
The AllDifferent Constraint:The AllDifferent Constraint:
Efficiency MeasuresEfficiency Measures

Ian P. Gent, Ian Miguel, Peter Nightingale

 22

AllDifferentAllDifferent

● A vector of variables must take distinct valuesA vector of variables must take distinct values
● Very widely used – very importantVery widely used – very important
● Examples:Examples:

– A class of students must have lectures at distinct A class of students must have lectures at distinct
timestimes

– In a sports schedule, the teams playing on a In a sports schedule, the teams playing on a
particular week are all distinctparticular week are all distinct

– No pair of golfers play together more than onceNo pair of golfers play together more than once

– SudokuSudoku

 33

AllDifferentAllDifferent

● Van Hoeve surveys various strengths of Van Hoeve surveys various strengths of
inferenceinference

● In order of increasing strength:In order of increasing strength:
– Weak and fast pairwise decomposition (AC) -- O(r)Weak and fast pairwise decomposition (AC) -- O(r)

– Bound consistency – find Hall intervals (as Bound consistency – find Hall intervals (as
described by Toby) and prune bounds – O(r log r)described by Toby) and prune bounds – O(r log r)

– Range consistency – find Hall intervals and pruneRange consistency – find Hall intervals and prune

– Generalised arc consistency (GAC) – O(kGeneralised arc consistency (GAC) – O(k0.50.5 r d) r d)

● We focus on GAC algorithm by RWe focus on GAC algorithm by Réégingin

 44

GAC AllDifferentGAC AllDifferent

● One expensive pass achieves consistencyOne expensive pass achieves consistency
● Traditionally has large incremental, backtracked Traditionally has large incremental, backtracked

data structuredata structure
● Traditionally low priorityTraditionally low priority
● Triggered on any domain changeTriggered on any domain change

– But many changes are processed togetherBut many changes are processed together

● No paper that we are aware of No paper that we are aware of
comprehensively investigates implementation comprehensively investigates implementation
decisionsdecisions

 55

Our approachOur approach

● Investigate optimizations in literature (tried to Investigate optimizations in literature (tried to
find everything!)find everything!)

● Trigger only on relevant valuesTrigger only on relevant values
– It is not necessary to trigger on all domain removalsIt is not necessary to trigger on all domain removals

– Identify O(2r+d) trigger valuesIdentify O(2r+d) trigger values

● Partition the constraint dynamicallyPartition the constraint dynamically
– Algorithm already identifies independent sub-Algorithm already identifies independent sub-

constraintsconstraints

– Store and re-use this partitionStore and re-use this partition

– Run expensive algorithm only on sub-constraintRun expensive algorithm only on sub-constraint

 66

Régin's AlgorithmRégin's Algorithm

● Find a maximum matching M from variables to Find a maximum matching M from variables to
values.values.
– Corresponds to a satisfying tuple of the constraintCorresponds to a satisfying tuple of the constraint

● If |M|<r, the constraint is unsatisfiableIf |M|<r, the constraint is unsatisfiable
● Construct residual graph R (as described later)Construct residual graph R (as described later)
● Edges not in M, and in no cycle in R, Edges not in M, and in no cycle in R,

correspond to values to prunecorrespond to values to prune

 77

Régin's AlgorithmRégin's Algorithm

● Described in terms of flow, Ford-Fulkerson BFS Described in terms of flow, Ford-Fulkerson BFS
algorithmalgorithm

● Alternative is bipartite graph matching, Alternative is bipartite graph matching,
Hopcroft-Karp or other algorithmHopcroft-Karp or other algorithm

 88

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 99

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1010

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1111

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1212

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1313

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1414

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1515

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
maximum maximum
flow from s flow from s
to tto t

● Ford-Ford-
Fulkerson Fulkerson
algorithmalgorithm

 1616

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Completed Completed
maximum maximum
flow from s flow from s
to tto t

● Covers all Covers all
variables variables
(constraint (constraint
is is
satisfiable)satisfiable)

● One of 24One of 24

 1717

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
strongly-strongly-
connected connected
componentscomponents

 1818

Régin's AlgorithmRégin's Algorithm

● Strongly-connected components (SCCs)Strongly-connected components (SCCs)
– Vertices Vertices ii and and jj in same SCC iff: in same SCC iff:

● Path from Path from ii to to jj and from and from j j to to i i in digraphin digraph

– Found by Tarjan's algorithmFound by Tarjan's algorithm
● DFSDFS

– SCC='Maximal set of cycles'SCC='Maximal set of cycles'

 1919

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Find Find
strongly-strongly-
connected connected
componentscomponents

 2020

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Cycle within Cycle within
SCCSCC

● Apply cycle Apply cycle
to find to find
different different
maximum maximum
flowflow

● No cycles No cycles
between between
SCCsSCCs

 2121

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● Cycle within Cycle within
SCCSCC

● Apply cycle Apply cycle
to find to find
different different
maximum maximum
flowflow

● No cycles No cycles
between between
SCCsSCCs

 2222

Régin's AlgorithmRégin's Algorithm

x1 x2 x3 x4

1 2 3 4 5 6

s

t

● No cycles No cycles
between between
SCCsSCCs

● No maximum No maximum
flows flows
involving involving
x3=2 or x4=2x3=2 or x4=2

 2323

Régin's AlgorithmRégin's Algorithm

● Remove Remove
edges which edges which
are: are:
– Between Between

SCCsSCCs

– Not in flowNot in flow

● Corresponds Corresponds
to theorem to theorem
by Berge, by Berge,
19731973

x1 x2 x3 x4

1 2 3 4 5 6

s

t

 2424

ImplementationImplementation

● Key assumption: don't maintain the graph, Key assumption: don't maintain the graph,
discover it as you traversediscover it as you traverse
– Domain queries cheap in MinionDomain queries cheap in Minion

– Alternative: maintain and BT adjacency lists, size Alternative: maintain and BT adjacency lists, size
O(rd)O(rd)

– We claim this is better without experimentWe claim this is better without experiment

– If Patrick reads the paper, I'm in trouble!If Patrick reads the paper, I'm in trouble!

– If the assumption is not true, our experiments are If the assumption is not true, our experiments are
somewhat less reliable, but the big results should somewhat less reliable, but the big results should
still holdstill hold

 2525

Optimizations in LiteratureOptimizations in Literature

● Incremental matching (Régin)Incremental matching (Régin)
● Priority QueuePriority Queue

– Execute at low priority and with no duplicate eventsExecute at low priority and with no duplicate events

● Staged propagation (Schulte & Stuckey)Staged propagation (Schulte & Stuckey)
– Do simple propagation at high priority, GAC at low Do simple propagation at high priority, GAC at low

prioritypriority

● Domain counting (Quimper & Walsh)Domain counting (Quimper & Walsh)
● Fixpoint reasoning (Schulte & Stuckey)Fixpoint reasoning (Schulte & Stuckey)

– Solves the 'Double Call Problem'Solves the 'Double Call Problem'

● Advisors (Lagerkvist & Schulte)Advisors (Lagerkvist & Schulte)

 2626

Priority QueuePriority Queue

 2727

Incremental MatchingIncremental Matching

 2828

FF-BFS vs HKFF-BFS vs HK

● FF is also FF is also
much easier much easier
to to
implement!implement!

 2929

Staged propagationStaged propagation

● Very simple, Very simple,
deals with deals with
assigned assigned
vars at high vars at high
prioritypriority

 3030

TriggeringTriggering

● Trigger only on relevant values (Dynamic Trigger only on relevant values (Dynamic
Triggers)Triggers)
– It is not necessary to trigger on all domain removalsIt is not necessary to trigger on all domain removals

– Identify tIdentify t≤≤2r+d trigger values from rd2r+d trigger values from rd

– Doesn't work on our instances!Doesn't work on our instances!

– Ratio not low enoughRatio not low enough

 3131

TriggeringTriggering

● Domain counting (Lagerkvist & Schulte, variant Domain counting (Lagerkvist & Schulte, variant
of Quimper & Walsh)of Quimper & Walsh)
– Only trigger when domain size less than rOnly trigger when domain size less than r

– Very cheap but has almost no effectVery cheap but has almost no effect

● Fixpoint reasoning and advisorsFixpoint reasoning and advisors
– No claim in original papers that these are useful for No claim in original papers that these are useful for

AllDifferentAllDifferent

– DT results suggest fixpoint reasoning is uselessDT results suggest fixpoint reasoning is useless

– We have something like advisors (although more We have something like advisors (although more
general) – the variable event queue!general) – the variable event queue!

 3232

Partitioning the constraintPartitioning the constraint

● Partition by SCCsPartition by SCCs
– Each SCC corresponds to an independent sub-Each SCC corresponds to an independent sub-

constraintconstraint

– Store and re-use this partition (of the variables)Store and re-use this partition (of the variables)

– Run expensive algorithm only on sub-constraintRun expensive algorithm only on sub-constraint

 3333

Partitioning the constraintPartitioning the constraint

1 2 3 4 5 6setElements:

0 0 0 00splitPoint:

Partition this set into {1,3,5},{2,4,6}

1 23 45 6setElements:

0 1 0 00splitPoint:

Backtrack

1 23 45 6setElements:

0 0 0 00splitPoint:

Representation of {1,2,3,4,5,6}

1 2 3 4 5 6

setElementIndex:

1 4 2 5 3 6

1 4 2 5 3 6

splitPoint[3]=true indicates that
adjacent elements 5 and 2 are in
different subsets in the partition.

● Small incremental data structure which Small incremental data structure which
backtracks efficientlybacktracks efficiently

 3434

Partitioning the constraintPartitioning the constraint

 3535

Partitioning the constraintPartitioning the constraint

● Worth considering for other large constraintsWorth considering for other large constraints
– GAC GCC partitions in the same wayGAC GCC partitions in the same way

– Graph connectivity partitions when you find a Graph connectivity partitions when you find a
'bridge''bridge'

– Sequence constraint?Sequence constraint?

– Regular/Slide partition when variables are assigned Regular/Slide partition when variables are assigned
in middlein middle

 3636

Pairwise AllDifferentPairwise AllDifferent

● Trigger only on assignment of a variableTrigger only on assignment of a variable
● Remove assigned value from all other variablesRemove assigned value from all other variables
● Extremely cheapExtremely cheap
● Equivalent to AC on pairwise not-equal Equivalent to AC on pairwise not-equal

constraintsconstraints
● This is no straw man!This is no straw man!

 3737

Comparing to PairwiseComparing to Pairwise

 3838

Comparing to PairwiseComparing to Pairwise

● GAC AllDifferent never slows down search by GAC AllDifferent never slows down search by
more than 2.34 timesmore than 2.34 times

● Can be 100,000 times fasterCan be 100,000 times faster
● Most AllDifferent constraints here are tightMost AllDifferent constraints here are tight

 3939

Modelling with AllDifferentModelling with AllDifferent

● Golomb RulerGolomb Ruler
– Triangular table representing all pairsTriangular table representing all pairs

– One AllDifferent constraintOne AllDifferent constraint

– Optimization tightens AllDiffOptimization tightens AllDiff

– Implied constraintsImplied constraints

Ruler: 0 A B C D ... (monotonic)
Diffs: A B C D ...
 B-A C-A D-A ...
 C-B D-B ...
 D-C ...
 ...

AllDifferent

 4040

Modelling with AllDifferentModelling with AllDifferent

● Langford's problem with 2 instances of each Langford's problem with 2 instances of each
numbernumber
– Model due to RendlModel due to Rendl

– PermutationPermutation

– Represent the indices rather than the actual Represent the indices rather than the actual
Langford sequenceLangford sequence

For Langford sequence of length n with n/2 numbers.
Pos[1..n] -- AllDifferent
Pos[1]+2=Pos[11] // first instance of number 1 is distance
 // 1 from the second instance of 1
...

 4141

Modelling with AllDifferentModelling with AllDifferent

● Quasigroup and QWHQuasigroup and QWH
– Similar to Sudoku (without the sub squares)Similar to Sudoku (without the sub squares)

– n x n matrix of variables with domain 1..nn x n matrix of variables with domain 1..n

– AllDifferent on each row and each columnAllDifferent on each row and each column

– QWH has some values filled in alreadyQWH has some values filled in already
● Well known to show off GAC AllDifferentWell known to show off GAC AllDifferent

– Quasigroup has various properties (e.g. Quasigroup has various properties (e.g.
associativity, idempotence)associativity, idempotence)

● Colton & Miguel's model and implied constraintsColton & Miguel's model and implied constraints

 4242

Modelling with AllDifferentModelling with AllDifferent

● N Queens problemN Queens problem
– Model 1Model 1

● Three vectors representing queen position in row, the Three vectors representing queen position in row, the
number of the leading diagonal, and the number of the number of the leading diagonal, and the number of the
secondary diagonalsecondary diagonal

● These vectors are all differentThese vectors are all different

– Model 2Model 2
● One vector representing queen position in row (all One vector representing queen position in row (all

different)different)
● Constraints to forbid diagonalsConstraints to forbid diagonals
● Tailor creates 30 auxiliary variables for n=16Tailor creates 30 auxiliary variables for n=16

 4343

Modelling with AllDifferentModelling with AllDifferent

● Sports schedulingSports scheduling
– Two viewpointsTwo viewpoints

● For each week, a vector of the teams (all different)For each week, a vector of the teams (all different)
● Vector of games (all different)Vector of games (all different)
● Channelling constraints between the two (table)Channelling constraints between the two (table)
● Symmetry breaking constraints (< for each game, lex on Symmetry breaking constraints (< for each game, lex on

weeks, lex on stadiums)weeks, lex on stadiums)
● Stadium constraints (each team plays no more than twice Stadium constraints (each team plays no more than twice

in one stadium)in one stadium)

1 3 2 4 ...Week 1:

Stadium 1 Stadium 2

 4444

Modelling with AllDifferentModelling with AllDifferent

● Social GolfersSocial Golfers
– Very similar to sports schedulingVery similar to sports scheduling

– Two viewpointsTwo viewpoints
● For each week, a vector of the golfers (all different)For each week, a vector of the golfers (all different)
● Vector of pairs who played together (all different but not Vector of pairs who played together (all different but not

necessarily a permutation)necessarily a permutation)
● Channelling constraints between the two (table)Channelling constraints between the two (table)
● Symmetry breaking constraints (< within the groups, lex Symmetry breaking constraints (< within the groups, lex

on weeks, lex between groups)on weeks, lex between groups)

1 2 4 5Week 1: 3 6 7 9 ...

 4545

Modelling with AllDifferentModelling with AllDifferent

● As you can see, AllDifferent is widely used! 7 As you can see, AllDifferent is widely used! 7
example problems.example problems.

● The AllDifferent is tight in all examplesThe AllDifferent is tight in all examples
– In a lot of cases it is worth doing GAC, but not allIn a lot of cases it is worth doing GAC, but not all

– I think it does depend on tightness, but also on I think it does depend on tightness, but also on
other constraints surrounding the AllDifferentother constraints surrounding the AllDifferent

– I refuse to offer any advice!I refuse to offer any advice!

 4646

ConclusionsConclusions

● A bag of useful tricks from the literatureA bag of useful tricks from the literature
● One new trick which worked: partitioning the One new trick which worked: partitioning the

constraintconstraint
– Perhaps this is general!Perhaps this is general!

● One new trick which didn't: dynamic triggers One new trick which didn't: dynamic triggers
from SCC algorithmfrom SCC algorithm

● The only modelling advice is to try a couple of The only modelling advice is to try a couple of
different propagators!different propagators!

 4747

Thank YouThank You

● Any Questions?Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

