
Real-Time Communication Analysis for On-Chip
Networks with Wormhole Switching

Zheng Shi and Alan Burns
Real-Time Systems Research Group, Department of Computer Science

University of York, UK
{zheng, burns}@cs.york.ac.uk

Abstract—In this paper, we discuss a real-time on-chip commu-
nication service with a priority-based wormhole switching policy.
A novel off-line schedulability analysis approach is presented.
By evaluating diverse inter-relationships among the traffic-flows,
this approach can predict the packet network latency based on
two quantifiable different delays: direct interference from higher
priority traffic-flows and indirect interference from other higher
priority traffic-flows. Due to the inevitable existence of parallel
interference, we prove that the general problem of determining
the exact schedulability of real-time traffic-flow over the on-
chip network is NP-hard. However the results presented do form
an upper bound. In addition, an error in a previous published
scheduling approach is illustrated and remedied. Utilizing this
analysis scheme, we can flexibly evaluate at design time the
schedulability of a set of traffic-flows with different QoS require-
ments on a real-time SoC/NoC communication platform.

I. INTRODUCTION

With the development of semiconductor technology over
the last fifteen year, it is possible to offer more than many
tens of million of transistors on a single chip. Under this
condition, designers are developing ICs integrating complex
heterogeneous functional elements into a single device, known
as a System-on-Chip (SoC).

Generally, SoC is an integrated circuit that implements most
or all of the functions of a complete electronic system. In such
a system, different components need a standard approach to
support on-chip communication. Early SoCs employed busses
or a point-to-point approach to fulfil the information exchange
demands. However, with the rapid increase in the number
of blocks to be connected and the increase in performance
demands, busses and point-to-point based platforms suffer
from limited scalability and quickly become a communication
bottleneck [9], [11]. On-chip packet-switched networks have
recently been proposed as a significant solution for complex
communication of SoCs. Network on Chip (NoC) [7], [4] is
an architectural paradigm for scalable on-chip interconnection
architectures. This architecture offers a general and fixed
communication platform which can be reused for a large
number of SoC designs.

Networks as a subject has been studied for decades. How-
ever, the situation for NoC is different from off-chip networks
meaning that we can not deploy general networks on SoC
platforms directly. NoCs differ from off-chip networks mainly
in that they are more constrained and less non-deterministic
[3]. The structure of an off-chip network or general network is
in principle unknown, ie. topology is not fixed and behaviours

of nodes are not predictable. So the protocols need enough
adaptability to meet various requirements. Some results used
in traditional networks can’t be employed directly and must
be re-evaluated. A few distinctive limitations are unique for
on-chip networks, namely, minimal energy consumption, and
small size [12] (both computation and storage functions im-
plemented in a small silicon area). Therefore many network
design choices need to be modified so that the implementation
cost as well as speed/throughput performance is acceptable.

The new on-chip communication architecture needs to pro-
vide different levels of service for various application com-
ponents on the same network. One kind of communication,
namely real-time communication, has very stringent require-
ments, the correctness relies on not only the communication
result but also the completion time bound. For a packet
transmitted over the network, this time bound is denoted by the
packet network latency. A data packet received by a destination
too late could be useless. For instance, the signal message
packet or control message packet of an application requires
timely delivery. The worst case acceptable time metric is
defined to be the deadline of the packet. A traffic-flow is a
packet stream which traverses the same route from the source
to the destination and requires the same grade of service along
the path. For hard real-time traffic-flows, it is necessary that
all the packets generated by the traffic-flow must be delivered
before their deadlines even under worst case scenarios. In
another words, the maximum network latency for each packet
can not exceed its deadline. A set of real-time traffic-flows
over the network are termed schedulable if all the packets
belonging to these traffic-flows meet their deadlines under any
arrival order of the packet set.

As a popular switching control technique, wormhole switch-
ing [19] has been widely applied for on-chip networks due to
its greater throughput and smaller buffering requirement [12].
However, few works have been done to analyze the real-time
packet schedulablility for wormhole switching networks. In
order to support real-time requirements, particularly satisfying
its deadline bound, predictable behaviour of the network
service is essential. But the situation for on-chip wormhole
networks is partially non-deterministic due to the contentions
in communication. In on-chip networks, several tasks running
on different nodes exchange information periodically. During
a transmission period, one transmitted packet shares the re-
sources, such as buffers or physical links, with other packets.
When several packets try to access the same resource at the

same time, contention occurs and the network only can serve
one packet and suspend the others based on some arbitration
policy. Once a packet becomes blocked, it can block other
packets, which can in turn block other packets, and so on. The
exact analysis of congestion in this situation is hard [2] due to
the possibility of a packet becoming blocked at several routers
during its journey from source to destination. The contention
problem leads to packet delays and even missed deadlines.
Therefore, it is necessary to give a scheduling strategy and
analysis approach to predict whether all the real-time packets
can meet their timing properties.

In this paper we explore real-time communication in worm-
hole switching for on-chip networks. We assume the priority-
based transmission preemption method [2], [10], [13]. A
novel analyzable approach, the worst case network latency
evaluation, is presented, within which a broad class of real-
time communication services can be explored and developed.
By evaluating diverse inter-relationships and service attributes
among the traffic-flows, our model can predict the packet
transmission latency for a given traffic-flow based on two
quantifiable different delays: direct interference from higher
priority traffic-flows and indirect interference from other
higher priority traffic-flows. Due to the inevitable existence
of parallel interference, we prove that the general problem of
determining the exact schedulability of real-time traffic-flows
over the on-chip network is NP-hard. We also prove that the
real maximum network latency is bounded by the theoretical
calculation in our model. By using this approach, we can
flexibly evaluate at design time the schedulability of a traffic-
flow set with different quality of service (QoS) requirements
in a real-time SoC/NoC communication platform.

The rest of this paper is organized as follows: section
II introduces the major features of wormhole switching. A
preemptive arbitration structure is deployed to implement
priority-driven transmission scheduling. A novel real-time
communication model and associated analysis are represented
in sections III and IV. Section V discusses the limitation of our
model when there exists parallel interference. Finally, section
VI concludes the paper.

II. WORMHOLE SWITCHING IN REAL-TIME
COMMUNICATION

A. Wormhole switching

It is a major challenge for NoCs to provide real-time
support. The area and energy constraints determine that the
cut-through switching approach (wormhole switching) is the
more practical deployment strategy than the store-and-forward
switching (packet switching) policy [8], [12]. In a wormhole
switching network, data is encapsulated into a packet format
for network transmission. So for convenience in discussing,
a packet is treated as the basic information unit throughout
this paper. Each packet in a wormhole network is divided
into a number of fixed size flits [19]. The header flit takes
the routing information and governs the route. As the header
advances along the specified path, the remaining flits follow
in a pipeline way. If the header flit encounters a link already
in use, it is blocked until the link becomes available. In this

situation, all the flits of the packet will remain in the router
along the path and only a small flits buffer is required in each
router. But this blocking will decrease the available resource
for other communication traffic-flows and reduce the network
resource efficiency.

Fig. 1. A General NoC Platform

A general communication infrastructure for the wormhole
on-chip network is illustrated in Figure 1. A set of routers and
point-to-point links interconnecting the routers are organized
in a mesh structure. Each router has one or several intellectual
property (IP) modules which hold tasks for execution. These
tasks, executing on different IPs, communicate with each other
by transmitting packets through the on-chip interconnection
network. Two unidirectional links, one for each direction,
connecting two routers realize the full-duplex transmission
media. The network uses dimension-order X-Y routing, which
is simple and easy to be implemented in the regular topology.
The virtual channels (VCs) technique [6] is deployed which
decouples resource allocation by providing multiple buffers
for each physical link in the network. Each of these buffers is
considered as a virtual channel and can hold one or more flits
of a packet. By combining with the virtual channels technique,
the transmitting packet can bypass a blocked one. This strategy
efficiently utilizes the network resource (link bandwidth) and
improves the performance with a very small buffer overhead
[5].

Figure 1 also illustrates a number of traffic-flows loaded
on this NoC platform. For example, τ1 starts in router 7 and
passes through routers 11 and 15 before terminating in router
14.

B. Priority preemptive arbitration

In conventional wormhole routers, data flits held by VCs
access the output link based on first-come first-service arbi-
tration. This scheme is suitable for non-real-time networks
since it is fair and produces good average performance. But in
real-time communication, the network must ensure each real-
time packet meets its deadline bound. Priority arbitration is

proposed to resolve this problem [2], [10], [13]. We employ
the flit-level preemption method implemented by using virtual
channels, which have similar structure as in [10], [13]. The
arbitration with priority method uses priority preemption to
provide delivery guarantees for hard deadline packets. We
assume there are as many virtual channels as priority levels at
each output port. Each virtual channel is assigned a different
priority. An output port structure of a router is shown in Figure
2. The traffic-flows loaded in the wormhole network have
priorities associated with them. Each packet generated by a
traffic-flow inherits the corresponding priority of the traffic-
flow. A packet with priority i can only request the virtual
channels associated with priority value i. At any time the
packet with the highest priority always gets the privilege to
access the output link. In addition, a higher priority packet can
also preempt a lower priority packet during its transmission.
Since the real-time traffic-flows between different routers in
a specific on-chip network is known a prior, a global priority
assignment policy should be ameanable to off-line analysis
[2].

Fig. 2. Priority Arbitration Output Port

Consider n traffic-flows, each one with an associated virtual
channel containing flits. The arbiter fetches flits from these
queues according to priority arbitration and forwards them
over a shared output link. If the highest priority packet can
not send data because it is blocked elsewhere in the network,
the next highest priority packet can access the output link. The
allowable service time for a traffic-flow is all the time intervals
at which no higher priority traffic-flow competes for the same
physical link.

C. Current works

Wormhole switching achieves high throughput performance
with less buffer requirement comparing with packet-switched
technique [8], [12]. But it also introduces unpredictable
network delay [8]. Hard real-time communication, on the
contrary, requires the timing to be predictable even under
the worst case situation. Besides this, the network resource
allocation and scheduling for the real-time traffic-flow should
be analysable during the design phase. Predictability of per-
formance is essential for NoCs design to take early decisions
before actual implementation. Fortunately, the communication

pattern of a SoC is determined during a pre-configuration
period; interconnection topology and characteristics of traffic
pattern are foreseeable. Therefore, we need an off-line static
evaluation approach to ensure the packet network latency never
violates its timing bound. Utilizing this approach, we also can
plan and explore the distribution of the real-time applications
over the network to produce a very effective mapping.

The first work to explore the packet’s timing property in
wormhole switching was published by Li and Mutka [16] in
1994. Utilizing the priority strategy, for a wormhole network
with the same number of virtual channels as the number of
priority levels, a packet can request only a virtual channel
which is numbered lower than or equal to its priority [16].
Song et al [20] proposed a flow control approach to avoid
the priority inversion problem. By flit-level preemption, the
different priority traffic-flows can be catered for by a very
small number of virtual channels. However the upper bound
of network latency for each packet in the network are not
delivered by Song and Li’s methods. Balakrishnan et al [2]
proposed a quite naive and simple approach - lumped link
to address this problem. All the links the traffic-flow travels
are lumped as one shared resource - like a bus structure. Static
priority preemptive policy is adopted to assure at any time only
the highest priority traffic-flow can access the link resources.
However, due to lumping, direct and indirect contentions are
treated in the same way, Balakrishnan’s result is sufficient
but pessimistic [18]. Hary et al [10] utilized the same model
proposed in [2] but ignored indirect competition, the result
of [10] is optimistic. In this paper we treat the indirect
contentions as interference jitter and get an upper bound
on network latency. The analysis and relative example are
represented in section IV. The analysis by Lu et al [18] takes
account of the parallel interference in disjoint traffic-flows and
tries to minimize the direct interferences of higher priority
traffic-flows. But this parallel consideration is not reasonable
when worst case network latency is desired.

III. REAL-TIME COMMUNICATION MODEL AND
ASSUMPTIONS

A. System model and attributes

The packet level analysis approach of real-time commu-
nication in general networks [22] in the absence of buffer
restrictions is not suitable for wormhole networks. We need a
new analysis model for real-time wormhole switching commu-
nication. Some conditions, assumptions and explanations are
essential.

A wormhole switching real-time network Γ comprises n
real-time traffic-flows Γ ={τ1, τ2, . . . τn}. Each traffic-flow
τi is characterized by attributes τi = (Pi, Ci, Ti, Di, J

R
i).

We assume that all the traffic-flows which require timely
delivery are periodic1. The length of time between releases
of successive packets of τi is a constant, which is called the
period Ti for this traffic-flow. Each traffic-flow τi has a priority
value Pi. All the packets that belong to the τi inherits the

1This periodic restriction is for presentation reason, the analysis can be
extended to sporadic traffic-flows where T is the minimum inter-arrival
interval.

same priority Pi. The value 1 denotes the highest priority and
larger integers denote lower priorities. We assume the traffic-
flow is prioritized by any possible priority assignment policy.
The issue of priority assignment is beyond the scope of this
paper. Each real-time traffic-flow has deadline Di constraint
which means all the packets belonging to this traffic-flow have
the restriction that it should be delivered from a source router
to a destination router within a certain delay bound even in the
worst case situation. Our model has the same restriction as [2],
[13], [18] that each traffic-flow’s deadline must be less than or
equal to its period, Di ≤ Ti for all τi ∈ Γ. JRi is the release
jitter [1] denotes the maximum deviation of successive packets
released from its period. If a packet from τi is generated at
time a, then it will be released for transmission by time a+JRi
and have an absolute deadline of a+Di.

The basic network latency happens when no traffic-flow
contention exists. The basic network latency is determined
by its source/destination routing distance, packet size, link
bandwidth and some additional protocol control overheads.
For real-time evaluation purpose, we use the term maximum
basic network latency. Let H denote the hops between source
and destination nodes and S indicate the constant processing
delay in each router. Let the maximum packet size belonging
to τi be Lmaxi and the flit size for wormhole switching be
fsize, the maximum basic network latency Ci [8] is given by:

Ci = dL
max
i + Ladd

fsize
e · fsize/Blink +H · S (1)

where Ladd is the additional data for wormhole switching
such as header and tail flit information. Here we only consider
the longest possible, or maximum, basic network latency for
evaluation. If the real-time traffic-flow can meet its deadline
with the maximum basic network latency scenario, it will meet
the deadline for any other basic network latency scenario. Note
that the network latency here does not consider contention.
The competing interventions can disturb and extend the packet
network latency. The competing interventions and related
worst case evaluation are discussed in section IV.

B. Inter-relationships between traffic-flows

To capture the relations between traffic-flows and the phys-
ical links of the network, we formalize the mesh network
topology defined as a directed graph G : V × E. V is a
set, whose elements are called nodes, each node vi denotes
one router in the mesh network. E is a set of ordered pairs
of vertices, called edges. An edge ex,y = {vx → vy} is
considered to be a real physical link from router vx to router
vy; vx is called the source and vy is called the destination.
We define a mapping space from the traffic-flow set to the
physical links Γ → E. Given a set of n traffic-flows Γ,
we can map them to the target network. The routing <i of
each traffic-flows τi is denoted by the ordered pairs of edges,
<i = {e1,2, e2,3, . . . , en−1,n}. If a traffic-flow τi shares at least
one link with τj , the intersection set between them is <i∩<j .
If <i∩<j = ∅, τi and τj are disjoint. For the case in Figure 1,
the routing of τ1, τ2, τ3 and τ4 are <1 = {e7,11, e11,15, e15,14},
<2 = {e13,9, e9,5, e5,1, e1,2}, <3 = {e15,14, e14,13, e13,9} and

<4 = {e13,9, e9,5, e5,1}. The intersection sets between them
are <1 ∩ <2 = <1 ∩ <4 = ∅, <1 ∩ <3 = {e15,14}, <2 ∩ <3 =
{e13,9}, <2 ∩ <4 = {e13,9, e9,5, e5,1} and <3 ∩ <4 = {e13,9}.

The packet advances when it receives the bandwidth of
all the links along the path. To determine the upper bound
of network latency for a real-time traffic-flow, the maximum
basic network latency and contention interference need to be
measured. The maximum basic network latency can be cal-
culated by Eq.(1). Therefore the important factor dominating
the latency upper bound is interference. Under the priority
arbitration policy, only traffic-flows with higher priority than
the current one can cause interference. So we should find all
the higher priority traffic-flows which could affect the observed
one and calculate the interference upper bound by analyzing
the characteristics of these higher priority traffic-flows.

Kim et al [13] introduced two kinds of interferences to deal
with the relation between the traffic-flows, direct interference
and indirect interference and corresponding direct and indirect
interference sets SDi and SIi of the observed traffic-flow τi.
The direct interference relation means the higher priority
traffic-flow has at least one physical link in common with
the observed traffic-flow. Thus, these traffic-flows will force
a direct contention with the observed one. SDi includes all
the traffic-flows which meet the following condition: SDi =
{τk|<k ∩ <i 6= ∅ and Pk > Pj > Pi for all τk ∈ Γ}.
With the indirect interference relation, on the contrary, the two
traffic-flows do not share any physical link but there is (are)
intervening traffic-flow(s) between the given two traffic-flows.
SIi includes the higher priority traffic-flows that do not share
any links with τi but share at least one link with a traffic-flow
in SDi , SIi = {τk|<k ∩ <i = ∅ and <k ∩ <j 6= ∅,<j ∈ SDi
and Pk > Pi for all τk ∈ Γ}. For each traffic-flow from
higher priority to lower priority, the set Si consisting of all
traffic-flows with direct/indirect interference is constructed:
Si = SIi + SDi .

An example is shown in Figure 1. Four prioritized traffic-
flows sorted from high to low priority are τ1, τ2, τ3 and
τ4. Flows τ1 and τ2 have no shared links with any other
higher priority traffic-flow so no direct or indirect interference,
S1 = S2 = SI1 = SD1 = SI2 = SD2 = ∅. Flow τ3 competes
with τ1 and τ2 and gets SI3 = ∅ and S3 = SD3 = {τ1, τ2}.
Flow τ4 directly contends with τ2 and τ3 and indirectly suffers
interference from τ1, SD4 = {τ2, τ3}, SI4 = {τ1} and S4 =
{τ1, τ2, τ3}. Note that if one traffic-flow is both contending
directly and indirectly with an observed one, then this traffic-
flow will be regarded as generating direct contention only.

With the assumption and definition of the communication
model, we will give, in the next section, a determinant upper
bound on the schedulability of real-time traffic-flows.

IV. NETWORK LATENCY UPPER BOUND ANALYSIS

An efficient approach is necessary in order to evaluate all
the possible competing interferences imposed by all the higher
priority traffic-flows. We find that the observed traffic-flow has
a relationship of resource competition with its relevant higher
priority traffic-flows. This is similar to the processor resource
model [17], [1], [21] in real-time scheduling, in which all the

tasks contends for the shared processor resource. In wormhole
switching networks, the shared physical communication links
are also contended for by the associated traffic-flows. Utilizing
the preemptive fixed priority scheduling policy, we can analyze
this model following the real-time scheduling approach in
single-processors.

We introduce the concept of worst case network latency
which is inspired by worst case response time (WCRT) [14]
proposed in real-time system scheduling. A traffic-flow is
schedulable if and only if the network latency of all the packets
belonging to this traffic-flow is no more than its deadline. If we
can find the worst case network latency of this traffic-flow, we
can judge whether this traffic-flow is schedulable. Generally,
we need to find the condition which can trigger the traffic-
flow’s worst case network latency. Liu and Layland in their
seminal paper [17] identified two major conditions to achieve
the worst case response:
• All the tasks execute for their worst-case execution time

and all tasks are subsequently released at their maximum
rate.

• The task is released at the critical instant.
The critical instant is the time that the task is requested

simultaneously with requests of all higher priority tasks. We
borrow the concept of critical instant to apply it for real-time
scheduling in wormhole switching. The worst case network
latency is assumed to occur when the packet from the observed
traffic-flow is fired simultaneously with all the packets from
higher priority traffic-flows with their maximal release rates.

We have discussed that the worst case network latency is
primarily determined by the interference after computing the
maximum basic network latency. Next, we need to quantify
the analysis based on two distinguishing interferences:
• Direct interference from higher priority traffic-flows.
• Indirect interference from other higher priority traffic-

flows.

A. Interference from direct higher priority

For an observed traffic-flow τi, the network latency Ri of
a packet released from τi is:

Ri = B + Ci + Ii (2)

where Ii is the interference summation from the higher priority
traffic-flow(s). The maximum basic network latency Ci is
constant and known a prior by static analysis (Eq.(1)). B
is the maximum blocking time by any lower priority traffic-
flow which has already begun transmission. The maximum
blocking happens when a higher priority packet arrives just
after a lower priority packet starts its service. Consider our flit-
level preemptive scheduling strategy, the higher priority packet
waits at most one flit time and then starts its transmission
at each hop output port. The maximum blocking time is
represented by B = fsize × H/Blink. The flit size and link
bandwidth is constant after on-chip network configuration.
Thus, the blocking time could be regarded as a constant
parameter and incorporated in the basic network latency Ci.
The network latency equation Eq.(2) is simplified into

Ri = Ci + Ii (3)

We assume the packet from the observed traffic-flow is re-
leased simultaneously with all the packets from higher priority
traffic-flows, this triggers the worst case network latency based
on the condition of critical instant. Without loss of generality,
we assume this time instant is at time 0. Until the time instant
Ri when the packet is accepted completely by the receiver,
during the time interval [0, Ri], the maximum possible direct
competition interference from higher priority traffic-flows in
SDi to a packet from τi when release jitter is considered is:

Ii =
∑
∀τj∈SD

i

d
Ri + JRj

Tj
eCj (4)

The packet from τi may be blocked by more than one packet
from each τj , τj ∈ SDi , since the packet releases are periodic.

The dRi+J
R
j

Tj
e is the maximum number of packets a traffic-

flow can release during the time interval [0, Ri]. Using Eq.(4)
to substitute Ii in Eq.(2), we can produce:

Ri =
∑
∀τj∈SD

i

d
Ri + JRj

Tj
eCj + Ci (5)

We find the variable Ri appears on both sides of the Eq.(5).
This equation can be solve using an iterative technique [1].
Let rn+1

i be the (n + 1)th iterative value generated from the
equation:

rn+1
i =

∑
∀τj∈SD

i

d
rni + JRj
Tj

eCj + Ci (6)

The iteration starts with r0i = Ci and terminates when rn+1
i =

rni . This iteration also should halt if rn+1
i > Di, which denotes

the deadline miss for this packet. By this iterative technique,
the worst case network latency with direct interference can be
calculated (Ri=rn+1

i =rni).

B. Interference from indirect higher priority

The model indicated by Eq.(5) only considers the direct
interference from higher priority traffic-flow. Indirect interfer-
ence also needs to be taken into account.

Fig. 3. A Case of Indirect Interference

Consider the following scenario: τ1, τ2, . . . , τj , τi and τn are
loaded on the network with the inter-relations of traffic-flows
in Figure 3. Traffic-flows are sorted with priority descending,
τ1 with highest priority, τn with lowest priority. We examine
the competing relation of τn and τi and get SDn = {τi},
SIn = {τ1, . . . , τj}, SDi = {τ1, . . . , τj} and SIi = ∅. Without

considering the possible indirect interference from τ1, . . . , τj ,
the worst case network latency of τn occurs when τi and τn
are released at the same time.

Fig. 4. The Problem of Indirect Interference

When τ1, . . . , τj as indirect higher priority traffic-flows are
taken into account, even though they do not share any physical
link with τn, we find their services still can impose an extra
interference on τn. The time-line graph in Figure 4 shows
such a situation. The solid up arrow in the graph indicates
the release time of a packet from a traffic-flow. A packet
served by the network for some time is depicted as a shaded
rectangle. The preemption of a packet is depicted as a white
rectangle. The bold circle denotes the complete packet received
by the destination. We assume τi is released with the other
higher priority packets at the same time 0, the packets from
τ1, . . . , τj will contend with τi. This contention delays the
start time of τi until time ti, ti is the start time of τi first
transmission service. At the time 0 + ti, τn is released, the
packet from τi immediately preempts τn. It is easy to find
that τi imposes the interference Ci upon the τn during the
time interval [t, Ri]. At the time 0 + Ti, τi is released again
but this time all the higher priority traffic-flows τ1, . . . , τj only
send a very small packet or even do not send any packet.
Flow τi in this situation does not suffer any interference
from them and gets network service immediately. From the
view of τn, the time interval between two successive releases
from τi is only (Ti - ti). Consider our original assumption,
the worst case network latency occurs when all the packets
from the higher priority traffic-flows are released periodically
with the minimum packet release interval T . The maximum
interference a packet from τn suffered from a higher priority
traffic-flow is calculated by dRn+JR

i

Ti
e. But in this case, the

minimum interval between subsequent preemptions from τi
is only (Ti - ti) which is less than the original minimum
interval assumption Ti. Note that this phenomenon can only
occur when considering indirect interferences.

Theorem 1: The upper bound of interference suffered by τn
from direct higher priority traffic-flow τi is:

dRn +Ri − Ci + JRi
Ti

eCi (7)

when the indirect interference is considered.
Proof: Let si denote the packet release time from τi. In

this analysis assumption, without loss of generality, the first
packet is released at time 0. Therefore, each packet from τi
is generated periodically at the time instant 0, Ti, 2Ti, . . .,
kTi. si,k = (k − 1)Ti, where k is the sequential number of
the packets. But a real application does not always meet this
constraint and has application release jitter. More specifically,
the release time si,k satisfies:

(k − 1)Ti ≤ si,k ≤ (k − 1)Ti + JRi (8)

In addition, in Figure 4, we observe that the possible inter-
ference from higher priority packets also defers its starting
service time. If the worst case network latency for τi is Ri,
the upper bound of start service time is Ri − Ci. The real
service start time for each packet satisfies:

(k − 1)Ti ≤ si,k ≤ (k − 1)Ti + JRi +Ri − Ci (9)

Now we evaluate the maximum interference suffered by τn
from τi in a given time interval. Here we assume the start
service time of τi is a = Ri−Ci + 0, this is the upper bound
of the start service time since it is released. A packet from τn
is released simultaneously with τi and b is the corresponding
completion time of this release. The worst case interference
occurs when most packets from τi are released since τn is
released. Figure 5 illustrates this situation:

Fig. 5. Upper Bound Analysis of Indirect Interference

The number of preemptions by τi is given by the positive
integer number g between the interval [a, b], g ∈ N. The last
release of τi should fall into the interval before the completion
of τn, g is the largest value that satisfies:

a− (Ri − Ci)− JRi + (g − 1)Ti < b (10)

or, equivalently,

g <
JRi +Ri − Ci + b− a

Ti
+ 1 (11)

The largest positive integer number satisfying this inequality
is given by

g = d
JRj +Ri − Ci + b− a

Ti
e (12)

The interval [a, b] marks the worst case network latency of
τn, b−a = Rn. Therefore, the interference upper bound from
τi is:

dJ
R
i +Ri − Ci +Rn

Ti
eCi (13)

The packet from τn will experience worst latency than what
predicted by Eq.(5) on account of the indirect interference
from τ1, . . . , τj which delays τi and further force more hits
on τn. Therefore, the worst case network latency does occur
not when the packet is released simultaneously with higher
priority packets but at the point when the packet from the
observed traffic-flow is released at the same time as the higher
priority packets finish waiting and start to receive service.

This deviation induced by higher priority interference be-
tween consequtive releases is called interference jitter, using
symbol JI to denote the interference jitter of traffic-flows. The
interference jitter of a traffic-flow is the maximum deviation
between two successive packet start service times which can be
obtained by computing the difference between the maximum
and minimum value of packet start service times. Consider the
situation that no higher priority packet is sent in a period, the
minimum packet start service time becomes zero. Accordingly,
the interference jitter of the traffic-flow is the maximum
number of start service time which can be given by an upper
bound:

JIi = Ri − Ci (14)

Note that not all the traffic-flows suffer interference jit-
ter, this only happens when the observed traffic-flow τn
has indirect interference, namely, JIi exists if and only if
SDi ∩ SIn 6= ∅. As a result, the worst case network latency
in case of interference jitter and release jitter are calculated as
follows:

Rn =
∑
∀τi∈SD

n

dRn + JRi + JIi
Ti

eCi + Cn (15)

We modify our traffic-flow attributes with the six-tuple
(Ci, Pi, Ti, Di, J

R
i , J

I
i) for τi. Differing from the conclusion

of [2], [10], here we treat the indirect interference as interfer-
ence jitter of direct higher priority traffic-flow and obtain an
tighter upper bound for worst case network latency.

C. A case example

Let us revisit the example given in Figure 1. The inter-
relations between these traffic-flows have been examined in
section III-B. The attributes of the traffic-flows are shown in
Table I. The time units are not necessary in this analysis as
long as all the traffic-flows use the same base.

Real-Time Traffic-flow C P T D JR

τ1 2 1 6 6 0
τ2 1 2 5 5 0
τ3 3 3 10 10 0
τ4 4 4 15 15 0

TABLE I
TRAFFIC-FLOWS DESCRIPTION

Since the higher priority traffic-flow always forces inter-
ference to the lower priority traffic-flow and extends the
latter’s network latency, we sort the traffic-flows based on
their priority and proceed to analyze them from the highest
priority one by one. τ1, τ2 do not suffer any contention

and receives the worst case network latency equal to their
maximum basic latency, R1=C1= 2, R2= C2=1. Thus τ1 and
τ2 are schedulable. τ3 shares the physical link with the higher
priority traffic-flows τ1 and τ2, SD3 = {τ1, τ2}, SI3 = ∅. The
network latency for τ3 according to Eq.(5):

R0
3 = 3

R1
3 = 3 + d 36e2 + d 35e1 = 3 + 2 + 1 = 6

R2
3 = 3 + d 66e2 + d 65e1 = 3 + 2 + 2 = 7

R3
3 = 3 + d 76e2 + d 75e1 = 3 + 4 + 2 = 9

R4
3 = 3 + d 96e2 + d 95e1 = 3 + 4 + 2 = 9

The recurrence stops at R3 = 9 which is less than the deadline
10. The worst case network latency of τ3 is 9.

Flow τ4 suffers both direct and indirect interferences with
SD4 ={τ2, τ3}, SI4={τ1}. Based on the principle proposed in
Section IV-B when indirect interference exists, we treat indi-
rect interference as interference jitter and therefore update the
attributes of our example. The interference jitter of traffic-flow
τ3 referred to τ4 equals R3 − C3 = 6. Eq.(15) becomes

R4 = C4 + dR4
T2
eC2 + dR4+J

I
3

T3
eC3

which stops at R4 = 13. So, the worst case network latency of
τ4 is 13 with both direct and indirect interference. Again, the
traffic-flow meets its deadline. Note that if τ1 is considered
as direct interference (Balakrishnan’s analysis approach [2]),
the worst case network latency calculated above is 19 which
means it misses the deadline.

V. TIGHTNESS OF THE ANALYSIS

By abstracting the communication resources and finding
the inter-relations among the traffic-flows, we have succeeded
in transforming the real-time wormhole scheduling approach
into an analyzable model. In this section, we show that our
analysis approach can produce an upper bound of network
latency for all situations. We also show that the exact worst
case network latency evaluation in the parallel interference
situation, as a general problem, is NP-hard. A case example
is used to illustrate that the latency upper bound is not tight
when where is parallel interference.

Fig. 6. Parallel Interference Case

Suppose the relations of traffic-flows shown in Figure 6
with the attributes in Table II. Relying on the critical instant
assumption, flow τ3 experiences its maximum network latency
when released simultaneously with τ1 and τ2. The worst case
network latency for τ1, τ2, τ3 are 1, 3, 9 according to Eq.(15).
But we find that during the analysis of τ3, τ2 is forced to

Real-Time Traffic-flow C P T D JR

τ1 1 1 5 5 0
τ2 3 2 10 10 0
τ3 4 3 15 15 0

TABLE II
TRAFFIC-FLOWS DESCRIPTION

compete with τ1 in this model even though they do not share
any physical link; and this will force an extra delay on τ3.
The problem is when we schedule all the traffic-flows with
the resource competing relationship, we always ideally assume
at any time instant only one traffic-flow can be served by the
subset of the network which hosts the interfering flows service.

Fig. 7. Scheduling Sequence With Parallel Interference

Lu et al in his paper [18] found this phenomenon that real-
time transmission scheduling can be parallel for disjoint con-
current contentions. Figure 7(A) illustrates this concurrency. If
all traffic-flows release the packets simultaneously, τ1 and τ2
are executed at the same time in this scheduling sequence. This
parallel interference reflects the fact that no real link resource
is shared between the direct higher priority traffic-flows of the
observed one. For τi, this parallel interference phenomenon
exists when the following condition is met: τj , τk ∈ SDi and
<j ∩ <k = ∅. Lu et al [18] also gave an approach to analyze
this phenomenon. The worst case network latency is assumed
to occur when all the traffic-flows are released simultaneously
and the disjoint traffic-flows are scheduled in parallel. The
corresponding network latency of packet in τ1, τ2 and τ3 are
1, 3, 8 in Lu’s model which are smaller than previous results.
However we must point out the analysis by Lu et al [18] is
defective. Even though this parallel interference can possibly
reduce the intervention to the lower priority traffic-flow since
many of them are not likely to occur at the same time. But
the worst case latency does not always occur when all the
traffic-flows are released at the same time. Figure 7(B) is
a contradictory case against this assumption. The network
releases τ1 and τ3 at the same time, τ2 is ready just before τ1
accomplishes its transmission. τ2 consequently holds the link
resource until service completion. After that τ3 starts its packet
transferring. In this situation, the lower priority traffic-flow τ3
suffers more interference. The network latency of τ3 is 9 more

than the upper bound value produced in Lu’s analysis.
The parallel interference phenomenon does not appear in

all the traffic-flow set loaded on the network. However, this
possible parallelism clearly complicates the analysis progress.
In general scheduling, when the worst case release conditions
are not easily determined, the analysis is usually intractable.
Let us re-visit our analysis model, for τi, the total interferences
generated by all direct higher priority traffic-flows are the
sequence summation of each traffic-flow, Ii=

∑
j∈SD

i
dRi+J

R
j

Tj
e.

This assumption can produce a tight result for each traffic-
flow when there is no parallel interference from direct higher
priority traffic-flows; the traffic-flow set in Figure 1 is a case.
However this assumption ignores the possible simultaneous
communication service. The following proof shows that this
approach is not tight and only an upper bound of network
latency can be produced when parallel interference exists.

Theorem 2: The real worst case network latency is no more
than the calculation result accomplished by Eq.(5) and Eq.(15)
when parallel interference exists.

Proof: Similar to the scheduling in the single processor
model, this model also implies that at any time only one
traffic-flow can win the access right of the shared resource
and execute the service. Let t1, t2 indicates the time instant
after network startup. During any time interval [t1, t2] where
t1 < t2, the maximum required service time of all the higher
priority traffic-flows (namely, interference to the observed traf-
fic) is no more than

∑
∀j∈SD

i
d t2−t1+J

R
j +JI

j

Tj
eCj . Since parallel

service exist, more service opportunity can be supported by the
network in any time interval. This may accelerate consumption
of the required service from higher priority traffic-flows and fi-
nally shortens the whole interference imposing on the observed
one. The network latency is exactly equal to the interference of
all the higher priority traffic-flows plus service time of itself,
Eq.(2). Consequently, the worst case network latency in the
real network is no more than the calculation result under the
assumption of no parallel interference.

Theorem 2 implies our model and analysis approach is only
sufficient but not necessary when parallel interference exists.
In another words, if a traffic-flow can pass this schedulability
test then it can meet its deadline. But if it fails this test, no
similar conclusion can be made. Next, we give a proof that
it is not possible to produce a polynomial-time necessary and
sufficient test unless P=NP.

Fig. 8. A General Parallel Interference Model

Suppose a parallel communication instance in Figure 8,
the set Γ includes N + 1 traffic-flows distributing across the
network with attributes τ1=(C1, P1, T1, D1, J

R
1 , J

I
1 , s1), τ2=

(C2, P2, T2, D2, J
R
2 , J

I
2 , s2), . . ., τn+1=(Cn+1, Pn+1, Tn+1,

Dn+1, J
R
n+1, J

I
n+1, sn+1). si is the release time of τi and

τ1 with highest priority, τn+1 with lowest priority. First N

traffic-flows are disjoint with each other and communication
in parallel. The observed one τn+1 with lower priority con-
tends with first N higher priority traffic-flows, so SDn+1 =
{τ1, τ2, . . . , τn}. In order to determine the network latency, we
need to take account all the possible free gap intervals for the
observed traffic-flow. The case in Figure 7(B) implies the worst
case network latency no longer occurs when all the traffic-
flows are released simultaneously. Thus, we need to examine
all the possible packet release sequences to achieve the worst
case network latency calculation. We now shown that to solve
this problem when parallel interference exists is NP-hard.

Lemma 1: For traffic-flows set Γ meeting the conditions
shown in Figure 8, the observed traffic-flow τn+1 is schedu-
lable on the network if and only if all the deadlines are
met during time interval [0, t1], where t1 = s + P , s =
max{s1, . . . , sn+1} and P = lcm{P1, . . . , Pn+1}.

Proof: ⇒ : If the observed traffic-flow is schedulable
on the network, relying on the schedulable condition, all the
deadlines are met since it was released. Thus, all deadlines in
the interval [0, t1] are met.
⇐ : At any time instant ti, the network state is denotes

by E(e1, . . . , en)ti , where ei is the amount of time for τi
has finished transmission service since last release. The time
interval [0, s + P] is separated into two parts [0, s) and [s,
s+P]. After s, all the traffic-flows are released and executed in
parallel except τn+1. Let ti ∈ [s, s+ P] and tj = ti + j × P
for j is positive integer and j > 0, it is not difficult to see
the network state Eti = Etj is always true. This means the
schedule progress repeats itself every P units of time after s.
Since all deadline of τn+1 in [s, s+P] are met, all the deadline
after s+P should also be met. As the assumption, the deadline
of τn+1 in [0, s] are met. Thus τn+1 is schedulable in this
network.

Strictly speaking, we need to check all the infinite schedul-
ing sequences after packet releases of the traffic-flow set to
ensure the deadline is always met. Lemma 1 gives us an easy
method to estimate whether the traffic-flow set is schedulable
in finite schedule time interval [0, s+P]. If all the deadlines in
[0, s+P] are met, then this traffic-flow set is a valid schedule.
If we know period, maximum basic network latency and
release time of all packets in a traffic-flow set in advance, we
can find all the available gap intervals in [0, s+P] for observed
traffic-flow with a polynomial time algorithm. Determining
the schedulability of observed traffic-flow, namely finding the
worst case network latency when knowing all the available
gap intervals in advance is also taking polynomial time. Now
we prove that if the traffic-flow set with arbitrary release time,
finding the worst case network latency is intractable. Utilizing
the K Simultaneous Congruences [15] which has been shown
to be the NP-complete, our problem can be proved to be
intractable by reducing the current problem to a known NP-
complete problem in polynomial time.

K Simultaneous Congruences: Given N ordered pairs of
positive integers (a1,b1), . . . , (an, bn) and a positive integer
K (2 ≤ K ≤ N). Is there a subset of ` ≥ K ordered pairs
(ai,1, bi,1), . . . , (ai,`, bi,`) such that there is a positive integer
x with the property that x = ai,j + pj × bi,j for each

1 ≤ j ≤ `?

Theorem 3: For a traffic-flow set with arbitrary release
time, the problem of determining schedulability when parallel
interference exists is NP-hard.

Proof: The proof includes two steps, first, we try to prove
finding all the gap intervals for the observed traffic-flow is NP-
hard. Suppose n sorted pairs of positive integers (a1,b1), . . .,
(an,bn) with constraint ai ≥ bi−1 and a positive integer K, we
construct n parallel traffic-flows communications (τ1, . . . , τn)
with attributes Ti = Di = bi, Ci = bi − 1, and si + Ci = ai.
In our construction, each traffic-flow in each period only
exports one free time unit. For this traffic-flow set, finding
the gap interval on the network only and only if all the N
traffic-flows output free time units simultaneously. Thus, the K
Simultaneous Congruences problem has a solution if and only
if the gap intervals can be found in the constructed model.
Since this construction progress can be done in polynomial
time, the problem of finding all the gap intervals is as hard
as the K Simultaneous Congruences problem. We assume a
traffic-flow τn+1 which has the lowest priority comparing
with τ1, . . . , τn. Determining the schedulability of τn+1 when
knowing all the gap intervals is polynomial time complexity,
so the problem of determining schedulability in the parallel
interference situation is NP-hard.

VI. CONCLUSION

The new on-chip communication architectures need to pro-
vide different levels of service for various components on the
same network. The requirement of real-time applications needs
a scheduling strategy and analysis approach to predict whether
all the real-time packets can meet their timing bounds. In
this paper, we introduce an analysis approach for real-time
on-chip communication with wormhole switching and fixed
priority scheduling. The worst case network latency upper
bound for each traffic-flow can be achieved for all situations.
When parallel interference exists in a real network, we show
that the exact determinant of schedulable for traffic-flow sets
is NP-hard. Utilizing this analysis scheme, we can flexibly
evaluate the schedulability of traffic-flow sets with different
QoS requirements in a real-time communication platform at
the design phase.

The future work will involve the issues of priority assign-
ment and the practical consideration of having less virtual
channel and priority levels.

REFERENCES

[1] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8:284–292, 1993.

[2] S. Balakrishnan and F. Ozguner. A priority-driven flow control mech-
anism for real-time traffic in multiprocessor networks. IEEE Trans.
Parallel Distrib. Syst., 9(7):664–678, 1998.

[3] L. Benini and G. D. Micheli. Powering networks on chips. In ISSS,
pages 33–38, 2001.

[4] L. Benini and G. D. Micheli. Networks on Chips: A New SoC Paradigm.
Computer, 35(1):70–78, 2002.

[5] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computer Survey, 38(1):1, 2006.

[6] W. J. Dally. Virtual-channel flow control. IEEE Trans. Parallel Distrib.
Syst., 3(2):194–205, 1992.

[7] W. J. Dally. Route packets, not wires: On-chip interconnection networks.
Proceedings of the 38th Design Automation Conference (DAC), pages
684–689, 2001.

[8] J. Duato and S. Yalamanchili. Interconnection Networks: An Engineer-
ing Approach. Institute of Electrical & Electronics Enginee; 1st edition,
1997.

[9] S. Furber and J. Bainbridge. Future trends in SoC interconnect. In VLSI
Design, Automation and Test, pages 183– 186, 2005.

[10] S. L. Hary and F. Ozguner. Feasibility test for real-time communication
using wormhole routing. IEE Proceedings - Computers and Digital
Techniques, 144(5):273–278, 1997.

[11] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: A scalable,
communication-centric embedded system design paradigm. In VLSID
’04: Proceedings of the 17th International Conference on VLSI Design,
page 845, Washington, DC, USA, 2004. IEEE Computer Society.

[12] N. Kavaldjiev and G.J.M. Smit. A survey of efficient on-chip commu-
nications for soc. CTIT, 2003.

[13] B. Kim, J. Kim, S. J. Hong, and S. Lee. A real-time communication
method for wormhole switching networks. In ICPP ’98: Proceedings of
the 1998 International Conference on Parallel Processing, pages 527–
534, Washington, DC, USA, 1998. IEEE Computer Society.

[14] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In IEEE Real-Time Systems Symposium, pages 201–
213, 1990.

[15] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[16] J. P. Li and M. W. Mutka. Priority based real-time communication for
large scale wormhole networks. In Proceedings of the 8th International
Symposium on Parallel Processing, pages 433–438, Washington, DC,
USA, 1994. IEEE Computer Society.

[17] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[18] Z. Lu, A. Jantsch, and I. Sander. Feasibility analysis of messages for on-
chip networks using wormhole routing. In ASP-DAC ’05: Proceedings
of the 2005 conference on Asia South Pacific design automation, pages
960–964, New York, NY, USA, 2005. ACM Press.

[19] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, 26(2):62–76, 1993.

[20] H. Song, B. Kwon, and H. Yoon. Throttle and preempt: A new flow
control for real-time communications in wormhole networks. In ICPP
’97: Proceedings of the international Conference on Parallel Processing,
pages 198–202, Washington, DC, USA, 1997. IEEE Computer Society.

[21] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. Real-Time System.,
6(2):133–151, 1994.

[22] H. Zhang. Service disciplines for guaranteed performance service in
packet-switching networks. In Proceedings of the IEEE, volume 83,
pages 1374–1396, 1995.

