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Abstract

AFGCN is a software tool for approximate solutions to abstract argumen-
tation using a Graph Convolutional Network (GCN). It addresses the com-
putational complexity of determining argument acceptability across several
semantics. The model incorporates deep residual connections, randomized
training, and grounded-reasoning features to achieve strong approximation
accuracy. The solver predicts acceptability status for credulous and skeptical
tasks. Leveraging graph-based learning and an optimized runtime, AFGCN
provides an efficient and scalable method for large-scale argumentation frame-
works.
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Metadata
1. Motivation and significance

Abstract argumentation, as formalized by Dung [I], provides a foundational
framework for modeling defeasible reasoning and conflict resolution in artifi-
cial intelligence. Argumentation frameworks, represented as directed graphs
of arguments and attacks, allow for the formal analysis of argumentative
structures across various domains, from legal reasoning [2] to multi-agent
systems [3] and misinformation detection [4]. For general guidance on clarity
in technical presentation when describing deep-learning frameworks, see [22].
Determining the acceptability of arguments under different argumentation
semantics is a central task in abstract argumentation. Semantics such as
complete, preferred, stable, grounded, ideal, semi-stable, and stage seman-
tics define diverse criteria for argument acceptance, each capturing different
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Table 1: Code metadata (mandatory)

intuitions about rational argument evaluation [5]. However, most standard
reasoning tasks in abstract argumentation, including credulous and skeptical
acceptance, are computationally hard (NP-hard or beyond) [6], posing a sig-
nificant challenge for real-world applications, especially those involving large
argumentation frameworks.

The computational intractability of exact argumentation reasoning has mo-
tivated research into approximate solution methods. The AFGCN solver
[16, 18, 17, 13] addresses this need by providing an efficient, scalable, and
accurate approach to approximate argument acceptability using Graph Con-
volutional Networks (GCNs). AFGCN leverages the inherent graph structure
of argumentation frameworks to train a deep learning model that can rapidly
predict argument acceptability status, offering a compelling alternative to
computationally intensive exact solvers, particularly in scenarios demanding
real-time performance or handling large datasets.

Relation to prior methods.. Exact solvers (often SAT/ASP encodings) pro-
vide soundness and completeness but can be slow on large AFs; local-search

and heuristic methods trade optimality for speed. AFGCN performs polynomial-

time inference for per-argument acceptability with competitive accuracy when
many arguments must be evaluated. The evaluation summary in Section
and Appendix A reference published accuracy and runtime trade-offs. For
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a general note on contextualizing computational methods within existing
paradigms, see [24].

AFGCN is primarily used by researchers in argumentation theory and Al
reasoning systems. The typical workflow involves:

1. Converting an argumentation framework into Trivial Graph Format
(TGF)

2. Running the AFGCN solver with a command specifying the semantics
(e.g., preferred, stable, complete), reasoning mode (skeptical or credu-
lous), and target argument

3. Receiving a binary output (YES/NO) indicating the estimated accept-
ability status

AFGCN builds upon previous work in Graph Convolutional Networks, par-
ticularly the foundational work by Kipf and Welling [7], and extends research
on approximate argumentation reasoning such as the local search approaches
proposed by Thimm and Cerutti [§]. The software has been benchmarked
against exact solvers in the International Competition on Computational
Models of Argumentation (ICCMA) and has shown to provide high-quality
approximations with significant performance gains.

2. Software description

AFGCN is implemented as a Python library, designed to be flexible and
extensible. The core solver logic is contained within the main solver, while
the model training and architecture are trained on the basis of a configurable
training script and model configuration. The library leverages the Deep
Graph Library (DGL) for efficient graph operations and PyTorch for neural
network computations.

2.1. Software architecture

AFGCN employs a deep residual Graph Convolutional Network (GCN) archi-
tecture, depicted in Fig. [I} that significantly extends the basic GCN model
for improved performance in argumentation reasoning tasks.

The architecture consists of:

1. Input Features Layer: The input to the AFGCN model captures
both structural and inherent properties of argumentation frameworks:

e Normalized Adjacency Matrix: The adjacency matrix rep-
resenting attack relations is normalized using the symmetrically
normalized form

A=D'"?A+I)D 2 (1)
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Features Input 4x Repeating GCN and Sigmoid Overall training is done using the ADAM
Layer Dropout Layers Output Layer optimizer with Binary Cross-Entropy loss
‘ ‘ ‘ | ‘ ‘ l ‘ as the loss function.

Training was done using a set of 538

argumentation frameworks from past
ICCMA competitions, using cross-

— validation and a holdout set of 99

_ frameworks for testing.
One model was trained for each problem

in the ICCMA competition.

Figure 1: Schematic representation of the AFGCN model architecture. Each block con-
sists of a Graph Convolutional Network (GCN) layer and a Dropout layer, with residual
connections incorporating input features at each block. The final output layer is a Sigmoid
layer that produces acceptability probabilities.

e Random Initial Features: Each node is initialized with a 64-
dimensional random feature vector using Xavier initialization to
enhance model generalization. During training, we use random-
ized batch construction and randomized label masks; ablation ob-
servations and seed handling are summarized in the evaluation
section and Appendix A [16, [13]. For general points on rigor and
transparency, see [23].

e Grounded Extension Features: A binary feature indicating
membership in the grounded extension, pre-computed using the
efficient grounded solver included in the library. This is used solely
as an input feature; no training constraint or post-processing is
applied.

e Graph Property Features: Node-level graph properties includ-
ing graph coloring, PageRank, centrality measures (degree, close-
ness, and eigenvector), and degree features (in-degree and out-
degree).

2. Deep Residual Blocks: AFGCN utilizes four repeating blocks to
construct a deep network. Each block contains:

e Graph Convolutional Layer: A graph convolution layer with
128 hidden features that performs message passing and aggrega-
tion.

e ReLU Activation: A non-linear activation function after each
GCN layer.

e Dropout Regularization: A dropout layer with a probability
of 0.5 to prevent overfitting.
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e Deep Residual Connection: The original input features and
normalized adjacency matrix are added to the output of each GCN
block, helping to mitigate the vanishing gradient problem and
allowing for more effective training of deeper architectures.

3. Output Layer: A fully connected linear layer that maps the 128 hid-
den features to a single output dimension per node, followed by a Sig-
moid activation function to produce a probability value between 0 and
1 representing the model’s confidence in the argument’s acceptability.

Repeat for each epoch

Combine
Select frameworks frameworks into Generate random
randomly % single graph @ mask for training

UOIjBIS) YOeSs IO} 8)e|Nd|eosYy

Input Random selection Single graph with n Use mask to
Argumentation of n frameworks connected determine what
Frameworks components parts of graph to

use for loss
calculation

Figure 2: Schematic representation of the AFGCN batch generation pipeline.

AFGCN’s training system architecture includes a data processing pipeline
for TGF files, a randomized batch training module (see fig. , and a model
checkpoint system that allows for resuming training and storing the best-
performing models for each semantics.

2.2. Software functionalities
AFGCN provides the following key functionalities:

1. Argumentation Framework Parsing: Reads and parses TGF files
that define arguments and attack relations.

2. Grounded Extension Computation: Efficiently computes the grounded
extension using an optimized NumPy-based algorithm, serving both as
a standalone solver for DC-GR, and DS-GR tasks and as an input
feature for the GCN.

3. Feature Generation: Generates rich graph-based features for argu-
ments, including:

e Graph coloring features using NetworkX’s greedy coloring algo-
rithm

e PageRank scores for estimating argument importance



e Centrality measures (degree, closeness, eigenvector) for capturing
graph structure

e Degree features (in-degree, out-degree) for basic connectivity in-
formation

Rationale. We prioritize features with favorable cost/benefit at scale.
Degree, PageRank, eigenvector, and closeness centrality are inexpen-
sive and complementary; betweenness centrality was excluded due to
high computational cost (often O(V' E) or worse) with limited empir-
ical benefit in pilots. Grounded membership, though non-trivial to
compute, is included because it consistently improves approximation
for several semantics, while its cost dominates runtime only for very
large graphs [13].
4. Model Training: Supports training the GCN model with:

e Randomized batch training to prevent overfitting

e Dynamic balancing of training examples to address class imbal-
ance

e Outlier detection to exclude problematic frameworks

e Checkpointing and best model saving based on validation perfor-
mance

5. Argument Acceptability Prediction: Predicts the acceptability of
arguments under various semantics:

e Complete semantics (DC-CO, DS-CO)

e Preferred semantics (DC-PR, DS-PR)

e Stable semantics (DC-ST, DS-ST)

e Semi-Stable semantics (DC-SST, DS-SST)

e Stage semantics (DC-STG, DS-STG)

e Ideal semantics (DS-ID)

e Grounded semantics (DS-GR) - exact solver, not approximated
Probability interpretation and thresholds.. Outputs are per-node probabilities
via sigmoid. We default to a 0.5 threshold and allow optional threshold

tuning or simple calibration (e.g., temperature scaling) on a validation set; a
CLI flag enables both.



2.3. Reproducibility and release

We fix pseudo-random seeds via a single configuration parameter and log
Python/PyTorch/DGL versions and hardware. Training uses binary cross-
entropy with Adam and a simple schedule (e.g., 1073 —107%) as in our prior
work. We provide fixed train/validation/test splits and a minimal run.sh
example. A versioned release (v1.0.0), requirements.txt, and pretrained

weights accompany the repository.

2.4. Sample code

N}

def solve(adj_matrix):

# Constants for labeling
IN = 1

0UT = 2

UNDEC = O

# Initialize all arguments as UNDECIDED
labelling = np.zeros((adj_matrix.shape[0]),
np.int8)

# Find initially unattacked arguments
a = np.sum(adj_matrix, axis=0) == 0
unattacked_args = np.nonzero (a) [0]

# Mark wunattacked arguments as IN
labelling [unattacked_args] = IN

cascade = True

while cascade:

# Find arguments attacked by IN arguments

new_attacks = np.unique(np.nonzero(
adj_matrix [unattacked_args,:]) [1])

new_attacks_1 = np.array([i for i in
new_attacks if labellingl[i] !'= 0UT])

if len(new_attacks_1) > O:
# Mark these arguments as OUT
labelling[new_attacks_1] = 0UT

# Find arguments that might become IN
affected_idx = np.unique(np.nonzero (

adj_matrix[new_attacks_1,:]) [1])
else:




affected_idx = np.zeros ((0), dtype=’int64°)

# Find arguments where all attackers are OUT
all_outs = []
for idx in affected_idx:
incoming_attacks =
np.nonzero (adj_matrix[:,idx]) [0]
if (np.sum(labelling[incoming_attacks] == 0UT)
== len(incoming_attacks)):
all_outs.append(idx)

if len(all_outs) > O:

# Mark these arguments as IN
labelling[np.array(all_outs)] = IN
unattacked_args = np.array(all_outs)
else:

# No more changes, end the cascade
cascade = False

# Return indices of all IN arguments (the
grounded eztension)

in_nodes = np.nonzero(labelling == IN) [0]

return in_nodes

Listing 1: Grounded Solver Implementation

3. Primer on argumentation semantics

The following table describes the semantics handled by AFGCN:

Semantics | Informal definition

Complete Conflict-free; defends all its members; contains only defended
arguments.

Preferred Maximal (by inclusion) admissible set.

Stable Conflict-free; attacks every argument not in the set.

Semi-stable | Conflict-free and admissible with maximal range S U S*.

Stage Conflict-free with maximal range S U S™.

Grounded | Least fixed point of the characteristic function (unique, mini-
mal).

Ideal Admissible and contained in every preferred extension.

Table 2: Primer on semantics; decision problems appear as DC-* and DS-*.




4. Illustrative examples

Suppose we want to assess the credulous acceptability of argument ” A” under
preferred semantics (DC-PR) for an example framework. The TGF represen-
tation would be:

N

MoOoaQweE® MHO0OQWeE
M= QW

D

Listing 2: TGF representation of an example framework

To execute AFGCN for this task, the following command would be used:

1[ ./solver.sh -p DC-PR -f cycles.tgf -a A J

Listing 3: Command to run AFGCN

Upon execution, AFGCN will:

Parse the input file and construct the DGL graph representation.
Compute the grounded extension, which in this case is empty, {}.
Generate input features for each argument (A, B, C, D, E).

Load the pre-trained AFGCN model for DC-PR.

Perform a forward pass through the GCN, predicting acceptability prob-
abilities.

RARE o S

&

Extract the predicted probability for argument ”A”.

Compare this probability to the DC-PR threshold.

8. Output "YES” or "NO” based on whether the probability exceeds the
threshold.

~

In this specific example, argument ” A” is indeed credulously acceptable under
preferred semantics because there exists a preferred extension containing A
(specifically, A, C). AFGCN | trained on diverse benchmark instances, is
highly likely to correctly predict ”YES” for this query, demonstrating its
capability to approximate complex argumentation reasoning tasks efficiently.




For more complex frameworks with hundreds or thousands of arguments,
where exact computation becomes intractable, AFGCN’s advantage becomes
more pronounced. In such cases, while exact solvers might timeout or ex-
haust available memory, AFGCN can provide a high-quality approximation
in seconds regardless of framework size, due to the polynomial-time inference
properties of the trained GCN model.

5. Evaluation summary

Per-semantics accuracy and MCC.. Our Al (2024) article reports Accuracy
and Matthews Correlation Coefficient (MCC) across all decision tasks (DC/DS
for CO, PR, SST, ST, STG, and DS-ID). Aggregating by semantics shows rel-
atively small spread across tasks, with semi-stable slightly easier and stable
slightly harder, though differences are modest (Table 11 in [I3])[]] (Summary
source: Al 2024, Table 11.)

Class-aware results (preferred semantics).. For DC-PR and DS-PR, the SAFA 2020
paper reports overall/Yes/No accuracies and ablations: e.g., DC-PR (5-
layer): overall 92.26%, Yes 73.56%, No 92.95%; DS-PR (balanced data): over-

all 97.15%, Yes 46.35%, No 94.39%. Randomized training substantially im-
proves positive-class performance relative to fixed batches. (Summary source:
SAFA 2020, Tables 2-5.)

Ablations.. Increasing depth beyond 4 layers does not consistently help and
can hurt (over-smoothing/vanishing gradients); randomized training yields
clear gains; grounded input features help most for preferred/complete and
less for stable semantics. (Summary source: AT 2024 §5.2; SAFA 2020 §4.3.)

Cross-benchmark behavior and distribution shift.. Performance varies with
graph family: drops are observed on Barabasi—Albert and Traffic, gains on
Logic-Based Argumentation (LBA); grounded membership fraction differs
sharply by family. (Summary source: AI 2024 Figs. 12-13 and Appendix B
tables; dataset description in Tables 3-4.)

Runtime and scaling.. Median wall-clock times by semantics/benchmark/-
size are reported in Al 2024 (Tables C.62-C.64), with additional statistics in
Tables 14-17. AFGCN classifies all arguments in a framework typically in 10
to 30 ms for small/medium graphs without grounded features; the grounded-
feature computation dominates at large scales, as expected. (Summary source:
AI 2024, Tables 14-17, C.62-C.64, Figs. C.19-C.21.)

'We prefer MCC in imbalanced settings; see [13] Appendix B for details.
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Comparisons to exact solvers and other GNNs.. Compared to PYGLAF,
AFGCN achieves mean speedups up to 122.8x (“all-arguments” compari-
son), with far larger speedups when naively amortizing per-argument calls.
Against AGNN (Craandijk & Bex), AFGCN attains higher MCC on compe-
tition benchmarks in our published comparison. (Summary source: AI 2024
Tables 16-17 and §5.3.)

6. Impact

AFGCN has been significantly impacting the field of computational argumen-
tation by demonstrating the effective application of Graph Neural Networks
to formal reasoning tasks. The software addresses a critical gap between the-
oretical argumentation models and their practical application in scenarios
requiring efficient computation.

The development of AFGCN has enabled new research questions to be ex-
plored:

1. Neural Learning for Formal Reasoning: AFGCN establishes that
neural networks can effectively approximate complex logical reasoning
tasks traditionally handled by symbolic methods. This has opened
new research directions in neural-symbolic integration, particularly for
NP-hard reasoning problems [I1]. The ICCMA competition series has
recognized the importance of approximate algorithms, introducing a
dedicated track in the 2021 and 2023 competitions where AFGCN has
demonstrated strong performance [14, [15].

2. Graph Representation Learning for Argumentation: The suc-
cess of AFGCN has prompted research into what graph structural fea-
tures are most relevant for argumentation tasks and how different neu-
ral architectures capture these features. Cibier and Mailly [9] built
upon AFGCN to explore alternative graph neural network architec-
tures such as Graph Attention Networks (GATS).

3. Dataset Influence on Learning Performance: Kuhlmann, Wujek,
and Thimm [I2] used AFGCN as a baseline to investigate how proper-
ties of training datasets affect the learning of argumentation semantics,
revealing important insights into training data preparation for argu-
mentation tasks.

AFGCN has improved existing research in several ways:

1. Scalability for Large Frameworks: By providing approximate solu-
tions in polynomial time to problems that are traditionally NP-hard or
beyond, AFGCN enables researchers to work with larger argumentation
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frameworks that were previously intractable. This allows for studying
more complex argument structures in domains like legal reasoning and
online debate analysis [19].

2. Benchmark for Approximate Reasoning: AFGCN has become a
benchmark against which other approximate argumentation solvers are
compared, as demonstrated by its inclusion in evaluations of subsequent
approaches [9]. As noted in the ICCMA 2021 results, AFGCN won
most of the subtracks in the Approximate track, confirming its strong
performance against other approximate methods [15].

The software has been improving research practice for argumentation re-
searchers by:

1. Providing a practical tool for quick exploration of argument acceptabil-
ity in large frameworks

2. Enabling rapid prototyping of argumentation-based applications with-
out waiting for exact solvers

3. Serving as a fallback method when exact solvers timeout or fail

4. Presenting an alternative approach to the SAT and ASP-based solvers
that dominate the field [14), 15]

AFGCN has been used by research groups working on argumentation theory
and formal reasoning systems. For example, the approach has influenced the
development of argumentation systems that combine exact and approximate
methods, such as the approach developed by Craandijk and Bex [11] 20, 21].
While primarily used in academic research, AFGCN’s techniques for efficient
graph-based reasoning have potential commercial applications in legal rea-
soning systems, policy analysis tools, and automated negotiation platforms
where argumentation frameworks are used to model complex decision pro-
cesses. The development of AFGCN aligns with the trend in argumentation
computing towards more diverse algorithmic approaches beyond the domi-
nant SAT and ASP-based methods, as highlighted in recent ICCMA compe-
titions [14) [15].

7. Conclusions

AFGCN provides a robust, efficient, and scalable software solution for approx-
imating argument acceptability in abstract argumentation. By leveraging a
deep residual GCN architecture, a carefully designed training regime, and
optimized runtime implementation, AFGCN achieves state-of-the-art perfor-
mance on challenging argumentation reasoning tasks.
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The software’s modular design, open-source availability, and documentation
facilitate its use by researchers and practitioners seeking to apply approx-
imate argumentation reasoning in real-world applications. The efficiency
gains are particularly valuable for large-scale argumentation frameworks where
exact solvers become computationally infeasible.

Future development directions could include exploring further architectural
enhancements, incorporating more sophisticated graph-aware features, and
extending the solver’s capabilities to address a broader range of argumenta-
tion reasoning problems beyond acceptability determination, such as approx-
imation of gradual semantics or enforcement problems.
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and retain their original formatting: Malmqvist et al., Artificial Intelligence
(2024) [13] and Malmqvist et al., SAFAQCOMMA (2020) [16]. We group
results by (i) per-semantics accuracy/MCC, (ii) class-aware metrics for pre-
ferred semantics, (iii) ablations on depth and training optimization, and (iv)
runtime statistics and comparisons.

A.1 Evaluation settings used in [15]

We report three standard aggregation settings from [I3]: Fqually weighted
(each framework weighted equally), Complete balanced (all arguments weighted;
large frameworks contribute proportionally), and Reduced balanced (complete
balanced excluding benchmarks solvable by grounded reasoning alone). See
[13] for formal definitions.

Table .3: Per-semantics Accuracy and MCC aggregated across models (equally weighted).
Values reproduced from [I3], Table 11].

0.58
0.58
0.49
0.60
0.54
0.50
0.99
0.48
0.55
0.52

Accuracy (%) MCC
Semantics | NO-GR W/GR GR ONLY HYBRID | NO-GR W/GR GR ONLY HYBRID
DC-PR 83.10  83.96 63.98 84.69 0.54 0.58 0.34
DC-CO 81.31 88.02 63.86 86.58 0.46 0.58 0.28
DC-ST 85.62 87.06 64.19 84.66 0.49 0.52 0.24
DC-SST 77.04  86.00 64.41 86.64 0.42 0.55 0.32
DC-STG 84.05  86.84 61.45 85.76 0.46 0.57 0.23
DS-PR 86.24  87.66 84.99 85.14 0.50 0.56 0.52
DS-CO 97.00 97.54 100.00 99.64 0.83 0.88 1.00
DS-ST 88.65 88.29 78.10 88.44 0.46 0.45 0.39
DS-SST 86.75 86.94 85.51 86.63 0.53 0.51 0.52
DS-STG 87.48  88.81 85.90 87.86 0.48 0.55 0.48
DS-ID 86.16  87.28 85.33 87.44 0.52 0.53 0.52

0.57

A.2 Class-aware metrics for preferred semantics (Yes/No)

Table .4: DC-PR class-aware accuracy from SAFA 2020 [I6], Table 2].

Model ‘ Overall Yes No

4-Layers Modified GCN 92.68%  69.33% 93.54%
5-Layers Modified GCN 92.26%  73.56% 92.95%
6-Layers Modified GCN 91.63% 71.81% 92.37%
Modified GCN (Balanced Data) 81.20%  91.20% 71.00%
Modified GCN (Fixed Batches) 96.40%  7.00%  99.70%
Kuhlmann & Thimm 2019 (Unbalanced) | 62.00% 10.00% 97.00%
Kuhlmann & Thimm 2019 (Balanced) 63.00% 17.00% 93.00%

Credulous acceptance (DC-PR), SAFA 2020..
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Table .5: DS-PR class-aware accuracy from SAFA 2020 [16, Table 3].

Model ‘ Overall Yes No

4-Layers Modified GCN 96.21%  24.04% 97.10%
5-Layers Modified GCN 96.20%  22.92% 97.11%
6-Layers Modified GCN 96.24%  22.69% 97.15%

Modified GCN (Balanced Data) | 97.15%  46.35% 94.39%
Modified GON (Fixed Batches) | 98.44%  0.33%  99.66%

Sceptical acceptance (DS-PR), SAFA 2020..

Preferred semantics, equal-weighted class-aware (2024).. For completeness
we include DC-PR and DS-PR equal-weighted class-aware summaries from
[13, App. A].

Table .6: Preferred semantics, equal-weighted (Accuracy; Acc(yes); Acc(no); Precision;
Recall; F1; MCC) [13, Tables A.19-A.23].

DC-PR | Acc Acc(yes) Acc(no) Prec Rec F1 MCC
GCN-NO-GR 83.10% 85.36% 77.89% 86.40% 63.06% 0.64 0.54
GCN-WITH-GR 83.96% 86.12% 76.87% 87.52% 69.19% 0.70  0.58
GR-ONLY 63.98% 100.00% 59.69% 100.00% 37.93% 0.43 0.34

HYBRID-GCN-GR | 84.69%  88.27% 76.61% 89.93% 68.89% 0.69 0.58

DS-PR Acc Acc(yes) Acc(no) Prec Rec F1 MCC
GCN-NO-GR 86.24%  84.53% 86.99% 87.81% 51.82% 0.53 0.50
GCN-WITH-GR 87.66% 84.78% 87.89% 87.55% 57.91% 0.61 0.56
GR-ONLY 84.99% 100.00% 83.31% 100.00% 46.79% 0.51 0.52

HYBRID-GCN-GR | 85.14%  76.19% 86.62% 81.00% 57.82% 0.55 0.50

A.3 Ablation summaries (depth and training optimization)

Table .7: Effect of depth and training optimization on preferred semantics (Accuracy % /
MCC). Reproduced from [I3], Table 13, §5.2].

Model DC-PR DS-PR

4-Layer AFGCN 95.1 /0.610 97.5 / 0.720
5-Layer AFGCN 94.9 / 0.601 97.4 / 0.704
6-Layer AFGCN 93.2 / 0.398 97.4 / 0.704

4-Layer AFGCN (no training optimization) | 92.2 / 0.327 94.9 / 0.291
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Table .8: AFGCN runtime statistics for classifying a full framework (ms). Reproduced
from [I3], Table 14].

‘min 25% 50% 75%

Runtime w/GR | 6.83 12.44 28.96 810.58
Runtime no GR | 6.12 10.55 20.72 242.72

Table .9: PYGLAF single-argument runtime by semantics group (ms). Reproduced from
[13], Table 15].

Group ‘ Mean Median Min Max

DC-CO 123490  51294.7 122480 594880
DC-PR 123646  50806.5 137.729 595089
DC-SST 190652  64992.1 137.916 600172
DC-ST 147624  68084.8 151.857 588594
DC-STG | 470557 599532 135.897 601137
DS-CO 92184.7  46223.1 108.567 570255
DS-ID 490946 595811 170.028 601034
DS-PR 239657 104572 114.881 600682
DS-SST 191973  66349.2 145.543 600861
DS-ST 192526  93378.4 137.009 589832
DS-STG | 460623 599432 152.218 601131

Table .10: AFGCN runtime (all arguments per framework) by semantics group (ms).
Reproduced from [13], Table 16].

Group ‘ Mean Median Min Max

DC-CO | 29014.5 18456.3 976.1 63070.5
DC-PR | 29294.5 19194.8 1012.3 62154.1
DC-SST | 27876.7  17168.7 1039.0 65651.4
DC-ST 28333.2 18064.9 972.0 67038.8
DC-STG | 8952.2 7669.2  980.9 36944.3
DS-CO 32225.2  31585.8 995.3 62023.9
DS-ID 3988.8 3260.6  982.8 15123.2
DS-PR 10107.5 8449.7  965.2 33380.9
DS-SST 9120.6 7917.3 1024.8 42996.7
DS-ST 21555.2  15009.3 1015.2 62530.0
DS-STG 8938.6 7894.1  975.2 39858.8
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Table .11: AFGCN runtime per argument by semantics group (ms). Reproduced from [I3]
Table 17].

Group ‘ Mean Median Min Max

DC-CO | 0.511720 0.325508 0.0172153  1.11236
DC-PR | 0.517241 0.338915 0.0178741  1.09743
DC-SST | 0.493667 0.304039 0.0183997  1.16261
DC-ST 0.521155 0.332283 0.0178783  1.23310
DC-STG | 0.992253 0.850040  0.108718  4.09485
DS-CO 0.450129 0.441197 0.0139025 0.866363
DS-ID 3.29238  2.69133  0.811174  12.4827
DS-PR 0.922482 0.771186 0.0880943  3.04659
DS-SST 1.01557 0.881593  0.114106  4.78765
DS-ST 0.689990 0.480453 0.0324956  2.00161
DS-STG | 0.971628 0.858082  0.106003  4.33264

Table .12: Median runtime by benchmark (seconds), with and without grounded compu-
tation. Reproduced from [I3, Table C.63].

Benchmark |w/ GR no GR

ABA2AF 1.79 1.32
AFGen 0.06 0.05
Barabasi-Albert 0.01 0.01
Erdés—Rényi 0.03 0.03
Grounded 1.84 0.55
LBA 0.01 0.01
Planning2AF 0.02 0.01
Stable 0.04 0.02
Traffic 0.01 0.01
Watts—Strogatz 0.02 0.02
admbuster 2.61 0.10

Table .13: Median runtime by semantics (seconds), with and without grounded computa-
tion. Reproduced from [I3, Table C.62].

Semantics | w/ GR no GR

DC-CO 0.027 0.020
DC-PR 0.031 0.022
DC-SST 0.031 0.021
DC-ST 0.029 0.020
DC-STG 0.029 0.020
DS-CO 0.029 0.022
DS-ID 0.042 0.031
DS-PR 0.028 0.022
DS-SST 0.029 0.019
DS-ST 0.029 0.020
DS-STG 0.027 0.020
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A.J Runtime statistics and comparisons

Remark on speedups vs exact solvers.. When compared against PYGLAF
(ICCMA’21 preferred track winner), AFGCN achieves mean speedups up to
122.8x in the “all arguments” mode and theoretical per-argument speedups
exceeding 10°x for some groups; see detailed discussion and caveats in [I3,
§5.2.5; Tables 15-17].

Provenance: All values in Tables are reproduced verbatim from [16,
13].
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