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Abstract

This technical report contains supplementary material for the journal paper Auto-
matically Improving Constraint Models in Savile Row [8].

1. Encoding to SAT

Our goal is to investigate whether reformulations performed on a constraint prob-
lem instance are beneficial when the problem instance is solved by encoding to SAT
and using a state-of-the-art SAT solver. To achieve this we need to ensure that the base-
line encoding to SAT is sensible. Therefore we have used standard encodings from the
literature such as the order encoding for sums [9] and support encoding [5] for binary
constraints. Also we do not attempt to encode all constraints in the language: several
constraint types are decomposed before encoding to SAT.

Encoding of CSP variables
The encoding of a CSP variable provides SAT literals for facts about the variable:

[x = a], [x 6= a], [x ≤ a] and [x > a] for a CSP variable x and value a. CSP
variables are encoded in one of three ways. If the variable has only two values, it is
represented with a single SAT variable. All the above facts (for both values) map to
the SAT variable, its negation, true or false. If the CSP variable is contained in only
sums, then only the order literals [x ≤ a] and [x > a] are required. Using the language
of the ladder encoding of Gent and Nightingale [6], we have only the ladder variables
and the clauses in Gent and Nightingale formula (2). Otherwise we use the full ladder
encoding with the clauses in formulas (1), (2) and (3) of Gent and Nightingale. Also,
for the maximum value max(D(x)) the facts [x 6= max(D(x))] and [x < max(D(x))]
are equivalent so one SAT variable is saved. Finally, a variable may have gaps in its
domain. Suppose variable x has domain D(x) = {1 . . . 3, 8 . . . 10}. SAT variables
are created only for the 6 values in the domain. Facts containing values {4 . . . 7} are
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mapped appropriately (for example [x ≤ 5] is mapped to [x ≤ 3]). The encoding has
2|D(x)| − 1 SAT variables.

Decomposition
The first step is decomposition of the constraints AllDifferent, GCC, Atmost and

Atleast. All are decomposed into sums of equalities and we have one sum for each
relevant domain value. For example to decompose AllDifferent([x, y, z]), for each do-
main value a we have (x = a) + (y = a) + (z = a) ≤ 1. These decompositions are
done after AC-CSE if AC-CSE is enabled (because the large number of sums generated
hinders the AC-CSE algorithm), and before Identical and Active CSE [8, Sections 5.7
and 5.8].

The second step is decomposition of lexicographic ordering constraints. We use the
decomposition of Frisch et al [3, Section 4] with implication rewritten as disjunction,
thus the conjunctions of equalities in Frisch et al become disjunctions of disequali-
ties. This decomposition is also done after AC-CSE and before Identical and Active
CSE. However, if AC-CSE is switched on, we (independently) apply AC-CSE to the
decomposition, thus extracting common sets of disequalities from the disjunctions.

The third step occurs after general flattening is completed. The constraints min,
max and element are decomposed. For min(V ) = z we have ∃i : V [i] = z and ∀i :
z ≤ V [i]. Max is similar to min with≤ replaced by≥. The constraint element(V, x) =
z becomes ∀i : (x 6= i ∨ V [i] = z).

Encoding of Constraints
Some simple expressions such as x = a, x ≤ a and ¬x (for CSP variable x and

value a) may be represented with a single SAT literal. Savile Row has an expression
type named SATLiteral. Each expression that can be represented as a single literal
is replaced with a SATLiteral in a final rewriting pass before encoding constraints.
SATLiterals behave like boolean variables hence they are transparently included in any
constraint expression that takes a boolean subexpression.

For sums we use the order encoding [9] and to improve scalability sums are broken
down into pieces with at most three variables. Sum-equal constraints are split into sum-
≤ and sum-≥ before encoding. For other constraints we used the standard support
encoding wherever possible [5]. Binary constraints such as |x| = y use the support
encoding, and ternary functional constraints x � y = z (e.g. x× y = z) use the support
encoding when z is a constant. Otherwise, x � y = z are encoded as a set of ternary
SAT clauses: ∀i ∈ D(x),∀j ∈ D(y) : (x 6= i ∨ y 6= j ∨ z = i�j). When i�j is not in
the domain of z, the literal z = i � j will be false. Logical connectives such as ∧,∨,↔
have custom encodings and table constraints use Bacchus’ encoding [2] (Sec.2.1).

2. Additional Experiments

In this section we present additional experimental results not given in the main
paper [8].
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Figure 1: VarUnif vs Simp. In the upper plots the solver is Minion, in the lower plots it is SAT (Lingeling).
Plots on the left show total time, plots on the right show only solver time. In each case, the y axis is the
speed up quotient caused by the optimisation, so points above 1 on the y axis exhibit a speed improvement.
The x axes are time (in seconds) for the variant without the optimisation. Both axes are logarithmic.

2.1. Experiment A: Variable unification

We compare variable unification to the baseline configuration of Savile Row where
only simplifiers are switched on (VarUnif vs Simp). Figure 1 plots our findings. We
plot all problem classes together and pick out a few problem classes that are particularly
interesting using a distinct colour and plot symbol.

Considering only constraint solver time, variable unification exhibits some benefit
for the constraint solver, particularly on Langfords Problem and Black Hole Solitaire.
Given that the constraint solver has a static variable and value ordering (and variable
unification does not change the variable ordering), variable unification is unlikely to
reduce the size of the search. Its main potential benefit is to speed up search by reducing
overhead.

The Killer Sudoku problem is an exception. This problem class reveals an unusual
feature of Minion: using a single variable type in a constraint can speed up propagation
because the propagator is specialised for the variable type using a C++ template, allow-
ing function calls to be inlined. Variable unification replaces some decision variables
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with constants in allDiff constraints, and constants are a distinct variable type. This
results in a slowdown of (at most) 21% on Killer Sudoku 16x16.

Considering total time with the constraint solver (the upper left plot of Figure 1),
variable unification can be beneficial and also it can add a small overhead to Savile
Row. For example, the Peg Solitaire Table class is slowed down: the smallest speed-
up quotient is 0.67. Peg Solitaire Table has a large set of table constraints that are
simplified (by selection and projection of the tables) following variable unification.
Running the table simplifier is a potential cause of the slow-down.

For the SAT solver, variable unification changes the CNF formulation of the prob-
lem and can therefore entirely change the search order. This can cause large effects
in both directions, even within a problem class. For example, three instances of Black
Hole solitaire exhibit a substantial slow-down of between 5 and 10 times, and one
instance shows a speed-up of just over 10 times (SAT solver time only).

The geometric mean speed up quotient (of total time) when using the CP solver is
1.046 with confidence interval [1.027, 1.066], and for the SAT solver it is 1.061 with
confidence interval [1.038, 1.086]. In summary, variable unification is slightly bene-
ficial when producing output for either solver and these results are statistically signif-
icant. Variable unification also enables other reformulations to trigger (in particular,
AC-CSE) and it will be switched on for all the following experiments.

2.2. Experiment B: Domain filtering

The main paper describes standard and extended domain filtering [8, Section 5.4],
and evaluates standard domain filtering together with variable unification. Here we
compare standard domain filtering combined with variable unification to variable uni-
fication alone (DomFilt vs VarUnif). Figure 2 plots the results.

Considering constraint solver time only, it is clear that some problem classes benefit
from domain filtering (Black Hole, Killer Sudoku, and Solitaire Battleship). The high
outlier is an instance of Magic Sequence that was entirely solved (i.e., all variables
assigned) by singleton bound consistency. In this case the work involved in solving the
instance has been moved from the back-end solver to the domain filtering step, and no
time is saved overall.

When including Savile Row time, the picture is different. Killer Sudoku, BIBD
and BIBD Implied are only improved for the harder instances. The geometric mean
speed-up (total time) is 0.920 with confidence interval [0.903, 0.937]. However, there
does appear to be an upward trend in Figure 2 (upper left) where harder instances are
more likely to benefit from domain filtering.

For the SAT solver (taking solver time only) we find that some difficult problem in-
stances become substantially easier when domain filtering is applied. Magic Sequence
and Send More Money are completely solved by domain filtering. Most Solitaire Bat-
tleship instances become much smaller and faster to solve. Also there are several Killer
Sudoku instances that become trivial for the SAT solver.

When Savile Row time is included, there are more modest speed gains for some
instances of Killer Sudoku, both instances of Magic Sequence, and Send More Money.
Solitaire Battleship instances are slightly improved. The geometric mean speed-up
(total time) is 1.250 with confidence interval [1.190, 1.316].
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Figure 2: DomFilt vs VarUnif. In the upper plots the solver is Minion, in the lower plots it is SAT (Lingeling).
Plots on the left show total time, plots on the right show only solver time. Axes are the same as Figure 1.
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Although domain filtering does not provide a clear benefit for both solvers, it en-
ables AC-CSE to substantially improve the formulation of some problem classes (as
shown in the main paper [8]). Hence domain filtering will be switched on for all sub-
sequent experiments.

2.3. Experiment C: Extended domain filtering

In addition to standard domain filtering (of user-defined variables), extended do-
main filtering transfers filtered domains of auxiliary variables that may have different
names in the first and second tailoring process. To achieve this we link each auxiliary
variable to an expression e that it represents, using the following two data structures
(implemented with hash tables):

AuxToE A function from auxiliary variable names to expressions they represent in the
current tailoring process.

EToDomain A function from expressions to filtered domains.

When an auxiliary variable a is created representing an expression e in the first
tailoring process, a 7→ e is added to AuxToE. After calling the solver and reading in a
filtered domain d for a, the expression e is retrieved from AuxToE then e 7→ d is stored
in EToDomain. In the second tailoring process, AuxToE is cleared and re-populated to
ensure it always contains the set of auxiliary variables for the current tailoring process.

Expressions stored or used as keys in AuxToE and EToDomain must not contain
auxiliary variables because the names are not stable from one tailoring process to the
next. Whenever a new expression e is stored or used as a key in either hash table,
AuxToE is used to replace all auxiliary variables in e with expressions containing only
the find decision variables.

In the second tailoring process when an auxiliary variable a is required for e, the fil-
tered domain d1 is retrieved from EToDomain. Bounds are obtained for e (as described
in the main paper [8, Section 3.2]) and the final domain for the auxiliary variable a is
d1 ∩ {bec . . . dee}.

Expressions evolve during a tailoring process by simplification, variable unifica-
tion and normalisation [8, Sections 3.3, 5.4, 5.6]. Whenever these transformations are
applied to the model they are also applied to expressions in EToDomain to maintain
syntactic equality between expressions in the model and those in the hash table.

In this method each auxiliary variable is associated with exactly one expression. In
fact an auxiliary variable may represent a set of expressions S1 (e.g. when using Active
CSE). In this case it is stored once in AuxToE with an arbitrarily chosen expression
from S1. In the second tailoring process, when an auxiliary variable a is required for
some set of expressions S2, each element of S2 is looked up in EToDomain.

Leo and Tack proposed variable paths as a unique identifier of auxiliary variables
that is stable across both tailoring processes in MiniZinc [7]. A variable path is a
string containing all the relevant state of the MiniZinc interpreter when the auxiliary
variable was created. A variable path includes the names and locations of functions
that have been called and the names and values of loop (comprehension) variables.
Using this identifier they store filtered domains of auxiliary variables created in the
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first tailoring process and retrieve them during the second tailoring process. Both the
approach in Leo and Tack and ours essentially use canonical names to link variables
in the first and second tailoring processes. The main difference between the two is the
strength of filtering: Leo and Tack apply the standard propagation level of the Gecode
solver [4], whereas we apply SACBounds which will be more powerful (ignoring minor
differences between Gecode and Minion) and time-intensive.

We compare extended domain filtering to standard domain filtering. When either
type of domain filtering is switched on, the time reported for Savile Row includes the
call to Minion to perform SACBounds. Minion is called identically for both types.

As noted in the main paper [8, Section 5.2] Minion (when used as a backend solver)
always applies SACBounds directly before search. Therefore extended domain filtering
has two potential benefits: to trigger other reformulations within Savile Row, or to
improve the efficiency of Minion without changing the search tree (for example, by
reducing the time taken for the initial SACBounds pass).

Our results are plotted in Figure 3. Looking at constraint solver time only, we can
see that extended domain filtering can be beneficial, notably for Golomb Ruler and
some instances of BIBD and BIBD Implied. When Savile Row time is included, only
Golomb Ruler shows a clear benefit.

The model of Golomb Ruler contains the constraints ruler[j] - ruler[i]
!= ruler[l] - ruler[k] for all i, j, k, l where i < j, k < l and [i, j] <lex

[k, l]. The ruler variables are ordered such that ruler[j]>ruler[i] and ruler[l]>ruler[k].
Savile Row introduces auxiliary variables for the subexpressions of the form ruler[j]-ruler[i].
When all forms of CSE are switched off (as they are in this experiment) multiple aux-
iliary variables are created for each expression of the form ruler[j]-ruler[i]
where i < j. For the instance of length 9, there are 980 of these auxiliary variables
(representing only 36 distinct expressions) with domain size of about 130, and with
roughly half the values being negative. Extended domain filtering removes (at least)
the values below 1. It does not trigger any other reformulation in Savile Row, and does
not reduce search. The benefit comes entirely from reducing overhead in the backend
solver.

When aggregation is switched on, the not-equal constraints of Golomb Ruler are
collected into an allDifferent constraint that contains each difference once, solving
the problem caused by the large number of auxiliary variables and eliminating the
improvement made by extended domain filtering.

With the constraint solver, the geometric mean speed-up quotient (of total time)
is 0.995 with confidence interval [0.987, 1.004], so the difference is not statistically
significant.

When encoding to SAT, extended domain filtering reduces the numbers of both SAT
variables and clauses without fundamentally changing the formulation of the problem,
so one might expect the performance of the SAT solver never to be degraded. Fig-
ure 3 (lower) plots the results. In fact on some instances Lingeling’s performance is
degraded. For example the BIBD class is 0.33 to 1.41 times faster, and BIBD Implied
ranges from 0.42 to 2.30 times faster (total time). Overall it is not clear whether ex-
tended domain filtering improves performance of the SAT solver. The geometric mean
speed-up quotient (of total time) is 0.981 with confidence interval [0.972, 0.989].

In summary extended domain filtering provides no clear benefit and it will not be

7
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Figure 3: Extended domain filtering vs domain filtering (EDomFilt vs DomFilt). In the upper plots the solver
is Minion, in the lower plots it is SAT (Lingeling). Plots on the left show total time, plots on the right show
only solver time. Axes are the same as Figure 1.
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Figure 4: Comparing I-CSE-NC to I-CSE (total time) with the CP solver (left) and the SAT solver (right).

enabled in subsequent experiments.

2.4. Experiment D: I-CSE, I-CSE-NC and I-CSE-Iter
In this section we will compare I-CSE (as proposed by Araya et al [1]) with vari-

ants I-CSE-NC and I-CSE-Iter. I-CSE-NC is a version of I-CSE that does not copy
expressions, so it cannot exploit both of a conflicting pair of AC-CSs and in some
cases it generates a smaller set of constraints than I-CSE. Figure 4 compares total time
of I-CSE-NC to I-CSE. With the CP solver I-CSE-NC never reduces search. I-CSE
performs less search than I-CSE-NC on 100 instances (of 8 problem classes), and this
translates into faster solving for Killer Sudoku (with both solvers) and Car Sequencing
(with the SAT solver). The more compact formulation of I-CSE-NC can be better, no-
tably on the SONET problem for both solvers. The geometric mean speed-up of total
time with the CP solver is 0.845 (with confidence interval [0.785, 0.904]) and with the
SAT solver is 0.952 (with confidence interval [0.909, 0.995]). Overall it seems that
I-CSE-NC is inferior to I-CSE.

We proposed I-CSE-Iter to address one of the shortcomings of I-CSE: that some
AC-CSs are not exploited by I-CSE (for example, an intersection of three sums that is
not the intersection of any pair of sums). I-CSE-Iter first calls I-CSE on the original
constraints, then repeatedly calls I-CSE on the AC-CSs extracted by the previous call
until no more AC-CSs are found. Figure 5 compares I-CSE-Iter to I-CSE. For both
solvers I-CSE-Iter improves Killer Sudoku 16 × 16 (where a clue, a row or column,
and a subsquare frequently intersect). With the CP solver X-CSE solves 76 and I-CSE-
Iter solves 78 instances, and the geometric mean speed-up of X-CSE (total time) is
1.027 times. With the SAT solver X-CSE solves 99 and I-CSE-Iter solves 99 instances,
and the geometric mean speed-up of X-CSE is 1.360 times.

I-CSE-Iter introduces additional variables and constraints so there is a risk of slow-
ing down the solver. On the Car Sequencing problem, both the CP and SAT solvers are
slowed down while the CP search tree is unchanged.

Comparing I-CSE-Iter to I-CSE, the geometric mean speed-up of total time with the
CP solver is 1.010 (with confidence interval [0.982, 1.045]) and with the SAT solver
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Figure 5: Comparing I-CSE-Iter to I-CSE (total time) with the CP solver (left) and the SAT solver (right).

is 0.972 (with confidence interval [0.946, 1.001]). On average it seems there is little
difference between I-CSE-Iter and I-CSE.

2.5. Experiment E: Active Associative-Commutative CSE

Active X-CSE extends X-CSE on sums by negating coefficients. Apart from sums,
the two configurations are identical. Figure 6 compares the two configurations. Active
AC-CSs are found in problems Tic Tac Toe, Plotting and Nurse Rostering, however the
instances may not be hard enough to show any improvement. All instances of these
three classes are solved in less than three seconds and fewer than 63000 nodes with the
CP solver. Active X-CSE does not change the search tree (with the CP solver) for any
instance that did not time out. The Active X-CSE algorithm takes substantially longer
than X-CSE on seven instances of Car Sequencing while the CP solver takes the same
time (Figure 6 left).

With the SAT solver Car Sequencing is also slowed during tailoring (with no effect
on the solver). Instances of BIBD and SONET are scattered. The two algorithms have
the same heuristic however when the heuristic ties they may extract (standard) sum AC-
CSs in different orders and thus produce a different final model, and this appears to be
affecting the SAT solver’s search heuristic. BIBD appears to slow down on average
and it is not clear why this is the case.

The geometric mean speed-up of total time with the CP solver is 0.980 (with con-
fidence interval [0.966, 0.992]) and with the SAT solver is 0.893 (with confidence
interval [0.873, 0.914]).
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