typically many possible models
and formulating an effective model is notoriously difficult [54]. Therefore, automating
modelling is a key challenge. In this paper we investigate automated reformulation
of models when targeting CP and SAT solvers, with the goal of reaching an efficient
model by a sequence of reformulations starting with a simple model. We investigate
a range of reformulation techniques and some of their interactions, and show in some
cases that a very high performance model can be created in this way from a naı̈ve
model.

1.1. Constraint Programming, Propositional Satisfiability, and Tailoring
CP and SAT both follow the general template described above, in that an assign-

ment is sought for a set of variables to satisfy a set of constraints. The key difference
is in how CP and SAT represent a given problem. In SAT variables are uniformly
Boolean and the constraints are Boolean formulae, expressed in conjunctive normal
form [10]. CP provides a richer language of discrete variables with domains either
given in extension or expressed in terms of upper and lower bounds, arithmetic and
logical operators over these variables, and a library of ‘global’ constraints that capture
common reasoning patterns.

The two formalisms have complementary strengths. The simplicity of SAT sup-
ports the implementation of highly efficient solvers, employing techniques such as
conflict-driven learning, watched literals, restarts and dynamic heuristics for back-
tracking solvers [44], and sophisticated incomplete techniques such as stochastic local
search [62]. These solvers are able reliably to find solutions to SAT problems with
millions of variables, and as a result SAT has many important applications, such as
hardware design and verification, planning, and combinatorial design [40]. The richer
language of CP enables concise models, and powerful reasoning driven by global con-
straints has also given rise to a wide variety of successful applications, including con-
figuration, vehicle routing, scheduling and planning [61].

The importance of modelling is well recognised in both fields. In CP a number of
constraint modelling languages have been developed, such as OPL [68], MiniZinc [65]
and Essence Prime [49]. These languages provide facilities to model parameterised
classes of problems (where an individual problem instance is specified by giving val-
ues for the class parameters), such as arrays and iteration or comprehension, and to ab-
stract away from the specific details of the many available individual constraint solvers.
When targeting SAT, most effort has focussed on constructing performant encodings
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(i.e. translations into SAT) of classes of constraints such as the allDifferent or arith-
metic constraints [53, 69, 29, 63, 67]. There has been little attention on the issue of
translating a higher level modelling language effectively to SAT.

Tailoring [60] is the process of taking a constraint model of a problem class in a
solver-independent modelling language and a value for each of the class parameters,
and translating the problem instance into a form suitable for a given solver. We focus
herein on reformulation of the constraint modelling language Essence Prime [49], using
the constraint modelling assistant Savile Row [47, 50]. Essence Prime is similar to
other constraint modelling languages such as OPL and MiniZinc. Savile Row is able to
translate Essence Prime to target CP and SAT solvers. Tailoring must be efficient: it is
performed separately for each problem instance, hence any computationally expensive
reformulation performed during tailoring must pay for itself by saving time during
solving. Tailoring presents an opportunity to reformulate a model to improve it in a
number of ways, some of which are illustrated in our example below.

1.2. Motivating Example

We use Balanced Incomplete Block Design (BIBD) [52] as a motivating example to
illustrate four quite different reformulations working together to dramatically improve
a simple model. All four reformulations are automated in Savile Row. BIBD is a
problem class with three integer parameters v, k and λ, and two constants derived
from the parameters b = λv(v−1)

k(k−1) and r = λ(v−1)
k−1 . The problem is to place each of

v objects into a subset of the b blocks, so that each block contains k distinct objects,
each object occurs in exactly r blocks, and every two distinct objects occur together in
exactly λ blocks. The objects and blocks are both interchangeable. The BIBD problem
arose from experimental design theory. We use Meseguer and Torras’s first model [43],
extended with Lex 2 symmetry breaking constraints [19] (i.e. constraints that forbid a
set of solutions that are symmetric to other solutions). The model has a v by b matrix
m of Boolean decision variables, where the variable m[i, j] indicates whether object i
is contained in block j. The model is described in detail in Section 5.9.

Savile Row first substitutes the values of v, k, λ, b and r throughout. Then the
matrixm is replaced with vb individual Boolean variables, and all quantifiers and com-
prehensions are unrolled to construct the concrete set of constraints. The model is now
almost suitable for output to a conventional constraint solver. However, there is an
opportunity to substantially improve the model before it is specialised for a solver.

Each decision variable has a set of possible values that it may take, called its do-
main. The first reformulation step is to filter the domains of the decision variables,
as described in Section 5.4. Domain filtering removes values from the variable do-
mains that cannot take part in any solution. Consider the problem instance where
v = 8, k = 4, λ = 6. Domain filtering assigns 70 of the original 224 decision vari-
ables in the matrix m, as shown in Figure 1. The second step is variable unification, as
described in Section 5.4. Variable unification removes decision variables in a number
of cases. In this case each of the deleted variables is equal to a constant. For example,
m[1, 1] is replaced by 0 throughout. After variable unification many of the constraints
contain constants. Each expression type in Savile Row has a simplifier (described in
Section 3.3). Simplifiers will at least evaluate constant expressions, but can in some
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Figure 1: Variables assigned by domain filtering of BIBD v = 8, k = 4, l = 6.

cases do significantly more than that. In this case, a sum expression (representing a
scalar product constraint between the first and fifth rows) may be simplified.

0× 1 + 0×m[5, 2] + · · ·+ 0×m[5, 14] + 1×m[5, 15] + · · ·+ 1×m[5, 28] = 6

This expression simplifies to a much shorter expression that contains no products:

m[5, 15] + · · ·+m[5, 28] = 6

The first two rows and parts of the third row are assigned, allowing many of the
scalar product constraints to be simplified. Each row has a sum constraint such as:

m[5, 1] +m[5, 2] + · · ·+m[5, 14] +m[5, 15] + · · ·+m[5, 28] = 14

The fourth step is to extract common subsets of terms between row constraints
and (simplified) scalar product constraints. This is a type of common sub-expression
elimination (as described in Section 2 below). The common subset m[5, 15] + · · · +
m[5, 28] is represented by a new variable a, resulting in the following three constraints.

m[5, 1] +m[5, 2] + · · ·+m[5, 14] + a = 14
a = 6

a = m[5, 15] + · · ·+m[5, 28]

Variable unification replaces a with 6 throughout, leading to the following:

m[5, 1] +m[5, 2] + · · ·+m[5, 14] = 8
m[5, 15] + · · ·+m[5, 28] = 6

Meseguer and Torras’s model was improved by Frisch et al [23] by the addition of
a set of implied constraints (i.e. redundant constraints that are entailed by the original
set of constraints), creating the best published model (to our knowledge). Savile Row
automatically generates a superset of the implied constraints proposed by Frisch et
al, and consequently the Savile Row model outperforms the Frisch et al model in our
experiments in Section 5.9. This example illustrates a number of simple reformulations
combining to substantially improve the formulation of a constraint model.
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1.3. Contributions

We make three main contributions in this paper.

1. We evaluate a range of reformulations for use in automated modelling. Common
Sub-expression Elimination (CSE) is a particular focus of this paper [60, 59, 2].
CSE is a type of constraint reformulation that has proved to be useful on a range
of problems, including both finite-domain and numerical constraint problems.
We contribute new algorithms for Identical CSE and Active CSE that improve
on existing work. Furthermore, we have discovered sets of reformulations that
together are much more effective than any single reformulation.

2. We introduce and describe in detail a new algorithm, X-CSE, to perform AC-
CSE (Associative-Commutative Common Sub-expression Elimination). This
uses the fact that operators such as + are associative and commutative: expres-
sions containing such operators can be rearranged to reveal additional common
subexpressions (CSs). We show that X-CSE is able to find CSs automatically
in a variety of problems, and that using these subexpressions can greatly reduce
search and improve solving time. A particular advantage of X-CSE is that it
is able to find and exploit small CSs that occur in many constraints, as well as
larger ones that occur in few constraints. We show that X-CSE can be partic-
ularly effective in combination with other reformulations, specifically an auto-
mated reformulation of allDifferent constraints leading to sum constraints, and
when filtering domains using a variant of Singleton Arc Consistency. When ap-
plying X-CSE we demonstrate substantial gains in performance.

3. We demonstrate that the reformulations described above can be integrated in a
single automated constraint modelling tool, called Savile Row, whose architec-
ture we describe. We use Savile Row as an experimental testbed to evaluate each
reformulation on a set of 50 problem classes with 596 instances in total. We
describe a very extensive set of experiments where reformulations are switched
on one by one and their effects analysed as part of the system.

2. Background and Related Work

There are many ways of improving constraint models, some requiring manual in-
teraction [5], and others that are entirely automatic [24]. For example these methods
can discover global constraints or automatically detect and remove symmetries [42].
These improvements often complement each other, for example Frisch, Jefferson, and
Miguel [23] show how breaking symmetries can lead to effective implied constraints
for BIBDs. In this section we review the most relevant related work.

2.1. Variable unification

Unifying equal variables is a standard technique implemented by a number of tools
including MiniZinc [65], Savile Row [47, 50] and IBM CP Optimizer Presolve [36].
Details of our approach to variable unification are given in Section 5.4.
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2.2. Variable domain filtering

Filtering the domains of decision variables is a recognised preprocessing technique
in constraint programming. Domain filtering removes values that cannot take part in
any solution. Strong consistencies may be used to tighten the formulation of an in-
stance [7, 37]. Domains may be filtered by some form of propagation prior to (and
potentially enabling) other reformulations. IBM CP Optimizer Presolve uses propaga-
tion to obtain tighter bounds for variables and expressions, and redundant constraints
are removed before search [36]. The strength of propagation is unspecified.

We have previously [47, 50] filtered the user-defined decision variables using a
strong consistency related to Singleton Arc Consistency (SAC) [7]: SACBounds ap-
plies the SAC test to prune the upper and lower bound of each variable to exhaustion.
The Minion solver [30] was used to establish SACBounds. Leo and Tack filtered do-
mains of both user-defined and introduced decision variables in MiniZinc [39], using
the standard level of propagation of the solver Gecode [28]. Variable domain filtering
has proven to be valuable alone [39] and as an enabler of other reformulations [47, 50].
Our approach to domain filtering is described in Section 5.4.

2.3. Aggregation

Aggregation algorithms replace a set of constraints with a different formulation,
typically to obtain more powerful propagation in a CP solver. CGRASS [24] replaces
cliques of not-equal constraints with allDifferent constraints. IBM CP Optimizer Pre-
solve [36] also replaces cliques of not-equal constraints with allDifferent, as well as
collecting overlapping count expressions (that constrain the cardinality of a given value
in a set of variables). IBM CP Optimizer Presolve also merges overlapping linear con-
straints on {0, 1} variables, and in some cases merges arithmetic constraints with other
constraint types.

Aggregation is essentially a forward-chaining approach: a pattern is identified in
the set of constraints and replaced with an improved formulation such as a global con-
straint. Other approaches to identifying global constraints are covered in Section 2.7.
Two types of aggregation are implemented in Savile Row as described in Section 5.5.

2.4. Flattening and Identical Common Subexpression Elimination

Flattening is the process of taking a nested expression and reducing the degree
of nesting by replacing a subexpression with a new variable. For example, given the
product X × (Y + Z) and a target solver that does not allow sums inside products,
the flattening process will add a new variable aux, replace the product with the new
expressionX×aux and add a new constraint aux = Y +Z. We say thatX× (Y +Z)
is flattened to X × aux and that Y + Z is extracted.

Common sub-expression elimination (CSE) is widely used in compilers to avoid
repeated computation [15]. CSE was applied in the context of finite-domain constraint
languages by Rendl [60, 59]. CGRASS [24] could also perform CSE through the com-
bination of its introduce and eliminate rules. In its simplest form, which we call “Iden-
tical CSE”, CSE takes two or more syntactically identical sub-expressions that must be
flattened, and flattens them all using the same auxiliary variable. This reduces both the
number of constraints and auxiliary variables. Importantly, Identical CSE can reduce
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the search space dramatically [60, 59] by linking different constraints together thus
strengthening constraint propagation in a conventional CP solver.

The SMT solver CVC4 merges identical subtrees in its abstract syntax tree [4]. It
is not clear whether this affects the search or is simply a memory saving feature.

The algorithm introduced by Rendl [59] and later extended by Stuckey and Tack [65]
performs CSE during flattening. The algorithm maintains a hash table that maps each
expression extracted so far to the auxiliary variable created for it. When extracting
an expression E, the algorithm looks up E in the hash table and (if present) uses the
auxiliary variable in the hash table rather than creating a new auxiliary. Rendl’s algo-
rithm has the advantage of being a simple addition to the flattening process, however
there are two disadvantages: the order in which CSEs are extracted is fixed to the order
of flattening, and the candidate expressions for CSE must be the expressions that are
extracted by flattening. For example, most constraint solvers can accept inequality con-
straints without flattening so Rendl’s algorithm would miss the common subexpression
x+ y + z in the constraints x+ y + z ≤ 10 and x+ y + z ≥ 11.

In this paper we present a new algorithm for Identical CSE in Section 5.7 that is
independent of flattening thus avoiding both disadvantages of Rendl’s algorithm. For
example the new algorithm is able to extract x + y + z from x + y + z ≤ 10 and
x+ y + z ≥ 11 and allow constraint solvers to immediately deduce the contradiction.

Stuckey and Tack describe CSE in the constraint language MiniZinc 2 that has
user-defined functions and local decision variables [65]. Function call sites must be
syntactically identical to trigger CSE, therefore it is a form of Identical CSE, essentially
using the same algorithm as Rendl. The current version of Essence Prime does not have
user-defined functions.

2.5. Normalisation and Active CSE
One way CSE has been fruitfully extended is by matching subexpressions that are

not syntactically identical [60]. This is achieved in two ways. The first is normali-
sation, where prior to CSE the expression tree is converted to a normal form. This
converts some semantically equivalent expressions (such as C = B + A + 1 − 1 and
A + B = C) to syntactically identical expressions. The second is Active CSE, where
two expressions A and B may be matched if they are identical after some transforma-
tion is applied to one. For example, Active CSE can match A < B with A ≥ B by
a simple negation, replacing one with an auxiliary variable a and the other with ¬a.
Rendl’s algorithm described above is easily extended to Active CSE [59]. When an
expression E is extracted by flattening, the extended algorithm looks up E and each
transformation of E in the hash table. When a transformation of E is present, the
inverse transformation is applied to the auxiliary variable. For example, suppose the
transformation is to negate E then apply one of De Morgan’s laws, the inverse is (also)
to negate the auxiliary variable. Rendl’s Active CSE algorithm has the same problems
as the Identical CSE algorithm described above. We present a different algorithm for
Active CSE in Section 5.8 and relate it to Rendl’s work.

2.6. Associative-Commutative CSE
One of the forms of CSE we investigate is Associative-Commutative CSE (AC-

CSE), which exploits the properties of associativity and commutativity of binary op-
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erators (e.g. + and ×). Expressions containing these operators can be rearranged to
reveal common subexpressions. As an example, take the following two constraints
over four variables, each with domain {0 . . . 10}: w+ x+ y+ z = 6, z + y+w = 5.
Conventional constraint propagation (bounds(R) consistency [13] or GAC [61] ap-
plied to both constraints) will not reveal the fact that x = 1. AC-CSE can extract
w + y + z and replace it with an auxiliary variable a to give the following three con-
straints: x + a = 6, a = 5, a = w + y + z. Performing constraint propagation (e.g.
bounds(R) consistency [13]) on this set will assign x to 1.

An Associative-Commutative Common Subexpression (AC-CS) of a set of asso-
ciative and commutative (AC) expressions is a set of at least two terms that appear in
each of the AC expressions. In the example above, the terms w, y, z appear in both the
original sum constraints, hence {w, y, z} is an AC-CS of the two sum constraints.

A simple normalisation step, such as sorting the terms in the AC expressions, fol-
lowed by examining contiguous subsequences of terms within AC expressions, can
reveal some but not all of the available AC-CSs. More is necessary to find AC-CSs in
general. The largest contiguous subsequence in the example above (sorted alphabeti-
cally) is y + z, so this approach would miss the maximal AC-CS w + y + z.

Araya, Neveu and Trombettoni [2] exploited common subexpressions among + and
× expressions in the context of numerical CSP. They proposed two algorithms named
I-CSE and I-CSE-NC. Both algorithms apply a form of AC-CSE prior to flattening as a
separate operation. The first pass of both algorithms is to transform the abstract syntax
tree into a directed acyclic graph where identical subexpressions are represented once.
The second step is to intersect each pair of sums and pair of products to create a set
of candidate AC-CSs. As we will see in Section 4.3 other AC-CSs (generated by the
intersection of three or more sums) can also be useful, but I-CSE and I-CSE-NC will
never extract them. Later passes extract the AC-CSs from the original expressions.

Araya et al. defined two AC-CSs f1 and f2 to be in conflict if f1 ∩ f2 6= ∅, f1 * f2
and f2 * f1. Two AC-CSs in conflict cannot both be extracted from the same expres-
sion. When a set of AC-CSs in conflict are subsets of the same original expression s,
then I-CSE copies s a sufficient number of times to extract each of the AC-CSs from at
least one copy. I-CSE-NC (for No Conflicts) does not copy s, it simply extracts a single
maximal subset of the candidate AC-CSs from s. Consider the following example:

v + w + x+ y = 0, v + w + x+ z = 0, v + w + y + z = 0

In this example I-CSE would extract three AC-CSs: v+w+x, v+w+y and v+w+z.
I-CSE would duplicate each of the original constraints resulting in six constraints and
three further constraints to define the auxiliary variables. I-CSE-NC can extract only
one AC-CS. Suppose it extracts v+w+ x, then at this point v+w+ y and v+w+ z
cease to be AC-CSs:

aux+ y = 0, aux+ z = 0, v + w + y + z = 0, aux = v + w + x

I-CSE-NC can only extract AC-CSs from the original expressions, so fails to exploit
the AC-CS v + w. Even on this small example I-CSE increases the size of the model
substantially. I-CSE-NC has not, but it has missed a potentially useful AC-CS and has
not linked v+w+y+z to the other two sums. I-CSE and I-CSE-NC are both compared
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with our algorithm in Section 5.11. We implement the algorithms exactly as described
in Section 4 of Araya et al. [2]. Both I-CSE and I-CSE-NC only extract AC-CSs from
the original expressions, not from other AC-CSs.

Bessière, Paparrizou and Stergiou [9] define two new consistencies, rBC2 and rB-
Call, both stronger than bound consistency [13]. Where bound consistency reasons
with each constraint separately, rBC2 and rBCall consider multiple constraints to-
gether. Two reformulations are proposed that approximate rBC2 and rBCall for linear
constraints: rBC2-Y and rBCall-Y. Whenever a pair of linear constraints share more
than one variable and the coefficients are in the same proportion in both constraints,
rBC2-Y extracts an AC-CS. For example, 2x+ 3y+ z = 5 and 4x+ 6y+w = 5 share
variables x and y, and the coefficients of x and y are in the same proportion in both
constraints. When a constraint has multiple AC-CSs it is copied once for each. Where
rBC2-Y links pairs of constraints, rBCall-Y links sets of constraints that share two or
more variables with proportional coefficients. In other respects they are the same. Both
are defined for a flat set of linear (in)equality constraints.

In contrast to rBC2-Y and rBCall-Y, I-CSE requires coefficients to be identical to
extract an AC-CS. However I-CSE can handle nested expressions in an AST and it
packs AC-CSs into a minimal set of copies of the original expression.

In Section 4 we describe our approach to AC-CSE and set it in context with I-CSE,
rBC2-Y and rBCall-Y.

2.7. Other Related Work

Charnley, Colton and Miguel [12] proposed an automated method of generating
implied constraints for a problem class. They first solve small instances of the class
and use machine learning to generate hypothetical implied constraints, and then use a
theorem prover to test each hypothesis and those proven correct are added to the model.
As a time-intensive method that works on the problem class it is quite different from
our approach.

Leo et al [38] proposed a method to suggest global constraints to replace groups
of constraints in a model. The method generates sample solutions of each candidate
group of constraints and suggests global constraints from its library. This method is
also time-intensive, requires human verification and is applied to a problem class.

Bessière et al [8] proposed an approach to learning implied parametric global con-
straints such as the global cardinality constraint (GCC) for problem instances. While
promising results are given, the approach requires some human insight and is also
likely to be much more time-consuming than syntactic operations such as aggregation
and CSE.

Symmetry and dominance breaking constraints may be generated at the class level
using the methods of Mears et al [42, 41]. A dominance breaking constraint rules out
sub-optimal solutions of an optimization problem. Symmetry and dominance breaking
constraints are complementary to our work since they can enable other reformulations
(as in the motivating example in Section 1.2).

In SAT, research on preprocessing [66, 17], and inprocessing [34] interleaves the re-
formulation of a SAT model with solving. An example reformulation is “self-subsuming
resolution” proposed by Eén and Biere [17]. Given the clauses C1 = {x, a, b}, and
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C2 = {x̄, a}, the resolvent is C ′1 = {a, b}. Since C ′1 subsumes C1 we can replace
C1 with C ′1. Common subexpression elimination has been used in SAT by identifying
common subclauses and replacing them by a new auxiliary variable and clauses equat-
ing the variable with the common subclause [70]. Preprocessing and inprocessing are
highly effective in extending the reach of SAT solvers, however they necessarily op-
erate on the lowest level representation of the problem, the raw SAT clauses, where
higher-level patterns are difficult and/or costly to identify. In Savile Row, by contrast,
a single common subexpression elimination can eliminate many SAT variables and
clauses in the encoded problem.

In a recent wide-ranging review Achterberg et al [1] demonstrate the central im-
portance of preprocessing techniques to the performance of modern MIP solvers. Sim-
ilarly to Savile Row, MIP preprocessing consists of the application of a collection of
relatively inexpensive procedures that together work to strengthen the model of a prob-
lem instance. These procedures are tailored to the linear inequalities that form the
MIP input language, as opposed to the richer constraint language considered by Savile
Row, removing redundant inequalities, replacing inequalities with stronger equivalents,
strengthening coefficients, and strengthening the bounds on variables.

Constraint Handling Rules (CHR) [26] is a declarative, rule-based, general-purpose
programming language originally designed to write constraint solvers [27]. The rule-
based formalism of CHR is a natural way to encode transformations similar to those
made by Savile Row. However, we are not aware of work employing CHR to reformu-
late problem instances prior to search by a constraint or SAT solver. Cadmium [16] is
an associative, commutative term rewriting system, inspired by CHR, designed to map
the Zinc [3] language to solvers. To the best of our knowledge, in the transformation
of Zinc associativity and commutativity are used not for common-subexpression elim-
ination, but solely for matching local expressions. For example, a rule that matched
a ∨ ¬a would also match a ∨ b ∨ ¬a, because ∨ is associative and commutative.

3. Architecture of Savile Row

Savile Row is a multi-pass term rewriting system. The frontend reads a model in
the Essence Prime language into an abstract syntax tree (AST), along with a parameter
file giving the values of the problem class parameters. Several backends target a range
of solvers. The system has many passes, some of which are always performed, others
are performed when the choice of backend requires it, and still others are optional
reformulations. In this section we give an overview of the essential parts of the system,
excluding optional reformulation passes described in Section 5. We refer to the entire
process of transforming a model into input for a solver as the tailoring process [59].

3.1. First Steps of the Tailoring Process
The first part of the tailoring process puts the problem instance into a form suitable

for the later optional reformulation passes. The details are unimportant for this paper
but the key points are as follows.

1. The relational semantics [25] is implemented by replacing all partial functions
(e.g. division) with total functions [49].
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2. Problem class parameters and other constants are substituted into the model.
3. All quantifiers and matrix comprehensions are unrolled.
4. Matrices of decision variables (defined by find statements) are separated into

individual decision variables. This enables domain filtering and unification of
equal variables.

3.2. Bounds of Expressions

Each numerical expression type has a method to estimate the lower and upper
bound of its value. For non-atomic expressions the method recursively finds the bounds
of each of its subexpressions then calculates the bounds assuming each subexpression
is independent. For example the lower bound of a sum 1 + x + y is the sum of the
lower bounds of 1, x and y. The method for variable identifiers takes the lower and
upper bounds of the domain (from the quantifier, comprehension or the global symbol
table that defines the variable). Bounds calculated in this way for an expression e are
denoted bec and dee. The estimated bounds are required to contain the true value of e
in all solutions.

3.3. Simplifiers

Each expression type implemented in Savile Row has a simplifier, which is a func-
tion that examines an expression and may rewrite it to a semantically equivalent simpler
expression. Simplifiers may examine the subexpressions in any way, including looking
up the domains of variables and calculating bounds of subexpressions. As a minimum
requirement the simplifier must evaluate the expression (i.e. replace it with a constant
of the appropriate type) if the expression directly contains only constants. For example,
the allDifferent constraint allDiff([1, 3, 4]) contains a constant matrix, and since all the
elements of the matrix are different it must be rewritten to true. On the other hand,
allDiff([1, 2, x]) where x is a decision variable with domain {3 . . . 10} is rewritten to
true in the current version of Savile Row, but this is not a requirement.

The simplifier for the expression type allDiff (that contains a one-dimensional ma-
trix) performs the following rewrite steps:

• If the matrix is unknown (e.g., a matrix comprehension) then do not rewrite the
allDiff, otherwise continue.

• If the matrix is of size 0 or 1 then rewrite the allDiff to true.

• If any pair of expressions in the matrix are numerically equal or their ASTs are
identical then rewrite to false.

• For each expression in the matrix, find its bounds or (if it is a variable) look up
its domain. If any constant c in the matrix is outside the bounds or domain of all
other expressions then rewrite to a shorter allDiff that does not contain c.

Notice that the simplifier does nothing if the allDiff contains a matrix comprehen-
sion or a function such as flatten. Quantifiers and comprehensions are unrolled
early in the tailoring process (Section 3.1), and functions are evaluated as soon as their
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contents have the appropriate properties. For example, the flatten function is eval-
uated when the matrix contained in it is iterable in all dimensions. Once flatten has
been evaluated, the allDiff simplifier will execute immediately.

Simplifiers are applied to the AST in a bottom-up order. This allows each simplifier
to assume that the children of the current AST node have already been simplified.
Simplifiers are run to quiescence, as follows: suppose some AST node n1 is replaced
with n2 by a simplifier. The tree rooted at node n2 is then traversed in bottom-up
order and n2 or subtrees of it may be replaced again. Once the entire tree traversal
has completed, the simplifier for each node has been executed and no simplifier can
perform any further rewrites.

Simplifiers have a central role in Savile Row and cannot be switched off. Other
passes assume that the simplifiers have been run to quiescence. Whenever one pass
makes a change to the AST, the simplifiers are run to quiescence before the next pass.

Negation Normal Form
Simplifiers for the logical connectives ∧, ∨ and ¬ are responsible for establishing a

type of negation normal form by applying De Morgan’s laws to push negation towards
the leaves of the AST, and by removing double negation. Implication A → B is
rewritten to¬A∨B. In some cases a negated constraint¬A can be replaced byB where
B is no more complex than A (e.g. ¬(A = B) is rewritten to A 6= B). The numerical
comparison operators =, 6=, ≤, < and also table (where the satisfying assignments
of the constraint are explicitly listed) and negativetable (the negation of table)
are all rewritten when negated.

3.4. General Flattening

Once all optional reformulation passes have completed, any remaining nested ex-
pressions where the target solver does not support the nesting (e.g. a sum containing
a product) are flattened by extracting the inner expression e to a new auxiliary vari-
able a. The domain of a is {bec . . . dee} unless extended domain filtering is enabled
(Section 5.4 below). Extended domain filtering may provide a smaller domain for a.

3.5. Encoding to SAT

Our goal is to investigate whether reformulations performed on a constraint prob-
lem instance are beneficial when it is solved by encoding to SAT and using a state-
of-the-art SAT solver. To achieve this we need to ensure that the baseline encoding
to SAT is sensible. We have used standard encodings from the literature such as the
order encoding for sums [67] and support encoding [29] for binary constraints. Also
we do not attempt to encode all constraints in the language: several constraint types are
decomposed before encoding to SAT. Further details are given elsewhere [48].

4. The X-CSE Algorithm for Associative Commutative CSE

We described existing approaches to common subexpression elimination for asso-
ciative and commutative operators in Section 2.6. One of the main contributions of
this paper is a new algorithm, which we call X-CSE, to eliminate AC-CSEs. For any
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AC operator � (for example, sum, product or disjunction), the goal of X-CSE is to find
common sets containing two or more expressions that are contained in more than one
� expression. These are extracted to a new variable, potentially improving constraint
reasoning in the solver and reducing the size of the model.

The X-CSE algorithm uses a hash table map from pairs of expressions {a, b} to
a list of the � expressions that contain both a and b. Algorithm 2 (populateMapAC)
takes a reference to an AST node and explores the tree, populating map for each �
expression. If the � expression contains two copies of a, map will contain {a, a}.

Algorithm 1 (X-CSE) takes a reference to the AST representing all constraints, a
reference to the global symbol table, and the AC operator �. After initialising data
structures it calls populateMapAC with the entire AST. Following that it enters the
main loop on line 4. On line 5 one pair is selected from map according to a heuris-
tic. If the pair occurs in more than one � expression then there must exist an AC-CS
including that pair. Lines 10-20 find an AC-CS and extract it from all the relevant ex-
pressions. The algorithm includes as many � expressions as possible to maximise the
effect of extracting the AC-CS. Line 10 intersects all � expressions containing the pair.
A new � expression for the AC-CS is constructed, and an auxiliary variable is created.
On line 14 a constraint is created to define the auxiliary variable. Each � expression
containing the AC-CS is replaced. At this point, lines 19 and 20 update map to include
all the newly created expressions, allowing X-CSE to extract further AC-CSs from the
new expressions. Some references to removed � expressions will remain in map; these
will be filtered out on line 8.

The implementation of X-CSE is optimised by using a second hash table recording
the global number of occurrences of every expression directly contained in a � expres-
sion. If an expression e1 occurs only once, then it cannot take part in an AC-CS and no
pairs {e1, e2} are stored in map.

We apply X-CSE to sums, products, conjunctions and disjunctions in our experi-
ment in Section 5.9 below.

4.1. Heuristics
X-CSE chooses the next pair to process by calling a heuristic on line 5. Recall

(from Section 2.6) that two AC-CSs in conflict cannot both be extracted from the same
expression, therefore a choice is sometimes required. We experimented informally
with eight heuristics. There are four basic heuristics: most occurrences (i.e. select
the pair that leads to the longest list ls after line 8 of X-CSE), fewest occurrences,
largest AC-CS and smallest AC-CS. In some cases there exists a pair such that its
corresponding AC-CS can be extracted without preventing any other AC-CS. We call
these non-blocking pairs and it may be helpful to process them first. We created four
more heuristics that select non-blocking pairs first, then fall back to one of the four
basic heuristics. We found no clear winner among the eight heuristics. We use the
‘most occurrences’ heuristic (without prioritising non-blocking pairs) throughout the
rest of this paper because it is cheap to compute and often performs well.

4.2. Complexity Analysis
In this analysis we will use n for the number of � expressions, k for the length of

the longest � expression, d as the depth of the deepest � expression in the AST, and S as
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Algorithm 1 X-CSE(AST, ST, �)
Require: AST: Abstract syntax tree representing the model
Require: ST: Symbol table containing decision variables
Require: �: The associative and commutative operator

1: newcons← empty list {Collect new constraints}
2: map← empty hash table mapping pairs of expressions to lists
3: populateMapAC(AST, map, �)
4: while map not empty do
5: pairexp← heuristic(map)
6: ls← map(pairexp) {ls is a list of � AST nodes}
7: delete map(pairexp)
8: ls ← filter(isAttached, ls) {Remove � AST nodes no longer contained in AST

or newcons}
9: if length(ls) > 1 then

10: commonset← ls[1] ∩ ls[2] ∩ · · · ∩ ls[length(ls)]
11: e← fold(�, commonset)
12: dom← domain(e)
13: aux← ST.newAuxVar(dom)
14: newc← ( e = aux ) {New constraint defining aux}
15: newcons.append(newc)
16: for all a ∈ ls do
17: newe← fold(�, (a \ commonset) ∪ {aux})
18: Replace a with newe within AST or newcons
19: populateMapAC(newe, map, �)
20: populateMapAC(newc, map, �)
21: AST← AST ∧ fold(∧, newcons)

the number of nodes in the AST. Central to the complexity analysis is the observation
that at most k − 1 AC-CSs may be extracted from one � by X-CSE. The smallest AC-
CS is size two, and extracting this replaces a size two term with a size one term (i.e.
the replacement auxiliary variable). If the original expression is size k, we thus find
one AC-CS and now have a size k − 1 expression. Iterating shows that at most k − 1
AC-CSs may be extracted from one � expression by X-CSE. This gives us a global
limit of O(nk) AC-CS extractions.

To populate map, populateMapAC traverses the AST with S nodes, and for each �
expression e it inserts a reference to e in O(k2) lists within map. Assuming hash table
operations are O(1), populateMapAC takes O(S + nk2) time.1

X-CSE then enters a loop that continues until map is empty. Each iteration of the
loop is as follows. We assume the heuristic takes O(1) time.2 For the given pair,

1This is correct if all expressions to be hashed are size O(1) and computing the hash code is linear. If
either assumption is invalid then an additional factor h is necessary for the time to hash an expression.

2As an example of an O(1) heuristic we could maintain a doubly linked list of keys in map and have the
heuristic simply remove and return the first element of the list.
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Algorithm 2 populateMapAC(A, map, �)
Require: A: Reference to an AST
Require: map: Hash table mapping pairs of expressions to lists
Require: �: The associative and commutative operator

1: if A is expression of � then
2: for all {e1, e2} ⊆ A do
3: Add A to list map[{e1, e2}]
4: for all child ∈ A.Children() do
5: populateMapAC(child, map, �)

its list ls has at most n elements. Note that if the pair occurs more than once in an
expression it might be entered into ls multiple times: to keep the list at size n, when
inserting an expression e into ls we can check the last element of ls: if it is equal
to e, we do not insert e for a second time. The list ls is filtered in O(nd) time. If
the list has length two or greater, then we extract an AC-CS. For the following we
assume that an AC expression is represented by a set data structure with O(1) lookup,
insertion and removal. Creating commonset on line 10 takes O(nk) time. Computing
the domain and creating the auxiliary variable and the new constraint can be done in
O(k) time. The algorithm then replaces commonset in each ls expression in O(nk)
time. Re-populating map (on lines 19 and 20) takes O(S + nk2) because the updated
AC expressions can contain the entire AST. Therefore the entire cost of extracting one
AC-CS is O(S + nk2 + nd), and the total cost of X-CSE is O(nkS + n2k3 + n2kd).

While the complexity may seem high, the algorithm scales with the number of
AC-CSs it is able to exploit, therefore it is relatively quick when there are few or no
AC-CSs, and it takes more time when there is greater potential benefit.

4.3. Comparison with Related Algorithms

X-CSE differs from the existing algorithms I-CSE(-NC) in that it can extract AC-
CSs that are intersections of more than two expressions and AC-CSs containing aux-
iliary variables (from earlier steps). Thus it has a larger palette of AC-CSs to choose
from. Consider the example from Section 2.6: v+w+x+ y = 0, v+w+x+ z = 0,
v + w + y + z = 0. I-CSE(-NC) would have a palette of three AC-CSs: v + w + x,
v + w + y and v + w + z. X-CSE would first extract v + w from all three sums:

a = v + w, a+ x+ y = 0, a+ x+ z = 0, a+ y + z = 0

Second, X-CSE would extract any one of a+x, a+y or a+z, as follows. This second
step is not possible in I-CSE(-NC).

a = v + w, b = a+ x, b+ y = 0, b+ z = 0, a+ y + z = 0

This result is clearly better than I-CSE-NC that extracted only v + w + x and thus
did not connect the third constraint to the other two. I-CSE produced nine constraints
on this example. I-CSE can drastically increase the size of the instance where X-CSE
often makes it more compact. The two are compared experimentally in Section 5.11.
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On this example, I-CSE misses the AC-CS v + w that connects all three of the
original constraints. We propose I-CSE-Iter that iterates I-CSE. I-CSE-Iter first calls
I-CSE on the original constraints, then repeatedly calls I-CSE on the AC-CSs extracted
by the previous call until no more AC-CSs are found. The second iteration of I-CSE-
Iter would find v + w, and indeed it can extract any AC-CS that X-CSE can extract,
solving one potential disadvantage of I-CSE. However, iterating I-CSE may further
increase the size of the problem instance. We evaluate I-CSE-Iter in Section 5.11.

Both rBC2-Y and rBCall-Y (Section 2.6) are able to extract AC-CSs of sums where
the coefficients are not identical but in the same proportion in each sum. They are much
closer to I-CSE (rBC2-Y) and I-CSE-Iter (rBCall-Y) than to X-CSE because copies of
the original expressions are made to allow extraction of conflicting AC-CSs. However
rBC2-Y and rBCall-Y simply copy the expressions once for each AC-CS rather than
packing the AC-CSs into the minimal number of copies. We do not compare X-CSE
with rBC2-Y and rBCall-Y in our experiments, but we have extended X-CSE to capture
a common case of proportional coefficients in Section 5.12 below.

4.4. Implied Constraints for AC-CSE
A further step to promote the identification of AC-CSs is in reformulating a model

to add implied constraints consisting of AC expressions. Savile Row creates implied
sum constraints from allDifferent and global cardinality (GCC) constraints. This is
done by finding a lower and upper bound on the sum of the variables in the allDifferent
or GCC (lb and ub resp.), then adding either

∑
≥ lb and

∑
≤ ub (when lb 6= ub) or∑

= lb = ub where
∑

is the sum of the variables in scope of the original constraint
(except cardinality variables in GCC). The implied constraints are simple examples of
finite-domain cuts as investigated by Bergman and Hooker [6].

To find the value of ub (lb) for a given allDifferent or GCC constraint, we find
an assignment to all the relevant variables such that each variable takes a value from
its domain, the sum of the assignment is maximized (minimized), and the number of
occurrences of each value is within the interval permitted for the value (for AllDif-
ferent, the interval is {0 . . . 1} for every value). The assignment is found using the
minimum cost maximum flow formulation described by Régin [57]. If no assignment
exists with the required properties then the constraint is replaced with false. For exam-
ple, given constraint allDifferent(x, y, z) where all variables have domain {1, 3, 5, 7},
Savile Row adds constraints x+ y + z ≥ 1 + 3 + 5 and x+ y + z ≤ 3 + 5 + 7.

The implied constraints are only added when AC-CSE is switched on. They are
added directly before AC-CSE, and any implied constraint that is unchanged by AC-
CSE is removed afterwards.

5. Reformulations in Savile Row

In this section we describe a range of reformulations, give algorithms to perform
them, and evaluate them on a benchmark set. We evaluate each of the reformulations
separately. Their inter-dependence raises a problem: we cannot try every subset. We
have opted for a cumulative set of experiments, starting with the bare-bones configura-
tion of Savile Row and in each experiment adding one reformulation. If it is successful,
it is retained for all the subsequent experiments.
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5.1. Benchmark Set
The benchmark set is the set of example models and parameter files included with

Savile Row 1.6.5 (available from http://savilerow.cs.st-andrews.ac.
uk/). There are 50 problem classes with 596 instances in total. The set contains a
mixture of satisfaction and optimisation problems. Models are described as required in
the sections below.

5.2. Experimental Context
In our experiments we target the conventional propagation-based CP solver Minion

1.8 (64-bit), with a static variable and value ordering. The static search order means
that any reduction in search tree size must be caused by improved propagation, so we
directly see the effects of improving constraint formulation. We switch on Minion’s
option to perform singleton bound consistency (as described in Section 2.2) directly
before starting search. We also target the SAT solver Lingeling [34] which was win-
ner of the Sequential, Application SAT+UNSAT track of the SAT competition 20143.
We used Savile Row 1.6.5, executed in the OpenJDK Java 1.7.0 141 VM with the 64-
bit server VM. Each reported timing is a median of 5 runs when Minion is the target
solver, and 10 runs (with 10 distinct random seeds 1, . . . , 10) when targeting Lingeling.
Minion always performs the same search given the same input but there is some vari-
ation in run time caused by the environment. The search performed by Lingeling may
be different for two random seeds, so the larger sample of 10 runs is to mitigate the
greater variation in the run times. Both solvers and Savile Row are single-threaded.
Experiments were performed with 32 processes in parallel on a 32-core AMD Opteron
6272 at 2.1 GHz with 256 GB RAM.

The reported timings for Savile Row include time spent running Minion to do do-
main filtering, and do not include time spent running the target solver (whether it is
Minion or Lingeling). In some cases we report timings of the target solver only, and in
other cases total time (which is simply Savile Row time plus target solver time). When
Minion is the target solver, a time limit of 30 minutes is applied to the total time. With
Lingeling a time limit of 1 hour is applied. Lingeling is able to solve many more of the
instances than Minion so this allows us to use a longer time limit.

There are 13 configurations of Savile Row used in the experiments, summarised in
Table 1. The table refers to the reformulations described in Sections 5.4 to 5.12 below.

5.3. Statistical Analysis
To compare two configurations A and B of Savile Row, we first take the median

of the total time for each instance and each configuration. The total time is the time
taken by Savile Row (including any calls to a solver for preprocessing) plus time taken
by the backend solver. We chose the median because it is less affected by outliers
than the mean. Instances where either configuration timed out are discarded. For the
remaining instances, we take the quotient of the two medians (BA ). Finally we take the
geometric mean of the set of quotients to obtain a single statistic comparing the two
configurations. A is considered better than B iff the geometric mean is greater than 1.

3Lingeling version ayv 86bf266b9332599f1b876e28a02fe8427aeaa2db
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Config name Description
Simp Simplifiers are enabled. All other optimisations are disabled.
VarUnif Simp plus variable unification.
DomFilt VarUnif plus domain filtering.
EDomFilt DomFilt plus extended domain filtering.
Aggreg DomFilt plus aggregation.
IdentCSE Aggreg plus Identical CSE.
ActiveCSE IdentCSE plus Active CSE.
X-CSE IdentCSE plus AC-CSE implemented by X-CSE.
X-CSE-Alone Simp plus AC-CSE implemented by X-CSE.
I-CSE IdentCSE plus AC-CSE implemented by I-CSE.
I-CSE-NC IdentCSE plus AC-CSE implemented by I-CSE-NC.
I-CSE-Iter IdentCSE plus AC-CSE implemented by I-CSE-Iter.
ActiveXCSE IdentCSE plus Active AC-CSE implemented by Active X-CSE.

Table 1: Configurations of Savile Row used in the experiments below.

We chose the geometric mean because it is more appropriate for quotient values
than the arithmetic mean, being based on product rather than sum. Suppose one in-
stance was twice as fast with configuration A, and another was twice as fast with B.
The two quotients would be 2 and 0.5, and their geometric mean would be 1. The
arithmetic mean would be 1.25 which gives the misleading impression that A is faster.

If the geometric mean is close to 1, it may not be clear whether there is a signif-
icant improvement between the two configurations. To test for a significant improve-
ment using a traditional statistical test, we would need a non-parametric one-tailed test.
However, non-parametric tests are inappropriate as they fail to take account of degree
of difference. Suppose (when enabling some feature of Savile Row) 10% of instances
are 100 times faster, and the other 90% are 1% slower. Non-parametric tests would be
unlikely to reach significance or may even indicate the feature had a negative effect.
Instead of using a traditional non-parametric test we compute a confidence interval for
the geometric mean by bootstrapping. There are 596 benchmark instances and we take
100,000 bootstrap samples (with replacement) of size 596 from the set of benchmark
instances. For each bootstrap sample we compute the geometric mean and take the
quantiles at 2.5% and 97.5% to give a 95% confidence interval. If the interval contains
1 then we have not reached the significance threshold. Otherwise, the difference is
statistically significant. The location of the interval (above or below 1) indicates which
configuration is faster.

For example, when comparing X-CSE to IdentCSE (with the CP solver) the geo-
metric mean is 1.492, and the bootstrap confidence interval is [1.326, 1.693]. Figure 2
plots the distribution of the bootstrap samples. X-CSE has a large benefit for some
benchmark instances and makes almost no difference to others. Despite the highly
asymmetric and clustered quotient data, the histogram has a smooth (possibly slightly
skewed) bell-curve shape. This gives us confidence that 100,000 samples is sufficient.
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Figure 2: Histogram of the geometric means of the bootstrap samples when comparing X-CSE to IdentCSE.

5.4. Experiment one: Variable unification and domain filtering

Variable unification is implemented in several modelling tools as described in Sec-
tion 2.1. In Savile Row variable unification is implemented as an addition to the sim-
plifier mechanism (Section 3.3). During a simplifier pass, when an expression x = y
or x ↔ y is found in the top level conjunction, one variable is chosen to be removed.
Supposing y will be removed, the new domain of x will be the intersection of the two
domains and y will be replaced by x throughout. Similarly when an expression x = c
or x ↔ c is found (with constant c) or the domain of x is {c}, x is replaced by c
throughout. Also for a Boolean variable x, if x or ¬x appears in the top level con-
junction then x is assigned. When variable unification is used, it is applied during all
simplifier passes. In each pass, variable unification and simplifiers are applied until a
fixed point is reached.

Domain filtering is an established preprocessing technique as described in Sec-
tion 2.2. In Savile Row domain filtering is implemented by tailoring the problem in-
stance for output to Minion and using Minion’s standard propagation combined with
singleton consistency [7] applied to the upper and lower bounds only (SACBounds).
Subsequently the tailoring process is performed a second time, making use of the fil-
tered variable domains. The second tailoring process may target a different solver
or class of solvers, but is otherwise identical to the first tailoring process. MiniZinc
employs a similar approach with two tailoring processes [39] using the standard propa-
gation of the Gecode solver [28]. The main difference is that we use the more powerful
and time-consuming SACBounds.

In this paper we consider two versions of domain filtering. The first (standard
domain filtering) is to apply domain filtering to variables defined by find statements
only. Variables defined by find statements always have the same name in the first and
second tailoring process, therefore it is straightforward to apply the filtered domains in
the second tailoring process. This is the version used in our previous work [47, 50].
Extended domain filtering (EDF) transfers filtered domains of auxiliary variables that
may have different names in the first and second tailoring process. This is done by
linking each auxiliary variable to an expression that it represents. The expression acts
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Figure 3: DomFilt vs Simp. Both plots show total time (i.e. solver time plus Savile Row time). On the left
the solver is Minion and on the right it is SAT (Lingeling). In each case, the y axis is the speed up quotient
caused by the optimisation, so points above 1 on the y axis exhibit a speed improvement. The x axes are
time (in seconds) for the variant without the optimisation. Both axes are logarithmic.

as a canonical name that remains the same in the first and second tailoring process.
MiniZinc implements extended domain filtering using a different canonical name [39].
The EDF algorithm is given in the supplementary material [48] with an experiment that
shows no significant improvement over standard domain filtering.

Experimental Results
For brevity we evaluate variable unification and standard domain filtering together

in one experiment. Elsewhere we give fuller results with two separate experiments [48].
In Figure 3 we compare standard domain filtering plus variable unification to the ba-
sic configuration with neither option (DomFilt vs Simp). With the CP solver there is
an improving trend: for easy instances the overhead of performing the entire tailoring
process twice dominates, but for harder instances the benefit can outweigh the cost.
The trend is particularly clear for BIBD, Langford and OPD problem classes. Geo-
metric mean speed-up of all instances is 0.962 with confidence interval [0.939, 0.987].
Instances where Simp took 10 seconds or more (total time) have a geometric mean
speed-up of 1.176 with confidence interval [1.129, 1.226].

When using the SAT solver the effect varies considerably with some instances being
solved (i.e. all variables are assigned) by domain filtering (Send More Money, Magic
Sequence) and thus exhibiting large speed-ups. Some other instances such as those of
Langford and Killer Sudoku are substantially improved. For 572 of 596 instances the
SAT encoding has fewer variables and fewer clauses and for another 13 instances the
encoding remains the same size. 11 instances exceeded the clause limit and no SAT
encoding was produced. In some cases, performance is degraded and the reason is not
clear. For example, on two instances of Peg Solitaire the SAT solver is more than two
times slower, despite the number of SAT variables being reduced by 40% on average.
However, on the full set of 596 instances the improvement is clear: the geometric mean
speed-up is 1.329 with confidence interval [1.256, 1.407].
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Figure 4: Aggregation of allDifferent on arbitrary expressions A, B, C and D.

In summary, variable unification and standard domain filtering are beneficial on
average for harder instances (taking over 10 seconds) or when targeting SAT. Further-
more they enable AC-CSE to substantially improve the formulation of some problem
classes (as shown in Section 5.9 below). Hence both reformulations will be switched
on for all subsequent experiments.

5.5. Experiment two: Aggregation
Section 2.3 surveys the existing work on aggregation. In the current version of

Savile Row two types of aggregation are implemented. The first collects 6=, < and
allDifferent expressions into a new allDifferent using a greedy maximal clique finding
algorithm. A graph is constructed where vertices represent expressions and edges in-
dicate that two expressions must be different. The algorithm builds a clique starting
with an arbitrary edge representing a 6= or < constraint. If the clique has 3 or more
vertices then an allDifferent is introduced and and all subsumed 6= constraints are re-
placed with true in the AST (the graph remains unchanged). The algorithm continues
to build cliques starting with 6= or < constraints (excluding those that have already
been included in a new allDifferent) until all such constraints have been considered.
Figure 4 gives an example. The allDifferent constraints introduced by aggregation may
contain any numerical expression. Supposing the graph has n vertices andm edges, the
greedy clique finding algorithm takes time O(mn2). Our results with aggregation of
allDifferent in Savile Row confirm those reported for other systems that have a similar
clique finding algorithm [24, 36].

The second type of aggregation collects a set of atleast and atmost constraints
with identical scopes into a single global cardinality constraint on the same scope,
constraining the union of the sets of values of the source constraints.

The two types of aggregation are both lightweight, performing only syntactic oper-
ations with no iteration over variable domains, so the risk of slowing down tailoring is
small and the potential benefit of identifying a global constraint is significant.

Experimental Results
We compare the configurations Aggreg and DomFilt in Figure 5. With the CP

solver the problem classes Golomb Ruler, Graph Colouring and N-Queens 2 are most
affected by aggregation (each case being aggregation of not-equal constraints to allD-
ifferent). Aggregation improves performance of the CP solver, with two exceptions
in the Graph Colouring class that take less than 1s to solve. The largest speed-up
is 231 times on the Golomb Ruler instance size 10. On Golomb Ruler, aggregation
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Figure 5: Aggreg vs DomFilt total time. On the left the solver is Minion and on the right it is SAT. Axes are
the same as Figure 3.

identifies the global allDifferent constraint and as a side effect removes many identical
occurrences of difference expressions ruler[j]-ruler[i]. The geometric mean
speed-up quotient (of total time) is 1.066 with confidence interval [1.012, 1.133].

The picture is different when using the SAT solver. For Graph Colouring (most
instances) and Golomb Ruler, aggregation reduces the performance of the SAT solver.
This indicates that the encoding of the set of allDifferent constraints can be worse than
the encoding of the original set of not-equal constraints. AllDifferent is decomposed
into a sum (≤ 1) constraint for each value, then a generic sum encoding is used as
described in Section 3.5. For Golomb Ruler the decomposition re-introduces duplica-
tion of the expressions ruler[j]-ruler[i] for all i < j, hence aggregation is
complemented by Identical CSE (as shown in the following experiment).

For Graph Colouring, aggregation affects four out of five instances, and for all
four it makes the SAT encoding larger. The effect on solver efficiency is negative.
A single 6= constraint can be part of more than one maximal clique and hence after
aggregation it may be represented in more than one allDifferent constraint. Therefore
when using aggregation a single 6= constraint may be represented multiple times in the
SAT encoding, leading to a larger and less efficient encoding.

The geometric mean speed-up with the SAT solver is 0.983 with confidence interval
[0.964, 0.999]. In summary, aggregation is beneficial for the CP solver and marginal
for the SAT solver, and it will be enabled for all subsequent experiments.

5.6. Normalisation for CSE

A variety of existing CSE techniques are surveyed in Sections 2.4, 2.5 and 2.6.
Normalisation [60] may be applied to extend the reach of CSE reformulations.

The simplifiers described in Section 3.3 place the AST into a limited normal form.
Normalisation extends this normal form by sorting the subexpressions of all expres-
sions where the order is unimportant. For example, x + y + z and y + z + x are
semantically equal and normalisation will make them syntactically identical. Apart
from associative-commutative operators this affects numerical functions such as min
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Algorithm 3 Identical-CSE(AST, ST)
Require: AST: Abstract syntax tree representing the model
Require: ST: Symbol table containing CSP decision variables

1: newcons← empty list {Collect new constraints}
2: map← empty hash table mapping expressions to lists
3: populateMap(AST, map)
4: for all key in map in decreasing size order do
5: ls← map(key) {ls is a list of identical AST nodes}
6: ls← filter(isAttached, ls) {Remove AST nodes no longer contained in AST or

newcons}
7: if length(ls) > 1 then
8: e← head(ls)
9: dom← domain(e)

10: aux← ST.newAuxVar(dom)
11: newc← ( e = aux ) {New constraint defining aux}
12: newcons.append(newc)
13: for all a ∈ ls do
14: Replace a with copy(aux) within AST or newcons
15: AST← AST ∧ fold(∧, newcons)

Algorithm 4 populateMap(A, map)
Require: A: Reference to an AST
Require: map: Hash table mapping expressions to lists

1: if A is a candidate for CSE then
2: Add A to list map[A]
3: for all child ∈ A.Children() do
4: populateMap(child, map)

and max, and Boolean functions such as = and allDiff. Normalisation is performed
directly before the execution of any CSE algorithm in all the following experiments.

5.7. Experiment three: Identical CSE

The simplest form of CSE that we consider is Identical CSE, which extracts sets
of identical expressions. Suppose x × y occurs three times in a model. Identical CSE
would introduce a new decision variable a and new constraint x × y = a. The orig-
inal occurrences of x × y would be replaced by a. In Savile Row, Identical CSE is
implemented with Algorithm 3. Andrea Rendl’s Tailor [31, 59] and MiniZinc [65, 39]
also implement Identical CSE. In contrast to Tailor and MiniZinc, our algorithm is not
tied to the process of flattening nested expressions into primitive expressions supported
directly by the constraint solver. This is advantageous because it allows us to identify
and exploit common subexpressions in expressions that do not need to be flattened.

The first step is to recursively traverse the model (by calling Algorithm 4) to collect
sets of identical expressions. Algorithm 4 collects only expressions that are candidates
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for CSE. Atomic variables and constants are not candidates. Compound expressions
are CSE candidates by default, with exceptions that depend on the target solver.

When the target is a SAT encoding we exclude all compound expressions that can
be encoded as a single SAT literal. This avoids creating a redundant SAT variable that
is equal to (or the negation of) another SAT variable, thus improving the encoding. The
following expressions are not candidates: x = c, x 6= c, x ≤ c, x < c, x ≥ c, x > c,
¬x (where x is a decision variable and c is a constant). When the target is Minion,
¬x is not a candidate because negation is natively supported. Unary constraints x = c,
x 6= c, x ≤ c, x < c, x ≥ c, x > c, x ∈ {c1, c2, . . .} (where x is a decision variable and
c, c1, c2 are constants) are not candidates when they are contained in a conjunction or
disjunction. When a unary constraint is propagated it is entirely represented in the do-
main so extracting unary constraints by CSE will not strengthen propagation. However,
when a set of identical unary constraints must be extracted by general flattening (Sec-
tion 3.4), Identical CSE will reduce the number of auxiliary variables and constraints.
Minion natively supports conjunction and disjunction of any constraint [35] so there is
no benefit from extracting unary constraints from conjunctions or disjunctions.

The second step of Identical CSE is to iterate through sets of expressions in de-
creasing size order (line 4). When an expression e is eliminated by CSE, the number of
occurrences of any expressions contained in e is reduced. Therefore eliminating long
expressions first may obviate the need to eliminate short expressions. For each set (of
size greater than one) of identical expressions a new decision variable aux is created,
and each of the expressions is replaced with aux. One of the expressions e in the set
is used to create a new constraint e = aux . Crucially the new constraint contains the
original object e so it is possible to extract further CSEs from within e.

The domain(e) function (line 9) obtains a finite domain for the new auxiliary vari-
able. When extended domain filtering is off, domain(e) returns {bec . . . dee}, otherwise
it returns the filtered domain as described in Section 5.4. Finally, if an expression ap-
pears in the top-level conjunction, any other occurrences of it are replaced with true.

Identical CSE is a relatively straightforward optimisation and is implemented in a
number of tools including MiniZinc [65] and IBM CP Optimizer Presolve [36].

Experimental Results
Our experiments confirm that Identical CSE is beneficial for a number of problem

classes. Figure 6 plots our results comparing IdentCSE to Aggreg. When using the
CP solver, Nurse Rostering exhibits the largest speed up with Identical CSE. There are
identical sums shared between two groups of constraints, and extracting these strength-
ens propagation. For all other problem instances Identical CSE did not change the
search tree. Excluding Nurse Rostering, the largest speed up is 3.13 for the Knights
Tour size 7 instance, where expressions such as |tour[1]/7 - tour[2]/7| oc-
cur twice, and tour[1]/7 occurs four times initially (twice after the containing ex-
pressions are extracted). Extracting these two types of common subexpression simply
speeds up propagation. Peg Solitaire Table has no identical common subexpressions,
however Identical CSE causes a substantial overhead on this class with Aggreg being
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Figure 6: Comparing IdentCSE to Aggreg (total time) with the CP solver (left) and the SAT solver (right).
Axes are the same as Figure 3.

(at most) 3.19 times faster than IdentCSE.4

With the SAT backend, Identical CSE is particularly helpful for Car Sequencing,
EFPA and Golomb Ruler. In Car Sequencing the identical expressions are x ∈ S for
some variable x and integer set S that are contained in sums. For EFPA the decompo-
sition of lexicographic ordering constraints (described in Section 3.5) is improved by
Identical CSE and is also cross-connected with constraints requiring d differences be-
tween rows of the matrix. Golomb Ruler has identical common subexpressions within
the decomposition of allDifferent, as described in the section above.

For the CP solver the geometric mean speed-up is 1.035 with confidence interval
[0.988, 1.097]. The result is likely to be positive but does not quite reach the signifi-
cance threshold. For the SAT solver the same statistic is 1.238 with confidence interval
[1.190, 1.291]. Identical CSE will be switched on for all subsequent experiments.

5.8. Experiment four: Active CSE
Active CSE extends Identical CSE by allowing non-identical expressions to be ex-

tracted using a single auxiliary variable. We reviewed the related work in Section 2.5.
As an example, suppose we have x = y and x 6= y in the model. We can introduce a
single Boolean variable a and a new constraint a↔ (x = y), then replace x = y with
a and x 6= y with ¬a. For solvers that natively support negation (such as SAT solvers)
¬a can be expressed in the solver input language with no further rewriting, so we have
avoided expressing both x = y and x 6= y in the solver input language.

The Active CSE algorithm in Savile Row extends Algorithm 3. For each candidate
expression e a simple transformation is applied to it (for example producing ¬e). Sim-
plifiers and normalisation are applied to place ¬e in the normal form. The algorithm
then queries map to discover expressions matching the transformed expression.

4The overhead is not reproducible across different computers and JVM versions. In an informal test with
one instance of Peg Solitaire Table using a different computer and JVM we found the overhead to be 1.16
times as opposed to 2.43 times in the experiment.
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Figure 7: Comparing ActiveCSE to IdentCSE (total time) with the CP solver (left) and the SAT solver (right).
Axes are the same as Figure 3.

Active CSE in Savile Row 1.6.5 applies four transformations: Boolean negation,
arithmetic negation, multiply by 2, and multiply by -2. For example, x−y+z matches
y− x− z using arithmetic negation. Rendl implemented Boolean negation active CSE
in Tailor, along with active reformulations based upon De Morgan’s laws and Horn
clauses [59]. In Savile Row, the use of negation normal form obviates the use of the
latter two. To our knowledge MiniZinc [65, 39] does not implement Active CSE.

Experimental Results
Figure 7 plots our results comparing ActiveCSE to IdentCSE. With the CP solver

Active CSE makes very little difference on any problem class. In most cases the search
tree is unchanged, and the largest reduction in search nodes is 0.9%. When using the
SAT solver, the instances that are affected by Active CSE are scattered, with some
(in each affected class) improved and others degraded. The geometric mean speed-
up quotient of total time is 0.936 when using the CP solver, with confidence interval
[0.924, 0.949], and 0.976 when using the SAT solver with confidence interval [0.966,
0.985]. Active CSE will not be enabled for any subsequent experiment.

5.9. Experiment Five: Evaluation of X-CSE
We introduced the algorithm X-CSE in Section 4. In this experiment we look in

detail at six problem classes where AC-CSs arise. We apply X-CSE to disjunction,
conjunction, sum and product. These types are represented as a single AST node with
n children in Savile Row. Two other AC types appear in our benchmarks: min and
max (in one problem class each) and they exhibit no AC-CSs. X-CSE scales with the
number of AC-CSs, so the cost of applying X-CSE to min and max would be minimal.

Case study 1: BIBD
The BIBD problem is described in high-level terms as our motivating example

(Section 1.2). We use Meseguer and Torras’ first model of BIBD [43], extended with
Lex 2 symmetry breaking constraints [19]. BIBD is parameterised by (v, k, λ) and has
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Figure 8: Comparing X-CSE to IdentCSE. (Left) BIBD search nodes of instances that do not time out.
(Right) BIBD total time. The upper plots are with the CP solver and the lower plots are with the SAT solver.

constants r = λ(v−1)
k−1 and b = λv(v−1)

k(k−1) . The model has a v by b matrix m of Boolean
variables. Each of the v rows sums to r (row constraints), and each of the b columns
sums to k (column constraints). The scalar product of each pair of rows has value λ:

∀i1, i2 ∈ {1 . . . v} . i1 < i2 → (

b∑
j=1

m[i1, j]×m[i2, j]) = λ

Rows and columns are ordered lexicographically to remove some symmetry:

∀i ∈ {1 . . . v − 1} . m[i, . . .] ≤lex m[i+ 1, . . .]
∀j ∈ {1 . . . b− 1} . m[. . . , j] ≤lex m[. . . , j + 1]

This model initially has no CSs of any type (identical, active or AC). Domain filtering
(Section 5.4) assigns some of the variables (as seen in Figure 1). As discussed in
Section 1.2, the scalar product constraints are then simplified causing AC-CSs to appear
among scalar product constraints, and between scalar product and row sum constraints.

We evaluated X-CSE on the 24 instances in Figure 1 of Puget [55] and also with
(v, k, λ)=(7, 3, 20) and (8, 4, 12). When using the CP solver, we found that 3 instances
time out with IdentCSE and 2 of those also time out with X-CSE. For the remaining
23 instances where neither time out, X-CSE always decreases the node count. Figure 8
(upper left) plots the reduction factor for the 23 instances. Harder instances tend to
show a greater reduction in node count.
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Figure 8 (upper right) plots speed-up of total time with X-CSE. For the easiest
instances, the reduction in node count does not cause a measurable difference in the
run time of the constraint solver. The slight increase in total time is caused by the
up-front cost of X-CSE. On the harder instances, MINION search takes up most of
the total time and X-CSE speeds up search substantially by reducing the number of
search nodes. Figure 8 (upper right) peaks with instance (12, 3, 4), which has a 78-fold
reduction in nodes and speed up of 43.2 times. The time taken by Savile Row increased
from 1.7 s to 2.6 s. X-CSE typically increases the number of constraints and auxiliary
variables, reducing the node rate of the CP solver. With the SAT solver we found that
the same 2 instances timed out with both IdentCSE and X-CSE. For the other 24, X-
CSE reduces the median search nodes for 22 instances and increases 2, as shown in
Figure 8 (lower left). The reduction in search nodes is much less dramatic than with
the CP solver. Figure 8 (lower right) plots speed-up of total time caused by X-CSE
with the SAT solver. The peak speed-up quotient is 4.14 for instance (8, 4, 12), and the
median search nodes is reduced by 7.47 times.

Implied constraints for BIBD
Frisch, Jefferson, and Miguel [23] derived a set of implied constraints for BIBD

that drastically improve the performance of the model. First they observed that the first
two rows and first column of the BIBD can be assigned by manually reasoning about
the constraints. Second, for each of the remaining rows i, the row sum constraint is
split into two parts: all indices where row 1 is 0 sum to r − λ, and all other indices
sum to λ (by combining the row sum to r with the scalar product constraint between
rows 1 and i). The process is repeated with rows 2 and i, giving four constraints. These
implied constraints are derived using an approach resembling manual AC-CSE.

The automated approach improves on Frisch et al. in two ways. First, domain
filtering assigns not just the first two rows and first column but also parts of other
rows and columns (see Figure 1 for example). Second, X-CSE is able to link multiple
scalar product constraints and a row constraint, whereas the implied constraints are
each derived from one scalar product and one row constraint.

The implied constraints alone reduce node count with the CP solver (see Figure 8
(upper left)) and for most instances with the SAT solver (lower left), but are not as
effective as X-CSE. For most of the harder instances the implied constraints speed
up solving but by a smaller degree than X-CSE. Adding the implied constraints then
applying X-CSE is slightly more effective than X-CSE alone in reducing node count
for the CP solver. However this does not translate to a clear improvement in search
efficiency. Remarkably, X-CSE is able to improve the sophisticated model on most
instances for both solvers.

Case study 2: Optimal Portfolio Design
The Optimal Portfolio Design problem [20] (Problem 65 at www.csplib.org) is a

challenging problem from computational finance. Following the description given
in [20], A Collateralised Debt Obligation (CDO) is a portfolio of credit assets, such
as bonds, loans, or credit default swaps. In order to manage risk, CDOs are divided
into uniformly sized tranches each consisting of a subset of the underlying collection
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Figure 9: Comparing X-CSE to IdentCSE. (Left) OPD search nodes of instances that do not time out. (Right)
OPD total time.

of credit assets. The task is to choose the constituents of the tranches so that each pair
of tranches overlap as little as possible, in order to spread the risk.

The OPD problem can be seen as a more challenging optimisation variant of the
BIBD problem, in which we are required to find v tranches each composed of a cardi-
nality r subset of b credit assets, while minimising λ, the cardinality of the maximum
intersection between any pair of tranches.

We evaluated X-CSE on a set of 101 OPD instances composed as follows: All
54 instances from Flener et al [20]; a further 18 instances from CSPLib; and finally 29
further instances from the above BIBD experiments. The results are plotted in Figure 9.
Similarly to the BIBD results, when using the CP solver X-CSE produces a decrease in
node count on all but one instance, and this reduction is more pronounced for the harder
instances. In terms of total time, for the easiest instances there is again a small increase
caused by the up-front cost of X-CSE, but on the harder instances where search is the
dominant cost X-CSE speeds up the search substantially. Overall, for CP the average
speed-up is 1.288 with confidence interval [1.107, 1.527]. When using the SAT solver,
the average speed up is 1.217 with confidence interval [1.059, 1.428].

Although the structure of the OPD problem differs somewhat from that of the BIBD
problem, in particular in that there is no sum on the columns of the design matrix, by
a similar process to that described for BIBD, Savile Row is able to fix the first row of
the OPD matrix and therefore identify sub expressions that X-CSE can exploit.

Case study 3: The SONET problem
The SONET problem [64] is a network design problem where each node is con-

nected to a set of rings (fibre-optic connections). The simplified SONET problem
(Section 3 of [64]) has the following parameters: the number of nodes n, the upper
limit on the number of rings m, the maximum number of nodes per ring r, and a set of
pairs that must be connected. For each of these pairs there must exist a ring connected
to both nodes. The number of node-ring connections is minimised.

The problem is modelled as follows. We have a Boolean matrix rings indexed by
[1 . . .m, 1 . . . n]. rings[a, b] indicates whether ring a is connected to node b. For each
ring a we have the sum constraint

∑n
b=1 rings[a, b] ≤ r. The connectedness constraint

29



5e−01 5e+00 5e+01 5e+02

0
2

4
6

8

Total time with CP solver

Total time with IdentCSE (s)

S
pe

ed
 u

p 
fa

ct
or

 w
ith

 X
−

C
S

E

●●●● ●

● ●

●

●

●●●

●

SONET
Molnar's

5e−01 5e+00 5e+01 5e+02 5e+03

0
2

4
6

8
10

12

Total time with SAT solver

Total time with IdentCSE (s)

S
pe

ed
 u

p 
fa

ct
or

 w
ith

 X
−

C
S

E

●

●

●

●

●

●
●●●●●●

●

SONET
Molnar's

Figure 10: Comparing X-CSE to IdentCSE for SONET and Molnar’s Problem total time, with the CP solver
(left) and the SAT solver (right).

between two nodes b1 and b2 is expressed as a disjunction of sums:

∃ a ∈ {1 . . .m}. (rings[a, b1] + rings[a, b2] ≥ 2)

The minimisation function is the sum of rings. Rings are indistinguishable so we use
lexicographic ordering constraints to order the rows of rings. The static variable order-
ing we use is the reading order of rings and value order is 0 then 1. This model is very
simple and does not include implied or dominance constraints [64]. The constraints are
already flat and only the minimisation sum needs to be flattened, thus only one auxil-
iary variable is created by Savile Row without X-CSE. There are AC-CSs among the
connectedness constraints, the ring sum constraints and the minimisation sum.

We generated 24 instances with n ∈ {6 . . . 13}, r ∈ {3, 4, 5}, and m = 10. The
demand graph when n = 13 is Figure 1 of Smith [64]. For smaller n we take the
subgraph with vertices {(n+ 1) . . . 13}, and edges adjacent to these vertices, removed.
Figure 10 (left) plots the speed-up factor for X-CSE when using the CP solver. For
IdentCSE with the CP solver, all instances with n ≥ 10, also n = 9, r = 4 and
n = 9, r = 3 time out. X-CSE is able to solve to optimality one additional instance
n = 10, r = 5, which solved just within the time limit and appears on the right edge
of the plot with a speed-up of 1.23. X-CSE improves solving speed for all but the most
trivial instances, with a peak speed-up of 7.17. When using the SAT solver as shown in
Figure 10 (right), IdentCSE solves all but two instances of SONET to optimality, and
all instances are solved to optimality with X-CSE. The two instances that are not solved
with IdentCSE appear on the far right of the plot. Instance n = 13, r = 5 exhibits the
largest speed-up of 10.7 times, and it is one of the two that timed out with IdentCSE.

Case study 4: Molnar’s Problem
Molnar’s problem [22] (CSPLib problem 035 [21]) is to find a square matrix M of

integers. The model has two parameters: the size k (i.e.M has size k×k) and the max-
imum absolute value of integers in M , named d. The initial domain of each element
of M is {−d . . .− 2} ∪ {0} ∪ {2 . . . d}. The first constraint is that the determinant of
M is 1 or −1 (following the model of Frisch et al. [22]). For the second constraint we
construct another matrix S where each entry of S is the square of the corresponding

30



●●

●

●

●

●
●

●

●

●

● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

1 5 10 50 5005e
−

01
1e

+
01

5e
+

02

Total time with CP solver

Total time with Identical CSE (s)

S
pe

ed
 u

p 
fa

ct
or

 w
ith

 X
−

C
S

E

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

1 5 10 50 500

0.
5

2.
0

5.
0

20
.0

Total time with SAT solver

Total time with Identical CSE (s)

S
pe

ed
 u

p 
fa

ct
or

 w
ith

 X
−

C
S

E

Figure 11: Comparing X-CSE to IdentCSE for Killer Sudoku 16x16 total time, with the CP solver (left) and
the SAT solver (right).

entry of M . The determinant of S must also be 1 or −1. We used the Leibniz formula
for determinants, and expressed a2 as a× a to allow more AC-CSs of products. When
k = 3 we have the following two matrices and two constraints. In addition we break
symmetry on M by lexicographically ordering rows and columns.

M =

[
a b c
d e f
g h i

]
, S =

[
a2 b2 c2

d2 e2 f2

g2 h2 i2

]
|M | = aei− afh+ bfg − bdi+ cdh− ceg ∈ {−1, 1}

|S| = aaeeii− aaffhh+ bbffgg − bbddii+ ccddhh− cceegg ∈ {−1, 1}

There are multiple AC-CSs of products, for example aa and aei. Some connect
the two sums, and others connect terms within one sum. X-CSE is able to extract a
particular AC-CS from the same product more than once on this problem. Consider
aei: extracting it once creates a new constraint aei = x and modifies the existing
expression aei to x, and the expression aaeeii to x × aei. Now X-CSE extracts aei
a second time from the new constraint and one of the modified expressions, creating a
second auxiliary variable (that will later be unified with x).

Figure 10 (left) plots the speed-up quotient with the CP solver for Molnar’s Problem
on the twelve instances where k ∈ {2 . . . 4} and d ∈ {2 . . . 5}. X-CSE is more useful
for the more difficult instances. Instances where k = 4 and d ≥ 3 time out with both
IdentCSE and X-CSE. The peak speed-up quotient is 5.73. Figure 10 (right) plots the
speed-up quotient with the SAT solver. Both IdentCSE and X-CSE time out when
k = 4 and when k = 3 and d ≥ 4. The peak speed-up quotient is 8.79.

Case study 5: Killer Sudoku
The standard Killer Sudoku [45] has a 9 × 9 grid where each row and column are

allDifferent, and the nine non-overlapping 3× 3 subsquares are also allDifferent. Each
slot in the grid is initially empty and takes a digit 1 . . . 9. Clues are sets of squares
that sum to a given value (and are also allDifferent). We found 9 × 9 Killer Sudoku
instances to be very easy, so we used a 16 × 16 grid with 16 4 × 4 subsquares, and
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each slot takes a number 1 . . . 16. We generated 100 instances by first creating 100
random assignments to the 16×16 grid. These assignments satisfy the row, column and
subsquare allDifferent constraints. Second, for each random assignment we generated
clues of lengths 1 to 5 using random walks from random starting points. (For brevity we
omit full details of instance generation: Instances are included with Savile Row 1.6.5.)
Traditional Killer Sudoku puzzles have exactly one solution. The random 16 × 16
instances may be unsatisfiable and may have multiple solutions.

AC-CSE alone does nothing because the sums in the clues are the only AC expres-
sions and they do not overlap. However the sums overlap with allDifferent constraints.
Each allDifferent constraint on a row, column or subsquare represents a permutation of
{1 . . . 16} which sum to 136. Savile Row automatically adds implied sum constraints
as described in Section 4.4. In the first tailoring process the implied sums will be∑
X = 136 where X is the set of variables in the row, column or subsquare. In the

second tailoring process some variables may be assigned and deleted, with the assigned
value removed from other variables in the same row, column or subsquare. The implied
sums for rows, columns and subsquares will be of the form

∑
X = c but the constant

c may differ. X-CSE then finds AC-CSs among rows, columns, subsquares and clues.
Figure 11 (left) plots the speed-up quotient for Killer Sudoku when using the CP

solver. Without X-CSE, 44 instances timed out. With X-CSE, 24 instances timed
out. As the instances become more difficult, the trend is towards greater speed-up
by X-CSE. The plot peaks at 1671 times faster. On this instance, with the IdentCSE
configuration Savile Row took 1.15s and MINION timed out after exploring 9,188,782
nodes. With X-CSE, Savile Row took 0.95s and MINION took 0.13s to explore 4 nodes.
The geometric mean speed-up quotient of total time is 9.72 over 100 instances.

When using the SAT solver the results are still very positive, but not as striking.
Figure 11 (right) shows that X-CSE improves most instances but degrades performance
on others. The geometric mean speed-up quotient of total time is 2.119 with confidence
interval [1.720, 2.625]. IdentCSE times out for three instances and X-CSE is able to
solve two more. There are two main groups of instances, one where X-CSE enables
domain filtering to solve or almost solve the instances (making the SAT encoding very
small), and another where X-CSE is (for the most part) increasing the size of the SAT
encoding. In 91 of 100 instances, if the SAT encoding has more variables then the total
time is greater.

Case study 6: Car Sequencing
The Car Sequencing problem [51] (CSPLib problem 1) serves as a prototypical

example of a sequencing problem, of which many other examples exist, and shows
how common subexpressions can arise and be exploited. The problem is an abstracted
factory scheduling problem, and is NP-hard on its own [18]. The goal is to manufacture
cars on an assembly line. The cars are not identical: there are a set of options that may
be included (for example, air conditioning). Each option is fitted to the cars at a station
on the assembly line, and each station s has a capacity constraint: it can take at most
ps of every qs consecutive cars, where ps and qs are given. For each class of (identical)
cars, the number of that class to be manufactured is given along with the set of options
required by that class.
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b
1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Figure 12: Car Sequencing AC-CSE example, with 10 cars in total. Blue boxes represent scopes of sums
over the Boolean variables b1 . . . b10. The first three rows represent station capacity constraints (each one
a sum ≤ 2) and the last row represents the implied constraint (sum = 5). Curved boxes represent AC-CSs.
The pair on the left (gray and red) can both be extracted, and the pair on the right (black and green) conflict
and cannot both be extracted by X-CSE.
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Figure 13: Comparing X-CSE to IdentCSE for Car Sequencing total time, with the CP solver (left) and the
SAT solver (right).

We represent each car class with an integer and the sequence of cars as a sequence
of integer variables seq. A global cardinality constraint [56] ensures the required num-
ber of each class is manufactured. The station capacity constraints are expressed as
sums ≤ ps of expressions (seq [i] ∈ Sopt) where Sopt is the set of car classes that re-
quire opt. Finally an implied constraint is added for each option that states the option
is fitted the required number of times over the whole sequence. These constraints are
also sums of (seq [i] ∈ Sopt) expressions. The model is much simpler than others in the
literature [58, 33, 11, 46] and as it stands it will not propagate well in a conventional
CP solver. The search branches on seq in order and assigns values in ascending order.

The expressions x ∈ Sopt are extracted by Identical CSE leaving sums of Boolean
variables. For each option, the station capacity constraints overlap with each other
and also with the implied constraint for the option. X-CSE connects together all the
constraints related to a single option, but is not able to exploit every AC-CS since some
pairs conflict. Figure 12 shows a conflicting pair of AC-CSs on a small example.

Figure 13 plots our results with the CP solver and the SAT solver. The SAT solver
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Figure 14: Comparing X-CSE to IdentCSE (total time) with the CP solver (left) and the SAT solver (right).

is more successful in solving these instances both with IdentCSE and X-CSE. For both
solvers X-CSE improves the model considerably with peak speed-up quotients of over
100 times on the most difficult instances solvable within the time limit.

It is likely that an aggregation approach (producing a set of global sequence con-
straints [58] or a pre-defined encoding [33, 11]) would perform better than X-CSE on
this problem class, however aggregation would also be less general than X-CSE.

Finally, applying X-CSE generates part of the Partial Sums encoding of sequence
by Brand et al [11]. Partial Sums introduces a variable for each contiguous subse-
quence of length 2 to qs (for a station s), which is a superset of the variables X-CSE
introduces. Enforcing bound consistency on Partial Sums guarantees GAC on the se-
quence constraint, whereas X-CSE has no similar guarantee.

While we have experimented only on car sequencing, we expect the pattern of
overlapping sums seen in Figure 12 to arise in other sequencing problems, and therefore
for AC-CSE to be be widely applicable in sequencing problems.

Summary plots for X-CSE
Figure 14 compares X-CSE to IdentCSE for all problem classes. The geometric

mean speed-up is 1.492 when using the CP solver with confidence interval [1.326,
1.693], and 1.323 when using the SAT solver with confidence interval [1.236, 1.422].
There are two notable problem classes (other than the case studies above): Peg Solitaire
Action (with both solvers), and Graph Colouring (with the SAT solver only). Applying
X-CSE to Peg Solitaire Action adds a considerable overhead to Savile Row (owing to
a large number of long conjunctions nested within constraints) and when targeting the
CP solver does not change the search tree. For SAT, more variables are generated, the
number of search decisions is increased and Lingeling takes longer.

In Graph Colouring with the SAT solver, the two instances that exhibit a very large
speed-up are unsatisfiable because of a limit on the number of colours. In both in-
stances, some of the cliques of disequalities are larger than the number of colours. The
cliques are collected to an AllDifferent with more variables than domain values. In this
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Figure 15: Comparing X-CSE with other reformulations to X-CSE alone (total time) with the CP solver
(left) and the SAT solver (right).

case the pass that generates implied sums from AllDifferent creates a false constraint
so the SAT encoding becomes trivial.

5.10. Interaction of X-CSE with other reformulations

We have shown that X-CSE is a valuable addition to the set of reformulations we
have accumulated so far: Identical CSE, aggregation, standard domain filtering, and
variable unification. However, the interaction of X-CSE with the other reformulations
is not clear. Here we compare X-CSE alone (referred to as X-CSE-Alone) to X-CSE
with all the other reformulations accumulated so far (named simply X-CSE in Table 1).

Figure 15 plots X-CSE against X-CSE-Alone. With the CP solver many problem
classes perform better with X-CSE than X-CSE-Alone. BIBD and OPD both have
no AC-CSs in the initial model but domain filtering, variable unification and simpli-
fiers create a set of AC-CSs that are then extracted by the X-CSE algorithm. For both
Golomb Ruler and Graph Colouring aggregation is essential. In common with exper-
iment one (Section 5.4) there are many easy instances that are solved in less than 10
seconds with X-CSE-Alone, and for most of these instances the overhead of the full
set of reformulations is not repaid. The geometric mean speed-up of the full set of in-
stances is 1.060 with confidence interval [0.990, 1.142]. If we exclude instances where
X-CSE-Alone takes less than 10 seconds total time, the geometric mean speed-up is
1.795 with confidence interval [1.476, 2.232].

With the SAT solver X-CSE is clearly better than X-CSE-Alone with a geomet-
ric mean speed-up of 1.853 with confidence interval [1.708, 2.014]. If we compare
IdentCSE (i.e. Identical CSE, aggregation, standard domain filtering and variable uni-
fication) to Simp the geometric mean speed-up is 1.626 with confidence interval [1.531,
1.730]. The difference in average speed-up indicates that there must be a significant
interaction between X-CSE and the four other reformulations. If we examine individ-
ual problem classes the results are spread. For example OPD instances are all changed
in a similar way by X-CSE (compared to X-CSE-Alone), and most are improved by
X-CSE but there are some difficult OPDs where X-CSE-Alone is faster.
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Figure 16: Comparing I-CSE to X-CSE (total time) with the CP solver (left) and the SAT solver (right).

5.11. Experiment six: I-CSE, I-CSE-NC and I-CSE-Iter
We now compare X-CSE to the alternative AC-CSE algorithm I-CSE and its vari-

ants (described in Sections 2.6 and 4.3). In each of the I-CSE configurations, the I-CSE
algorithm is applied to sums and products (as in the original paper by Araya et al. [2])
and the X-CSE algorithm is applied to conjunctions and disjunctions. Therefore when
comparing I-CSE with X-CSE, we are comparing their performance on sums and prod-
ucts only, while treating conjunctions and disjunctions identically.

Experimental Results
Figure 16 plots the speed-up factor for I-CSE compared to X-CSE. With the CP

solver, I-CSE performs better on a very small number of instances, notably four in-
stances of Car Sequencing that can be solved with I-CSE and not with X-CSE. These
four instances exhibit a speed-up of 155 to 169 times. As discussed in Section 5.9, Car
Sequencing has a large number of conflicting pairs of AC-CSs that I-CSE can exploit.
Two Killer Sudoku instances time out with I-CSE and are solved with X-CSE. X-CSE
can exploit AC-CSs among a subsquare, a row or column, and a clue that are not avail-
able to I-CSE because I-CSE considers expressions pairwise. Overall X-CSE is prefer-
able for SONET, Killer Sudoku, and BIBD. When using the SAT solver, broadly the
same problem classes are improved or deteriorated when comparing I-CSE to X-CSE.

When using the CP solver the geometric mean speed-up is 0.737 (confidence inter-
val [0.689, 0.786]) and it is 0.797 (confidence interval [0.758, 0.837]) when using the
SAT solver. With the CP solver both algorithms time out on 174 instances, albeit dif-
ferent sets of 174 instances. With the SAT solver I-CSE times out for 68 instances, and
X-CSE times out for 67. Overall it seems that X-CSE strikes a better balance between
increasing the size of the constraint set and strengthening propagation.

In previous work [47] we found that I-CSE often performed better than X-CSE
on Killer Sudoku, whereas here only a small number of Killer Sudoku instances are
improved by I-CSE compared to X-CSE. The context here is different in a number of
ways. For example, we have added aggregation that can lead to additional implied sum
constraints on this problem class.
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I-CSE-NC is a lighter weight version of I-CSE that does not copy expressions, so it
cannot exploit both of a conflicting pair of AC-CSs. On average it is somewhat worse
than I-CSE, as discussed in [48, Section D]. I-CSE-Iter extends I-CSE by iterating until
a fixpoint is reached. On average it very slightly improves the performance of the CP
solver and very slightly degrades the SAT solver when compared to I-CSE. Full results
are given elsewhere [48, Section D].

5.12. Experiment seven: Active Associative-Commutative CSE

Standard AC-CSE requires the extracted subexpressions to be syntactically identi-
cal apart from reordering. Normalisation helps by reducing semantic identity to syn-
tactic identity in some cases, but we can extend the reach of AC-CSE further by con-
sidering simple transformations as in Active CSE. If we consider some transformation
t (for example, multiplying by two then restoring the normal form), an Active AC-CS
e is a subexpression that is contained in one set of AC expressions as-is, and the trans-
formed version t(e) is contained in another set of AC expressions. Where e occurs, it
is replaced with a new auxiliary variable a, and t(e) is replaced with t(a).

An example is found in the reservoir management problem described by Choi and
Lee [14]. Their first model has differences xi − yi in one set of sums and yi − xi
in another, where i is the day from a period of several months. This is improved by
introducing a new set of variables for the differences xi−yi. Their improvement, made
manually, is equivalent to Active AC-CSE with an arithmetic negation transformation.

A transformation t used in Active AC-CSE may change the type of the AC expres-
sion (i.e. e and t(e) are different types). For example, consider a transformation t(e)
that takes the Boolean negation of e then restores the normal form. If e is a disjunc-
tion, t(e) will be a conjunction and vice versa, so an algorithm that implements Active
AC-CSE for this transformation must track both conjunctions and disjunctions.

In this paper we investigate one case of Active AC-CSE and propose an algorithm
that is an extension of X-CSE. The case we consider is arithmetic negation of sums.
The transformation takes a sum c1e1 + · · ·+ cnen (where ci are integers and ei may be
any expression) and simply negates each one of the coefficients ci. This captures one
case where the coefficients are proportional (as in rBC2-Y and rBCall-Y [9]).

The Active AC-CSE algorithm (named Active X-CSE) is an extension of Algo-
rithm 1. The first step, populating map, remains unchanged. The heuristic (called on
line 5) is adapted to select a pair where the pair and its negation together have the
most occurrences. Once a pair has been selected, the lists for the pair and its negation
are retrieved from map and the two lists are filtered (as on line 8). If the total length
of the two lists is greater than one, then an (active or standard) AC-CS is extracted.
The process is similar to lines 10–20 of Algorithm 1. The largest possible common
set is extracted from the expressions in the two lists and replaced in each case with a
reference to a new auxiliary variable aux or −aux .

Finally, the algorithm is optimised (similarly to X-CSE) by using a second hash
table recording the global number of occurrences of every expression contained in a
sum. If an expression e1 occurs only once, then it cannot take part in an AC-CS and
no pairs {e1, e2} are stored in map. However (unlike X-CSE) the coefficient is not
included as part of the expression when counting occurrences.
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Figure 17: Comparing X-CSE to Simp with the CP solver (left) and the SAT solver (right). The upper plots
show solver time only and the lower plots show total time.

In this experiment we apply Active X-CSE to sums and X-CSE to conjunctions,
disjunctions and products. In all other respects the Active X-CSE configuration is
identical to the X-CSE configuration. We found that the benchmark set does contain
some Active AC-CSs, however there were no substantial improvements to solving per-
formance. Full results are given elsewhere [48, Section E].

5.13. Experimental Conclusions

In the experiments above we have recommended the following set of reformula-
tions: variable unification, standard domain filtering, aggregation, Identical CSE and
X-CSE. To gauge how effective this set of recommended reformulations are, Figure 17
compares using all of them to Savile Row with simplifiers only. Considering only time
taken by the solvers, both CP and SAT models are massively improved: the geometric
mean speedup is 3.627 for the CP solver and 6.614 for SAT. This is achieved entirely
automatically, where the comparison is not with a straw man but a model written by
hand and tailored by Savile Row in baseline form. The overhead of extra reformula-
tion reduces the overall speedup. For CP, the geometric mean speed-up of total time
is 1.568 with confidence interval [1.359, 1.823] and 32 more instances solved. For
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SAT it is 2.147 with confidence interval [1.973, 2.340] and 16 more instances solved.
For the CP solver there is a general trend that harder instances benefit more from re-
formulation, and for some problem classes the gains can be hundreds or thousands of
times. For instances that Simp solves in more than 10 seconds, the geometric mean
speedup of total time is 5.959. We conclude that the recommended reformulations are
well worthwhile, especially on harder instances where solver time dominates.

The largest gains we have seen have come from AC-CSE, across a diverse range of
problem classes including a factory planning problem, a puzzle, combinatorial designs,
and a network design problem. For the most part both the CP and SAT solvers have
benefited from AC-CSE, implemented with the X-CSE algorithm (including the gener-
ation of implied sum constraints from global constraints). Depending on the problem
class, the peak speed-up may be tens, hundreds or even thousands of times. In most
cases AC-CSE is improving the formulation of overlapping sum constraints.

Identical CSE is also beneficial over a wide range of problem classes, particularly
with the SAT solver where it avoids the overhead of multiple encodings of the same
expression. Aggregation is also important when it applies, and very low-cost when
it does not. Other reformulations have proven to be important preparatory steps that
complement CSE (particularly AC-CSE): variable unification, domain filtering and ap-
plying simplifiers all have a role in revealing common subexpressions. Alone, variable
unification and domain filtering provide a small benefit.

Both Identical CSE and AC-CSE were extended with active transformations to
match non-identical but related terms (Active CSE and Active X-CSE). Neither of these
extensions yielded a significant improvement. Our benchmark models were mainly
written by expert users. It would be interesting to see whether novice users would write
messier models (perhaps expressing the same concept in multiple ways) that would be
amenable to Active CSE or Active X-CSE.

6. Conclusions and Future Work

We have investigated a range of reformulations, described algorithms to perform
them, and implemented them in the system Savile Row. Some of these reformulations
are novel improvements on the existing work. Furthermore, we have discovered se-
quences of reformulations that are much more effective than any single reformulation.

Each reformulation was evaluated on a set of 50 problem classes with 596 instances
in total, in a very extensive set of experiments where reformulations were switched on
one by one and their effects analysed as part of the system. Throughout we reported
the cost of performing a reformulation, including on instances where the model was
not changed. Two quite different target solvers were used in the experiments: Minion,
a backtracking CP solver, and Lingeling, a state-of-the-art SAT solver with conflict
learning and inprocessing. Most of the reformulations prove to be effective for both
target solvers, which is encouraging for the study of automated modelling techniques.

We have investigated four different forms of common sub-expression elimination
(CSE) that are able to exploit cases where equivalent or similar expressions appear
in different constraints. We have introduced and described a new algorithm, X-CSE,
to perform Associative-Commutative CSE (AC-CSE) as an automated modelling step

39



for finite domain constraint satisfaction problems. X-CSE is able to find common
subexpressions which are particularly effective in six benchmark problems: BIBD,
OPD, SONET, Killer Sudoku, Car Sequencing and Molnar’s Problem. Of particular
importance, X-CSE interacts with other reformulations, thereby magnifying the power
of those techniques and X-CSE. We suggest that X-CSE is preferable to an earlier
algorithm for AC-CSE, namely I-CSE, because it is able to exploit frequently occurring
short common subexpressions. In our experiments X-CSE outperformed I-CSE in most
cases. We conclude that X-CSE is a valuable addition to the armoury of automated
constraint modelling techniques, both alone and in combination with other techniques.

We found that a wide range of reformulations are valuable, including variable uni-
fication, domain filtering and aggregation. The most dramatic gains came from the
X-CSE algorithm for AC-CSE, often when combined with the generation of implied
sum constraints, variable unification, domain filtering and simplifiers. With this com-
bination, we saw peak speed increases of hundreds and even thousands of times.

The success of the CSE methods immediately suggests two avenues of future work.
CSE improves the formulation when two expressions overlap by more than one vari-
able, and the types of the two expressions are appropriate. For Identical and AC-CSE
the types must be the same. Our first avenue of future work is to examine every pair
of types in the language for opportunities to exploit overlapping expressions. Distinct
types would necessarily require a variety of approaches to exploit the overlap. In some
cases a new variable may help to transfer information between the two expressions,
and in others a new constraint could capture the interaction. Some pairs of overlap-
ping constraints are intractable (such as two allDifferent constraints), in which case we
would investigate approximations.

The second avenue of future work is to improve the generation of implied con-
straints that feed into AC-CSE. At present, only sums are created, all coefficients are 1,
only allDifferent and GCC are allowed as source constraints, and the scope of the im-
plied sum constraint is the scope of the source constraint. Firstly, when a sum overlaps
with a subset of the variables in a source constraint, tighter bounds may be obtained by
generating the implied sums on the overlap variables only. Secondly, implied sums can
be generated with coefficients that match other sums in the model, enabling AC-CSE.
Thirdly, other AC expressions such as products could be generated when appropriate.
Finally, a generic algorithm could be devised to generate implied sums from any con-
straint with appropriate properties, for example where all variables are interchangeable.
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