
Chapter 14
Distributed systems

14.1 Distributed system definition
14.2 Overview of issues
14.3 Language support
14.4 Distributed programming

systems and environments
14.5 Reliability

14.6 Distributed algorithms
14.7 Deadline scheduling in a

distributed environment
Summary
Further reading
Exercises

Over the last thirty years, the cost of microprocessors and communications
technology has continually decreased in real terms. This has made distributed
computer systems a viable alternative to uniprocessor and centralized systems
in many embedded application areas. The potential advantages of distribution
include:

� improved performance through the exploitation of parallelism,

� increased availability and reliability through the exploitation of redundancy,

� dispersion of computing power to the locations in which it is used,

� the facility for incremental growth through the addition or enhancement of
processors and communications links.

This chapter discusses some of the problems that are introduced when real-time
systems are implemented on more than one processor.

14.1 Distributed system definition

For the purposes of this chapter, adistributed computer system is defined to be a
system of multiple autonomous processing elements cooperating in a common purpose
or to achieve a common goal. This definition is wide enough to satisfy most intuitive
notions, without descending to details of physical dispersion, means of communication,
and so on. The definition excludes pipeline and array processors, whose elements are
not autonomous; it also excludes those computer networks (for example, the Internet)

523



524 DISTRIBUTED SYSTEMS

Machine tools

Machine tools

Processor
element

Processor
element

Processor
element

Processor
element

Processor
element

Processor
element

Manipulator

Manipulator

Main
computer

Local area network

Conveyor belt

Conveyor belt

Figure 14.1 A manufacturing distributed embedded system.

where nodes work to no common purpose1. The majority of applications one might
sensibly embed on multiprocessor architectures – for example command and control,
banking (and other transaction-oriented commercial applications), and data acquisition
– fall within the definition. A distributed manufacturing-basedsystem is shown in Figure
14.1.

Even modern aircraft designs (both civil and military) have embedded distributed
systems. For example, Integrated Modular Avionics (AEEC, 1991) allows more than
one processing modules to be interconnected via an ARINC 629 bus, as illustrated in
Figure 14.2.

It is useful to classify distributed systems as eithertightly coupled, meaning
that the processing elements, or nodes, have access to a common memory, andloosely

1However, as communication technology continues to improve, more and more internet-working will fit
this definition of a distributed system.



OVERVIEW OF ISSUES 525

ARINC
629 databus

Processing
resource

Sensor/
actuator

Figure 14.2 A civil avionics distributed embedded system.

coupled, meaning that they do not. The significance of this classification is that syn-
chronization and communication in a tightly coupled system can be effected through
techniques based on the use of shared variables, whereas in a loosely coupled system
some form of message passing is ultimately required. It is possible for a loosely coupled
system to contain nodes which are themselves tightly coupled systems.

This chapter will use the term ‘distributed system’ to refer to loosely coupled
architectures. Also, in general, full connectivity will be assumed between processors –
issues associated with the routing of messages and so on will not be considered. For a
full discussion on these topics, see Tanenbaum (1998). Furthermore, it will be assumed
that each processor will have access to its own clock and that these clocks are loosely
synchronized (that is, there is a bound by which they can differ).

A separate classification can be based on the variety of processors in the sys-
tem. A homogeneous system is one in which all processors are of the same type;
a heterogeneoussystem contains processors of different types. Heterogeneous sys-
tems pose problems of differing representations of program and data; these problems,
while significant, are not considered here. This chapter assumes that all processors are
homogeneous.

14.2 Overview of issues

So far in this book, the phrase concurrent programming has been used to discuss com-
munication, synchronization and reliability without getting too involved with how pro-
cesses are implemented. However, some of the issues which arise when distributed
applications are considered raise fundamental questions that go beyond mere imple-
mentation details. The purpose of this chapter is to consider these issues and their



526 DISTRIBUTED SYSTEMS

implications for real-time applications. They are:

� Language support– The process of writing a distributed program is made much
easier if the language and its programming environment support the partitioning,
configuration, allocation and reconfiguration of the distributed application, along
with location-independent access to remote resources.

� Reliability – The availability of multiple processors enables the application to
become tolerant of processor failure – the application should be able to exploit
this redundancy. Although the availability of multiple processors enables the ap-
plication to become tolerant of processor failure, it also introduces the possibility
of more faults occurring in the system which would not occur in a centralized
single-processor system. These faults are associated withpartial system failure
and the application program must either be shielded from them, or be able to
tolerate them.

� Distributed control algorithms – The presence of true parallelism in an appli-
cation, physically distributed processors, and the possibility that processors and
communication links may fail, means that many new algorithms are required for
resource control. For example, it may be necessary to access files and data which
are stored on other machines; furthermore, machine or network failure must not
compromise the availability or consistency of those files or data. Also, as there is
often no common time reference in a distributed system, each node having its own
local notion of time, it is very difficult to obtain a consistent view of the overall
system. This can cause problems when trying to provide mutual exclusion over
distributed data.

� Deadline scheduling– In Chapter 13, the problems of scheduling processes to
meet deadlines in a single processor system were discussed. When the processes
are distributed, the optimal single processor algorithms are no longer optimal.
New algorithms are needed.

These issues are now discussed in turn. However, in one chapter it is difficult to do
justice to all the new activities in these areas.

14.3 Language support

The production of a distributed software system to execute on a distributed hardware
system involves several steps which are not required when programs are produced for a
single processor:

� Partitioning is the process of dividing the system into parts (units of distribution)
suitable for placement onto the processing elements of the target system.

� Configuration takes place when the partitioned parts of the program are associ-
ated with particular processing elements in the target system.



LANGUAGE SUPPORT 527

� Allocation covers the actual process of turning the configured system into a col-
lection of executable modules and downloading these to the processing elements
of the target system.

� Transparent executionis the execution of the distributed software so that remote
resources can be accessed in a manner which is independent of their location.

� Reconfiguration is the dynamic change to the location of a software component
or resource.

Most languages which have been designed explicitly to address distributed program-
ming will provide linguistic support for at least the partitioning stage of system devel-
opment. For example, processes, objects, partitions, agents and guardians have all been
proposed as units of distribution. All these constructs provide well-defined interfaces
which allow them to encapsulate local resources and provide remote access. Some ap-
proaches will allow configuration information to be included in the program source,
whereas others will provide a separateconfiguration language.

Allocation and reconfiguration, typically, require support from the programming
support environment and operating system.

It is, perhaps, in the area of transparent execution where most efforts have been
made to achieve a level of standardization across the various approaches. The goal is
to make communication between distributed processes as easy and reliable as possible.
Unfortunately, in reality, communication often takes places between heterogeneous pro-
cessors across an unreliable network, and in practice complex communication protocols
are required (see Section 14.5). What is needed is to provide mechanisms whereby:

� Processes do not have to deal with the underlying form of messages. For example,
they do not need to translate data into bit strings suitable for transmission or to
break up the message into packets.

� All messages received by user processes can be assumed to be intact and in good
condition. For example, if messages are broken into packets, the run-time system
will only deliver them when all packets have arrived at the receiving node and
can be properly reassembled. Furthermore, if the bits in a message have been
scrambled, the message either is not delivered or is reconstructed before delivery;
clearly some redundant information is required for error checking and correction.

� Messages received by a process are the kind that the process expects. The process
does not need to perform run-time checks.

� Processes are not restricted to communication only in terms of a predefined built-
in set of types. Instead, processes can communicate in terms of values of interest
to the application. Ideally, if the application is defined using abstract data types,
then values of these types can be communicated in messages.

It is possible to identify three mainde factostandards by which distributed programs
can communicate with each other:

� by using an application programmers interface (API), such assockets, to network
transport protocols



528 DISTRIBUTED SYSTEMS

Client

61

2
Client
stub

Server

Server
stub

skeleton

Network 5

4 3

Figure 14.3 The relationship between client and server in an RPC.

� by using the remote procedure call (RPC) paradigm

� by using the distributed object paradigm.

The issue of network protocols will be discussed in Section 14.5 and a Java in-
terface for sockets will be briefly considered in Section 14.4.3. The remainder of this
subsection will consider RPC and distributed objects including the Common Object
Request Broker Architecture (CORBA).

14.3.1 Remote procedure call

The overriding goal behind the remote procedure call paradigm is to make distributed
communication as simply as possible. Typically, RPCs are used for communication be-
tween programs written in the same language, for example, Ada or Java. A procedure
(server) is identified as being one that can be called remotely. From the server speci-
fication, it is possible to generate automatically two further procedures: aclient stub
and aserver stub. The client stub is used in place of the server at the site on which
the remote procedure call originates. The server stub is used on the same site as the
server procedure. The purpose of these two procedures is to provide the link between
the client and the server in a transparent way (and thereby meet all the requirements
laid out in the previous section). Figure 14.3 illustrates the sequence of events in a RPC
between a client and a server via the two stub procedures. The stubs are sometimes
calledmiddleware as they sit between the application and the operating system.

The role of the client stub is to:

� identify the address of the server (stub) procedure;



LANGUAGE SUPPORT 529

� convert the parameters of the remote call into a block of bytes suitable for trans-
mission across the network – this activity is often callparameter marshalling;

� send the request to execute the procedure to the server (stub);

� wait for the reply from the server (stub) and unmarshal the parameters or any
exceptions propagated;

� return control to the client procedure along with the returned parameters, or raise
an exception in the client procedure.

The goal of the server stub is to:

� receive requests from client (stub) procedures;

� unmarshal the parameters;

� call the server;

� catch any exceptions that are raised by the server;

� marshal the return parameters (or exceptions) suitable for transmission across the
network;

� send the reply to the client (stub).

Where the client and server procedures are written in different languages or are
on different machine architectures, the parameter marshalling and unmarshalling mech-
anisms will convert the data into a machine- and language-independent format (see
Section 14.4.4).

14.3.2 The Distributed Object Model

The termdistributed objects (or remote objects) has been used over the last few year
in a variety of contexts. In its most general sense, the distributed object model allows:

� the dynamic creation of an object (in any language) on a remote machine;

� the identification of an object to be determined and held on any machine;

� the transparent invocation of a remote method in an object as if it were a local
method and irrespective of the language in which the object is written;

� the transparent run-time dispatching of a method call across the network.

Not all systems which support distributed objects provide mechanisms to support all
this functionality. As will be shown in the following subsections:

Ada supports the static allocation of objects, allows the identification of remote Ada
objects, facilitates the transparent execution of remote methods, and supports dis-
tributed run-time dispatching of method calls;



530 DISTRIBUTED SYSTEMS

Java allows the code of a Java object to be sent across the network and instances to be
created remotely, the remote naming of a Java object, the transparent invocation
of its methods, and distributed run-time dispatching;

CORBA allows objects to be created in different languages on different machines,
facilitates the transparent execution of remote methods, and supports distributed
run-time dispatching of method calls.

14.4 Distributed programming systems and environments

The number of distributed applications is vast, ranging from simple embedded control
systems to large complex multi-language generic information processing platforms. It
is beyond the scope of this book to discuss fully how these systems can be designed and
implemented. However, four approaches will be considered:

(1) occam2 – for simple embedded control systems

(2) Ada – for more complex distributed real-time applications

(3) Java – for single-language Internet-type applications

(4) CORBA – for multi-language multi-platform applications

14.4.1 Occam2

Occam2 has been specifically designed so that programs can be executed in a distributed
environment, that of a multi-transputer network. In general, occam2’s processes do not
share variables so the unit of partitioning is the process itself. Configuration is achieved
by thePLACED PARconstruct. A program constructed as a top-levelPAR, such as:

PAR
p1
p2
p3
p4
p5

can be distributed, for example as follows:

PLACED PAR
PROCESSOR 1

p1
PROCESSOR 2

PAR
p2
p3

PROCESSOR 3
PAR

p4
p5



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 531

C2
P3

C3

P4

C4

P5C5P1

C1

P2

Figure 14.4 Five occam2 processes connected by five channels.

It is important to note that the transformation of the program from one that has a simple
PARto one that uses aPLACED PARwill not invalidate the program. However, oc-
cam2 does allow variables to be read by more than one process on the same processor.
Therefore, a transformation may not be possible if the programmer has used this facility.

For the transputers, it is also necessary to associate each external channel with
an appropriate transputer link. This is achieved by using thePLACE ATconstruct.
For example, consider the above example with the following integer channels shown in
Figure 14.4.

The program for execution on a single transputer is:

CHAN OF INT c1, c2, c3, c4, c5:
PAR

p1
p2
p3
p4
p5

If the program is configured to three transputers, as illustrated in Figure 14.5, the occam2
program becomes:



532 DISTRIBUTED SYSTEMS

Processor 1

p1 c1

c5

L1

L2 c5
p5

c4
p4

c3

Processor 3

L0

L1

L0L0 L2 c1 p2 c2 p3

c3

Processor 2

Figure 14.5 Five occam2 processes configured for three transputers.

CHAN OF INT c1, c3, c5:
PLACED PAR

PROCESSOR 1
PLACE c1 at 0:
PLACE c5 at 1:
p1

PROCESSOR 2
PLACE c1 at 2:
PLACE c3 at 1:
CHAN OF INT c2:
PAR

p2
p3

PROCESSOR 3
PLACE c3 at 0:
PLACE c5 at 2:
CHAN OF INT c4:
PAR

p4
p5

The ease with which occam2 programs can be configured for execution on a dis-
tributed system is one of the main attractions of occam2.

Allocation is not defined by the occam2 language nor are there any facilities for
reconfiguration. Further, access to resources is not transparent.



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 533

Real-time perspective

The occam2 support for real-time is limited. However, within these limitations, the
distributed system model is consistent.

14.4.2 Ada 95

Ada defines a distributed system as an

interconnection of one or more processing nodes (a system resource that
has both computational and storage capabilities), and zero or more storage
nodes (a system resource that has only storage capabilities, with the storage
addressable by more than one processing nodes).

The Ada model for programming distributed systems specifies apartition as the
unit of distribution. Partitions comprised aggregations of library units (separately com-
piled library packages or subprograms) that collectively may execute in a distributed
target execution environment. The configuration of library units into partitions is not
defined by the language; it is assumed that an implementation will provide this, along
with facilities for allocation and, if necessary, reconfiguration.

Each partition resides at a single execution site where all its library units occupy
the same logical address space. More than one partition may, however, reside on the
same execution site. Figure 14.6 illustrates one possible structure of a partition. The
arrows represent the dependencies between library units. The principal interface be-
tween partitions consists of one or more package specifications (each labelled ‘partition
interface library unit’ in Figure 14.6).

Partitions may be eitheractiveor passive. The library units comprising an active
partition reside and execute upon the same processing element. In contrast, library units
comprising a passive partition reside at a storage element that is directly accessible to
the nodes of different active partitions that reference them. This model ensures that
active partitions cannot directly access variables in other active partitions. Variables
can only be shared directly between active partitions by encapsulating them in a passive
partition. Communication between active partitions is defined in the language to be via
remote subprogram calls (however, an implementation may provide other communica-
tion mechanisms).

Categorization pragmas

To aid the construction of distributed programs, Ada distinguishes between different
categories of library units, and imposes restrictions on these categories to maintain type
consistency across the distributed program. The categories (some of these are useful in
their own right, irrespective of whether the program is to be distributed) are designated
by the following pragmas:



534 DISTRIBUTED SYSTEMS

LU

LU

LU

LU

LU

LU

LU

LU

LU

Partition interface library unit

Library unit

Depends relationship (with clauses)

External requests for services

Figure 14.6 The structure of a partition.

Preelaborate

A preelaborable library unit is one that can be elaborated without execution of code at
run-time.

Pure

Pure packages are preelaboratable packages with further restrictions which enable them
to be freely replicated in different active or passive partitions without introducing any
type inconsistencies. These restrictions concern the declaration of objects and types; in
particular, variables and named access types are not allowed unless they are within a
subprogram, task unit or protected unit.



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 535

Remote Types

A Remote Types package is a preelaboratable package that must not contain any
variable declarations within the visible part.

Shared Passive

Shared Passive library units are used for managing global data shared between
active partitions. They are, therefore, configured on storage nodes in the distributed
system.

Remote Call Interface

A Remote Call Interface package defines the interface between active parti-
tions. Its body exists only within a single partition. All other occurrences will have
library stubs allocated.

The specification of aRemote Call Interface package must be preelab-
orable; in addition other restrictions apply, for example it must not contain the definition
of a variable (to ensure no remote data access).

A package which is not categorized by any categorization pragma is called a
normallibrary package. If it is included in more than one partition, then it is replicated
and all types and objects are viewed as distinct. For example, theCalendar package
is, in this regard, normal.

The above pragmas facilitate the distribution of an Ada program and ensure that
illegal partitionings (which allow direct remote variable access between partitions) are
easily identifiable.

Remote communication

The only predefined way in which active partitions can communicate directly is via
remote subprogram calls. They can also communicate indirectly via data structures in
passive partitions.

There are three different ways in which a calling partition can issue a remote
subprogram call:

� by calling a subprogram which has been declared in a remote call interface pack-
age of another partition directly;

� by dereferencing a pointer to a remote subprogram;

� by using run-time dispatching to a method of a remote object.

It is important to note that, in the first type of communication, the calling and the called
partitions are statically bound at compile time. However, in the latter two, the parti-
tions are dynamically bound at run-time. Hence Ada can support transparent access to
resources.



536 DISTRIBUTED SYSTEMS

Program 14.1 The AdaSystem.RPC package.

with Ada.Streams;
package System.RPC is

type Partition_ID is range 0 ..
implementation defined;

Communication_Error : exception ;

type Params_Stream_Type ...

-- Synchronous call
procedure Do_RPC(

Partition : in Partition_ID;
Params : access Params_Stream_Type;
Result : access Params_Stream_Type);

-- Asynchronous call
procedure Do_APC(

Partition : in Partition_ID;
Params : access Params_Stream_Type);

-- The handler for incoming RPCs
type RPC_Receiver is access procedure (

Params : access Params_Stream_Type;
Result : access Params_Stream_Type);

procedure Establish_RPC_Receiver(Partition : Partition_ID;
Receiver : in RPC_Receiver);

private
...

end System.RPC;

Many remote calls contain only ‘in’ or ‘access’ parameters (that is, data that is
being passed in the same direction as the call) and a caller may wish to continue its
execution as soon as possible. In these situations it is sometimes appropriate to designate
the call as anasynchronouscall. Whether a procedure is to be called synchronously or
asynchronously is considered by Ada to be a property of the procedure and not of the
call. This is indicated by using a pragmaAsynchronous when the procedure is
declared.

Ada has defined how distributed programs can be partitioned and what forms
of remote communication must be supported. However, the language designers were
keen not to overspecify the language and not to prescribe a distributed run-time support
system for Ada programs. They wanted to allow implementors to provide their own
network communication protocols and, where appropriate, allow other ISO standards



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 537

to be used; for example the ISO Remote Procedure Call standard. To achieve these
aims, the Ada language assumes the existence of a standard implementation-provided
subsystem for handling all remote communication (the Partition Communication Sub-
system, PCS). This allows compilers to generate calls to a standard interface without
being concerned with the underlying implementation.

The package defined in Program 14.1 illustrates the interface to the remote pro-
cedure (subprogram) call (RPC) support system which is part of the PCS.

The typePartition Id is used to identify partitions. For any library-level
declaration,D, D’Partition Id yields the identifier of the partition in which the
declaration was elaborated. The exceptionCommunication Error is raised when
an error is detected bySystem.RPC during a remote procedure call. An object of
stream typeParams Stream Type is used for marshalling (translating data into an
appropriate stream-oriented form) and unmarshalling the parameters or results of a re-
mote subprogram call, for the purposes of sending them between partitions. The object
is also used to identify the particular subprogram in the called partition.

The procedureDo RPCis invoked by the calling stub after the parameters are flat-
tened into the message. After sending the message to the remote partition, it suspends
the calling task until a reply arrives. The procedureDo APCacts likeDo RPCexcept
that it returns immediately after sending the message to the remote partition. It is called
whenever theAsynchronous pragma is specified for the remotely called procedure.
Establish RPCReceiver is called immediately after elaborating an active par-
tition, but prior to invoking the main subprogram, if any. TheReceiver parameter
designates an implementation-provided procedure that receives a message and calls the
appropriate remote call interface package and subprogram.

Real-time perspective

Although Ada defines a coherent real-time model for single and multiprocessor sys-
tems, it has very limited support fordistributed real-timesystems. There is no integra-
tion between the Distributed Systems Annex and the Real-Time Annex. Arguably, the
technology of language support in this area is not sufficiently widely accepted to merit
standardization.

14.4.3 Java

There are essentially two ways in which to construct distributed Java applications:

(1) execute Java programs on separate machines and use the Java networking facili-
ties;

(2) use remote objects.



538 DISTRIBUTED SYSTEMS

Java networking

In Section 14.5, two network communication protocols will be introduced: UDP and
TCP. These are the prominent communication protocols in use today and the Java envi-
ronment provide classes (in thejava.net package) which allow easy access to them.
The API to these protocols is via theSocket class (for the reliable TCP protocol) and
the DatagramSocket class (for the UDP protocol). It is beyond the scope of this
book to consider this approach in detail – see the Further Reading section at the end of
this chapter for alternative sources of information.

Remote objects

Although Java provides a convenient way of accessing network protocols, these pro-
tocols are still complex and are a deterrent to writing distributed applications. Conse-
quently, Java supports the distributed object communication model through the notion
of remote objects.

The Java model is centred on the use of thejava.rmi package which builds on
top of the TCP protocol. In this package is theRemote interface:

public interface Remote { };

This is the starting point for writing distributed Java applications. Extensions of this
interface are written to provide the link between the clients and servers. For example,
consider a server which wishes to return details of the local weather forecast for its
location. An appropriate interface might be:

public interface WeatherForecast extends java.rmi.Remote
// shared between clients and server

{
public Forecast getForecast() throws RemoteException;

}

The methodgetForecast must have aRemoteException class in its throws list
so that the underlying implementation can indicate that the remote call has failed.

Forecast is an object which has details of today’s forecast. As the object will
be copied across the network, it must implement theSerializable interface2

public class Forecast implements java.io.Serializable
{

public String Today() {
String today = "Wet";

return today ;
}

}

2Like theRemote interface, theSerializable interface is empty. In both cases it acts as a tag to give
information to the compiler. For theSerializable interface, it indicates that the object can be converted
into a stream of bytes suitable for I/O.



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 539

Once the appropriate remote interface has been defined, a server class can be declared.
Again, it is usual to indicate that objects of the class can potentially be called remotely
by extending one of the predefined classes in the packagejava.rmi.server . Cur-
rently, there are two classes:RemoteServer (which is an abstract class derived from
the Remote class) andUnicastRemoteObject which is a concrete extension of
RemoteServer . The latter provides the class for servers which are non-replicated
and have a point-to-point connection to each client using the TCP protocol. It is an-
ticipated that future extension to Java might provide other classes such as a replicated
server using a multicast communication protocol.

The following examples shows a server class which provides the weather forecast
for the county of Yorkshire in the UK.

public class YorkshireWeatherForecast extends UnicastRemoteObject
implements WeatherForecast

{

public YorkshireWeatherForecast() throws RemoteException
{

super (); // call parent constructor
}

public Forecast getForecast() throws RemoteException
{

...
}

}

Once the server class has been written, it is necessary to generate the server and
client stubs for each of the methods that can be called remotely. Note that Java uses the
termskeletonfor the server stub. The Java programming environment provides a tool
called ‘rmic’ which will take a server class and automatically generate the appropriate
client stub and server skeleton.

All that is now required is for the client to be able to acquire a client stub which
accesses the server object. This is achieved via a registry. The registry is a separate Java
program which executes on each host machine which has server objects. It listens on
a standard TCP port and provides an object of the classNaming extracted in Program
14.2.

Each server object can use theNaming class to bind its remote object to a name.
Clients then can access a remote registry to acquire a reference to the remote object. Of
course, this is a reference to a client stub object for the server. The client stub is loaded
into the client’s machine. Once the reference has been obtained, the server’s methods
can be invoked.

Real-time perspective

The facilities described above are those of Standard Java which is not intended to operate
within real-time constraints. Real-Time Java is currently silent on the issue of distributed



540 DISTRIBUTED SYSTEMS

Program 14.2 An extract of the Java Naming class.

public final class Naming
{

public static void bind(String name, Remote obj)
throws AlreadyBoundException, java.net.MalformedURLException,

UnknownHostException, RemoteException;
// bind the name to the obj
// name takes the form of a URL such as
// rmi://remoteHost:pot/objectName

public static Remote lookup (String name)
throws NotBoundException, java.net.MalformedURLException,

UnknownHostException, RemoteException;
// looks up the name in the registry and returns a remote object

...
}

real-time programming. However, this is a topic which will be addressed within the
next few years.

14.4.4 CORBA

The Common Object Request Broker Architecture (CORBA) provides the most general
distributed object model. Its goal is to facilitate interoperability between applications
written in different languages, for different platforms supported by middleware software
from different vendors. It was designed by the Object Management Group (OMG) – a
consortium of software vendors, software developers and end users – according to the
Object Management Architectural Model, which is depicted in Figure 14.7.

At the heart of the architecture is theObject Request Broker (ORB). This is a
software communication bus that provides the main infrastructure that facilitates inter-
operability between heterogeneous applications. The term CORBA often refers to the
ORB. The other components of the architecture are:

Object Services – a collection of basic services which support the ORB; for example,
support for object creation, naming and access control, and tracking relocated
objects.

Common Facilities – a set of functions which is common across a wide range of ap-
plication domains; for example, user interfaces, document and database manage-
ment.

Domain Interfaces – a group of interfaces which support particular application do-
mains such as banking and finance or telecommunications.

Application Interfaces – the end users’ specific application interfaces.



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 541

Application
interfaces

Domain
interfaces

Common
interfaces

Object services

Object request broker

Figure 14.7 The Object Management Architecture Model.

To ensure interoperability between ORBs from different vendors, CORBA defines a
General Inter-ORB Protocol which sits on top of TCP/IP (see section 14.5.2).

Central to writing CORBA applications is theInterface Definition Language
(IDL) . A CORBA interface is similar in concept to the Java remote interface discussed
in the previous section. The IDL (which is like the C++ language) is used to describe
the facilities to be provided by an application object, the parameters to be passed with
a given method and its return values, along with any object attributes. An example
interface for the weather forecast application given in the previous section is shown
below.

interface WeatherForecast {
void GetForecast(out Forecast today);

}

Once the IDL for the application is defined, tools are used to ‘compile’ it. The IDL com-
piler generates several new files in one of a number of existing programming languages
such as Java or Ada. The files include:

� client stubs that provide a communication channel between the client and the
ORB; and

� a server skeleton which enables the ORB to call functions on the server.

The code for the server and clients can now be written. The server consists of
two parts: the code for the application object itself and the code for the server process.
The application object has to be associated with the server skeleton. The way this is
achieved is dependent on the target language. For example in Java, it can be done by
producing a class which is a subclass of the generated server skeleton. The methods for
the application objects are then completed. The server process itself can be written as a
main program which creates the application object and initializes the ORB and tells it
that the object is ready to receive client requests. The structure of the client is similar.



542 DISTRIBUTED SYSTEMS

In reality, CORBA provides many more facilities than those described above. As
well as the static association between client and server, CORBA clients can dynamically
discover a server’s IDL interface without prior knowledge of the server details. Further-
more, the services that support the ORB allow for a wide range of functionality such
as an event service, transaction and concurrency control, persistent objects and trading
services. Applications access these services via the Portable Object Adapter (POA).
This is a library which provides the run-time environment for a server object.

Real-time perspective

Although, in general, CORBA provides comprehensive support for distributed objects,
from this book’s perspective, one of the main limitation of CORBA has been its lack of
support for real-time applications. The ORBs were not designed to operate within time
constraints and the result is that many are inappropriate for soft real-time systems, let
alone systems which have to operate within stringent timing constraints. Furthermore,
the basic communication models provided by CORBA are: a synchronous RPC where
the client must wait for the server to reply, and a deferred synchronous RPC where
the client thread continues and subsequently polls for the reply. As was illustrated in
Chapter 13, synchronous communication models are more difficult to analyze for their
timing properties than asynchronous models and the results are more pessimistic.

For these reasons and the increasing use of CORBA in real-time applications,
the OMG have set out over the last few years to address the performance problems
associated with the main CORBA standard. They have tackled the problems from three
perspectives:

(1) Minimum CORBA

(2) CORBA Messaging

(3) Real-Time CORBA

Minimum CORBA is a subset of the CORBA 2.2 specification which omits many
services including all those associated with dynamic configurations between client and
server objects. The subset is targeted at embedded systems with limited resources.

CORBA Messaging is an extension to the CORBA standard to support asyn-
chronous message passing and quality of service parameters.

The Real-Time CORBA (RT CORBA) (Object Management Group, 1999) spec-
ification defines mechanisms that support predictability of distributed CORBA appli-
cations. It assumes that real-time behaviour is obtained by using fixed-priority based
scheduling and is, therefore, compatible with most real-time operating systems – espe-
cially those supporting the Real-Time POSIX interfaces. The key aspect of RT CORBA
is that it allows applications to configure and control both processor and communication
resources. These facilities will now be briefly described.



DISTRIBUTED PROGRAMMING SYSTEMS AND ENVIRONMENTS 543

Managing processor resources

The RT CORBA specification allows client and server applications to manage the fol-
lowing properties.

� The priority at which servers process client requests. RT CORBA specifies global
CORBA priorities and mechanism to map these priorities onto the priority range
of the particular real-time operating system hosting the RT ORB. Using these
mapping, three global priority models are supported: (1) a server declared model
in which the server specifies the priority of the requests it services, (2) a client
propagated model in which the client specifies the priority and this is propagated
to the server and (3) a priority transformation model in which the priority of a
request is based on external factors such as current server load or the state of the
global scheduling service.

� The degree of multithreading in a server. RT CORBA controls the degree of
multithreading by the concept of thread pools. Using a Real-Time POA, server
applications can specify: the default number of threads that are initially created,
the maximum number of threads that can be created dynamically, and the default
priority of all the threads. These threads are allocated from a thread pool which
may or may not be shared between applications. Further flexibility is given by
the concept of thread pools with lanes. Here, not only can the overall amount of
concurrency be controlled, but also the amount of work performed at a particular
priority.

� The impact of priority inheritance and priority ceiling protocols. RT CORBA
defines POSIX-like mutexes to ensure consistency of synchronization protocols
encapsulating shared resources.

Managing network resources

Although having transparent access to resources eases the writing of general-purpose
distributed applications, it makes it impossible to do any realistic analysis of real-time
performance. For this reason, RT CORBA allows explicit connections between client
and server to be set up, for example, at system configuration time. It is also possible
to control how client requests are sent over these connections. RT CORBA facilitates
multiple connections between a client and a server in order to reduce priority inversion
problems due to the use of non real-time transport protocols. Furthermore, private
transport connections are also supported – so that a call from a client to a server can be
made without any fear of the call having to compete with other calls which have been
multiplexed on the same connection.

Even with the above support, it is still advantageous to be able to set any quality of
service parameters of the specific communication protocols underlying the inter-ORB
communication protocol. RT CORBA provides interfaces to select and configure these
properties from both the client and the server side.



544 DISTRIBUTED SYSTEMS

The scheduling service

From the above discussion it should be clear that RT CORBA provides many mech-
anisms to facilitate real-time distributed CORBA applications. However, setting up
all the required parameters (so that a consistent scheduling policy is obtained) can be
difficult. For this reason, RT CORBA allows an application to specify its scheduling
requirements in terms of characteristics such as its period, its worst-case execution time,
its criticality etc. This is done offline and each application scheduled entity (called an
activity) is allocated a textual name. At run-time, interfaces are provided which allow
the application to schedule a named activity via ascheduling service. This service sets
all the necessary priority parameters to implement a specific scheduling policy such as
deadline or rate monotonic scheduling.

14.5 Reliability

It seems almost paradoxical that distribution can provide the means by which systems
can be made more reliable yet at the same time introduce more potential failures in
the system. Although the availability of multiple processors enables the application to
become tolerant of processor failure, it also introduces the possibility of faults occur-
ring in the system which would not occur in a centralized single processor system. In
particular, multiple processors introduce the concept of a partial system failure. In a
single processor system, if the processor or memory fails then normally the whole sys-
tem fails (sometimes the processor may be able to continue and recover from a partial
memory failure, but in general the system will crash). However, in a distributed system,
it is possible for a single processor to fail while others continue to operate. In addition,
the propagation delay through the underlying communications network is variable and
messages may take various routes. This, in conjunction with an unreliable transmission
medium, may result in messages being lost, corrupted, or delivered in an order differ-
ent to the order in which they were sent. The increased complexity of the software
necessary to tolerate such failures can also threaten the reliability of the system.

14.5.1 Open systems interconnections

Much effort has been expended on communication protocols for networks and dis-
tributed systems. It is beyond the scope of this book to cover this in detail; rather
the reader should refer to the Further Reading section at the end of this chapter. In
general, communication protocols are layered to facilitate their design and implementa-
tion. However, many different networks exist, each with its own concept of a ‘network
architecture’ and associated communication protocol. Consequently, without some in-
ternational standards it is extremely difficult to contemplate interconnecting systems
of different origins. Standards have been defined by the International Organization for
Standardization (ISO) and involve the concept ofOpen Systems Interconnections, or
OSI. The term ‘open’ is used to indicate that, by conforming to these standards, a sys-
tem will be open to all other systems in the world that also obey the same standards.



RELIABILITY 545

Application protocol ApplicationApplication

Presentation protocol

Session protocol

Transport protocol

PresentationPresentation

SessionSession

TransportTransport

NetworkNetwork

Data linkData link

PhysicalPhysical

Communication
subnetwork

Figure 14.8 The OSI reference model.

These standards have become known as theOSI Reference Model.It should be stressed
that this model isnot concerned with specific applications of computer communication
networks but with thestructuring of the communication protocols required to provide a
reliable, manufacturer independent communication service. The OSI Reference Model
is a layered model. The layers are shown in Figure 14.8.

The basic idea of layering is that each layer adds to the services provided by
the lower layers in order to present a service to higher layers. Viewed from above a
particular layer, the ones below it may be considered as a black box which implements
a service. The means by which one layer makes use of the service provided by the
lower layers is through that layer’s interface. The interface defines the rules and format
for exchanging information across the boundary between adjacent layers. The modules
which implement a layer are usually known asentities.

In networks and distributed systems, each layer may be distributed across more
than one machine; in order to provide its service, entities in the same layer on different
machines may need to exchange information. Such entities are known aspeer entities.
A protocol is the set of rules which governs communication between peer entities.

The OSI model itself does not define protocol standards; by breaking up the net-
work’s function into layers, it does suggest where protocol standards should be devel-
oped but these standards are outside the model itself. Such standards, however, have
been developed.

The functions of each layer are now briefly described.

(1) The Physical Layer
The physical layer is concerned with transmitting raw data over a communication
channel. Its job is to make sure that, in the absence of errors, when one side sends
a 1 bit it is received as a 1 bit and not a 0 bit.



546 DISTRIBUTED SYSTEMS

(2) The Data Link Layer
The data link layer converts a potentially unreliable transmission channel into a
reliable one for use by the network layer. It is also responsible for resolving any
contention for access to the transmission channel between nodes connected to the
channel.
In order for the data link layer to provide a reliable communication channel, it
must be able to correct errors. There are two basic and familiar techniques used:
forward error control andbackward error control. Forward error control re-
quires enough redundant information in each message to correct any errors which
may occur in its transmission. In general, the amount of redundancy required
increases rapidly as the number of information bits increases. Backward error
control requires only that the error be detected; once detected, a retransmission
scheme can be employed to obtain the correct message (this is the job of the data
link layer). Backward error control predominates in the world of networks and
distributed systems.
Most backward error control techniques incorporate the notion of a calculated
checksumwhich is sent with the message and describes the content of the mes-
sage. On receipt, the checksum is recalculated and compared with the one sent.
Any disagreement indicates that a transmission error has occurred. At this point,
there are three basic classes of service that the Data Link Layer can offer: an unac-
knowledged connectionless service, an acknowledged connectionless service or
a connection-oriented service. With the first, no further service is provided. The
sender is unaware that the message has not been received intact. With the second,
the sender is informed every time a message is received correctly; the absence
of this acknowledgement message within a certain time period indicates that an
error has occurred. The third service type establishes a connection between the
send and the receiver and guarantees that all messages are received correctly and
are received in order.

(3) The Network Layer
The network layer (or communication subnet layer) is concerned with how in-
formation from the transport layer is routed through the communication subnet
to its destinations. Messages are broken down into packets which may be routed
via different paths; the network layer must reassemble the packets and handle any
congestion that may occur. There is no clear agreement as to whether the network
layer should attempt to provide a perfect communication channel through the net-
work. Two extremes in the services provided can be identified:virtual circuits
(connection-oriented) anddatagrams(connectionless). With virtual circuits, a
perfect communication channel is provided. All messages packets arrive and do
so in sequence. With a datagram service, the network layer attempts to deliver
each packet in isolation from the others. Consequently, messages may arrive out
of order, or may not arrive at all.
The physical, data link and network layers are network-dependent and their de-
tailed operation may vary from one type of network to another.

(4) The Transport Layer
The transport layer (or host-to-host layer) provides reliable host-to-host commu-



RELIABILITY 547

nication for use by the session layer. It must hide all details of the communication
subnet from the session layer in order that one subnet can be replaced by another.
In effect, the transport layer shields the customer’s portion of the network (layers
5–7) from the carrier’s portion (layers 1–3).

(5) The Session Layer
The role of the session layer is to provide a communication path between two
application-level processes using the facilities of the transport layer. The connec-
tion between users is usually called a session and may include a remote login or
a file transfer. The operations involved in setting up a session (called binding)
include authentication and accounting. Once the session has been initiated, the
layer must control data exchange, and synchronize data operations between the
two processes.

(6) The Presentation Layer
The presentation layer performs generally useful transformations on the data to
overcome heterogeneous issues with respect to the presentation of data to the
applications. For example, it allows an interactive program to converse with any
one of a set of incompatible display terminals. It may undertake text compression
or encryption.

(7) The Application Layer
The application layer provides the high-level functions of the network, such as
access to databases, mail systems and so on. The choice of the application may
dictate the level of services provided by the lower layers. Consequently, partic-
ular application areas may specify a set of protocols throughout all seven layers
which are required to support the intended distributed processing function. For
example, an initiative by General Motors has defined a set of protocols to achieve
open interconnection within an automated manufacturing plant. These are called
manufacturing automation protocols(MAP).

14.5.2 TCP/IP layers

The OSI model is now somewhat outdated and does not directly address the issue of
Internet working. The TCP/IP Reference Model has only five layers and is shown in
Figure 14.9.

The physical layer is equivalent to the ISO physical layer. The network interface
layer performs the same functions as the ISO data link Layer. The Internet layer specifies
the format of the packets to be sent across the internet and performs all the routing
functions associated with the ISO network layer. It is here that the Internet Protocol
(IP) is defined.

The transport layer is equivalent to the ISO transport layer; it provides two pro-
tocols: the User Data Protocol (UDP) and the Transmission Control Protocol (TCP).
UDP provides an unreliable connectionless protocol which allows efficient access to
the IP protocol in the layer below. The TCP protocol provides a reliable end-to-end
byte stream protocol.



548 DISTRIBUTED SYSTEMS

Application

Transport

Internet

Network interface

Physical

Figure 14.9 The TCP/IP Reference Model.

14.5.3 Lightweight protocols and local area networks

The OSI and TCP/IP model were developed primarily for wide area networks to enable
open access; wide area networks were characterized by low bandwidth communication
with high error rates. Most distributed embedded systems will use local area network
technology and will be closed to the outside world. Local area networks are character-
ized by high bandwidth communication with low error rates. They may use a range of
communication technologies, such as broadcast technology (for example, as does the
Ethernet) or point-to-point switch-based technology (for example, ATM (Asynchronous
Transfer Mode) ). Consequently, although it is possible to implement language-level in-
terprocess communication using the OSI or TCP/IP approach (for example, Java RMI),
in practice the expense is often prohibitive. Thus many designers tailor the communi-
cation protocols to the requirements of the language (the application) and the commu-
nication medium. These are calledlightweightprotocols. A key issue in their design is
the degree with which they tolerate communication failures.

At first glance, it appears that completely reliable communication is essential
if efficient, reliable distributed applications are to be written. However, this may not
always be the case. Consider the types of error that can be introduced by a distributed
application. If two distributed processes are communicating and synchronizing their
activities to provide a service, potential errors can occur from:

� transient errors resulting from interference on the physical communication
medium

� design errors in the software responsible for masking out transient errors in the
communication subsystems

� design errors in the protocols between the server processes and any other servers
needed in the provision of the service

� design errors in the protocol between the two server processes themselves.

To protect against the latter error, it is necessary for the server processes to provide
application-level checks (end-to-end checks). Theend-to-endargument of system de-
sign (Saltzer et al., 1984) states that given the necessity of such checks for provision



RELIABILITY 549

of a reliable service, it is not necessary to repeat these checks at lower levels in the
protocol hierarchy, particularly when the communication medium (for example, local
area networks such as an Ethernet or Token Ring) provides a low error rate (but not
perfect) transmission facility. In these cases, it may be better to have a fast, less than
100% reliable, communication facility than a slower 100% reliable facility. Applica-
tions which require high reliability can trade off efficiency for reliability at the applica-
tion level. However, applications that require fast (but not necessarily reliable) service
cannottrade off reliability for efficiency if the other approach is taken.

There are standards for local area network communication protocols, particularly
at the data link layer, which is divided into two sub-layers: Medium Access Control
(MAC) and Logical Link Control (LLC). MAC is concerned with the interface to the
physical communication media, and standards exists for CSMA/CD (Carrier Sense Mul-
tiple Access with Collision Detection) buses (for example, Ethernet), packet switching
(for example, ATM), token buses and token rings. The LLC layer is concerned with
providing a connectionless or connection-oriented protocol.

As described earlier, a common language-oriented lightweight protocol is the re-
mote procedure call (ISO/IEC JTC1/SC21/WG8, 1992). This is normally implemented
directly on top of a basic communication facility provided by the local area network (for
example, the LLC layer). With languages like Java and Ada, remote procedure calls,
in the absence of machine failures, are considered to be reliable. That is, for each re-
mote procedure call, if the call returns then the procedure has been executed once and
once only; this is often calledexactly onceRPC semantics. However, in the presence
of machine failure, this is difficult to achieve because a procedure may be partially or
totally executed several times depending on where the crash occurred and whether the
program is restarted. Ada assumes that the call is executedat most oncebecause there
is no notion of restarting part of an Ada program following failure.

For a real-time local area network and its associated protocols, it is important
to provide bounded and known delays in message transmissions. This topic will be
returned to in Section 14.7.2.

14.5.4 Group communication protocols

The remote procedure call (or remote method call) is a common form of communication
between clients and servers in a distributed systems. However, it does restrict commu-
nication to be between two processes. Often, when groups of processes are interacting
(for example, performing an atomic action), it is necessary for communication to be
sent to the whole group. Amulticast communication paradigm provides such a facility.
Some networks, for example Ethernet, provide a hardware multicast mechanism as part
of their data link layer. If this is not the case, then further software protocols must be
added.

All networks and processors are, to a greater or lesser extent, unreliable. It is
therefore possible to design a family of group communication protocols, each of which
provides a multicast communication facility with specific guarantees:



550 DISTRIBUTED SYSTEMS

� unreliable multicast – no guarantees of delivery to the group is provided; the
multicast protocol provides the equivalent of a datagram-level of service;

� reliable multicast – the protocol makes a best-effort attempt to deliver the mes-
sage to the group, but offers no absolute guarantee of delivery;

� atomic multicast – the protocol guarantees that if one process in the group re-
ceives the message then all members of the group receive the message; hence the
message is delivered to all of the group or none of them;

� ordered atomic multicast – as well as guaranteeing the atomicity of the mul-
ticast, the protocol also guarantees that all members of the group will receive
messages from different senders in the same order.

The more guarantees the protocols give, the greater the cost of their implementation.
Furthermore, the cost will also vary depending on the failure model used (see Section
5.2).

For atomic and ordered atomic multicasts, it is important to be able to bound the
time taken by the implementation algorithms to terminate. Without this, it is impossible
to predict their performance in a hard real-time system.

Consider a simple ordered atomic multicast which has the following failure model:

� processors fail silently

� all communication failures are fail omission

� no more thanN consecutive network omission failures occur

� the network is fully connected and there is no network partitioning.

To achieve atomic message transmission, all that is required is to transmit each mes-
sageN + 1 times; this is called messagediffusion. To achieve the ordered property
using diffusion requires that the time required to complete each message transmission
be known. Assume that the worst-case transmission value for all messages isTD and
that clocks in the network are loosely synchronized with a maximum difference ofC�.
Each message is time-stamped by its sender with the value of its local clock (Csender).
Each recipient can deliver the message to its process when its local clock is greater
thanCsender + TD +C�, as it is by this time that all recipients are guaranteed to have
received the message and the message becomesvalid. These messages can be ordered
according to their validity times. If two messages have identical validity times an arbi-
trary order can be imposed (such as using the network address of the processor). Figure
14.10 illustrates the approach forN = 1.

Note that although the above simple algorithm guarantees that all processors re-
ceive and process the messages in the same order, it does not guarantee that the order
is the actual order the messages were sent. This is because the value used to determine
the order is based on the local clocks of the processors which can differ byC�.



RELIABILITY 551

T = 0 T = 10 T = 20 T = 30 T = 40 T = 50 T = 60

Time
P1

P2

P3

P4

Message from P

valid at time 55
2TD = 45 time units

C = 10 time units∆

Message from P

valid at time 60
3

clock + 5

clock + 2

clock – 2

clock + 4

Figure 14.10 A simple ordered atomic multicast based on diffusion.

14.5.5 Processor failure

In Chapter 5, two general approaches for providing fault-tolerant hardware and soft-
ware were identified; those with static (masking) and those with dynamic redundancy.
Although hardware fault tolerance does have a major role to play in achieving reli-
ability in the presence of processor and communication failure, an excessive amount
of hardware is required to implement triple modular redundancy, and consequently it
is expensive (but fast). This section, therefore, concentrates on the provision of fault
tolerance through the use of software methods.

For the time being, it will be assumed that all processors in the system arefail-
silent. This means that if a processor malfunctions in any way then it will suffer a
permanent omission failure. If processors are not fail-silent then it is possible that
they will send invalid messages to each other. This would introduce an extra level of
complexity into the following discussion.



552 DISTRIBUTED SYSTEMS

Tolerating processor failure through static redundancy

N-version programming was discussed in Chapter 5 in the context of achieving static
tolerance to design faults. Clearly, if each of the versions in anN-version program re-
sides on a different processor then this approach will also provide tolerance to processor
failure. However, even if no design diversity is employed, it may still be desirable to
replicate identical copies of some system components to obtain the required availability.
This is often calledactive replication.

Suppose that an application is designed according to the distributed object model.
It is possible to replicate objects on different processors and even vary the degree of
replication according to the importance of the particular object. For objects to be
replicated transparently to the application programmer, they must have deterministic
behaviour. This means that for a given sequence of requests to an object the behaviour
of the object is predictable. If this was not the case, the states of each of the replicas in
a replicated object set could end up being different. Consequently, any request made to
that object set could produce a range of results. A set of objects must, therefore, be kept
consistent. Its members must not diverge.

If objects are to be replicated, it is also necessary to replicate each remote method
invocation. Furthermore, it is necessary to have exactly once RPC semantics. As is il-
lustrated in Figure 14.11, each client object will potentially execute a one-to-many pro-
cedure call and each server procedure will receive a many-to-one request. The run-time
system is responsible for coordinating these calls and ensuring the required semantics.
This entails periodically probing server sites with outstanding calls to determine their
status; a failure to respond will indicate a processor crash. In effect, the run-time system
must support some form of membership protocol and an ordered atomic multicast group
communication protocol.

An example of a language which explicitly allows replication (at the process level)
is Fault-Tolerant Concurrent C (Cmelik et al., 1988). The language assumes that pro-
cessors have a fail-stop failure model and provides a distributed consensus protocol to
ensure that all replicas behave in a deterministic manner. Fault-Tolerant Concurrent C
has a communication and synchronization model that is very similar to Ada, and there-
fore it has to ensure that if a particular branch of a select statement is taken in one replica
then the same branch is taken in all replicas (even though the replicas are not executing
in lock-step). There have also been attempts to make Ada fault-tolerant, for example,
(Wellings and Burns, 1996; Wolf, 1998).

Although transparent replication of objects is an attractive approach to providing
tolerance of processor failure, the cost of the underlying multicast and agreement pro-
tocols may be prohibitive for a hard real-time system. In particular, where objects are
active and contain more than one task (with potentially nested tasks), it is necessary
for the run-time agreement protocol (which ensures consistency between replicas) to be
executed at every scheduling decision. Providingwarm standbys with periodic state
saving may offer a cheaper solution. With such an approach, an object would be repli-
cated on more than one processor. However, unlike full replication, only one copy of the
object is active at any one time. The state of this object is periodically saved (typically
before and after communication with another object) on the processors with residing
replicas. If the primary node fails a standby can be started from the last checkpoint.



RELIABILITY 553

Call P

Call P

Call P

Object
client

Object
server

Replica
client.1

Replica
client.2

Replica
client.3

Proc P

Proc P

Proc P

Replica
server.1

Replica
server.2

Replica
server.3

Figure 14.11 Replicated remote procedure calls.

There is clearly a trade-off between efficient use of the processing resources al-
located to an object for availability and the time for it to recover from failures. Active
replication is expensive in processing resources but requires little, if any, recovery time;
in contrast warm replication (often calledpassivereplication) is cheaper but has a slower
recovery time. This has led to a compromise calledleader follower replication (Barrett
et al., 1990), where all replicas are active but one is deemed to be the primary version
and takes all the decisions that are potentially non-deterministic. These decisions are
then communicated to the followers. This form of replication is cheaper to support than
active replication and does not have such a lengthy recovery time as passive replication.

Tolerating processor failure through dynamic redundancy

One of the problems of providing fault tolerance transparently to the application is
that it is impossible for the programmer to specify degraded or safe execution. The
alternative to static redundancy and replication is to allow processor(s) failure to be



554 DISTRIBUTED SYSTEMS

handled dynamically by the application programmer. Clearly, the techniques that have
been discussed so far in this book which enable an application to tolerate software design
faults (for example, atomic actions) will provide some measure of tolerance of hardware
faults. In Chapter 5, the four phases of fault tolerance were described: error detection,
damage confinement and assessment, error recovery and fault treatment with continued
service. In the context of processor failure, the following actions must be performed:

(1) The failure of the processor(s) must be detected and communicated to the remain-
ing processors in the system. Failure detection would normally be done by the
underlying distributed run-time support system. However, there must be an ap-
propriate way of communicating which processors have failed to the application
software. Fault-Tolerant Concurrent C provides such a notification mechanism.

(2) The damage that has occurred because of the failure must be assessed; this re-
quires knowledge of which processes were running on the failed processor(s),
which processors and processes remain active (and their state). For this to be
achieved, the application programmer must have control over which objects are
placed on which machines. Furthermore, it must be clear what effect a proces-
sor failure has on the processes executing on the failed processor, and their data.
Also, the effect of any interaction, either pending or future, with those processes
and their data must be defined.

(3) Using the results of the damage assessment, the remaining software must agree
on a response to the failure and carry out the necessary actions to effect that
response. To achieve maximum tolerance, this part of the recovery procedure
must be distributed. If only a single processor performs the recovery operations
then failure of that processor will be catastrophic to the application. Recovery will
require communication paths between processes being changed so that alternative
services can be provided. Also, because the response selected will depend on the
overall state of the application, it will be necessary for certain data to be made
available on all machines and for this to be held in a consistent state. For example,
the actions to be taken following a processor failure in an avionics system will
depend on the altitude of the plane. If different processors have different values
for this altitude then the chosen recovery procedures may work at cross purposes.

(4) As soon as is practicable, the failed processor and/or its associated software must
be repaired and the system returned to its normal error-free state.

None of the real-time programming languages considered in this book provides adequate
facilities to cope with dynamic reconfiguration after processor failure.

Ada and fault-tolerance

The Ada language makes no assumption about the failure model underlying the imple-
mentation of programs. All that is specified is that a pre-defined exceptionCommuni-
cation Error is raised if one partition attempts to communicate with another and
an error is detected by the communication subsystem.



RELIABILITY 555

Ada also does not support any particular approach to fault tolerance but allows an
implementation to provide appropriate mechanisms. The following discussion assumes
that a distributed implementation of Ada is executed on top of fail-stop processors.

The ability to replicate partitions is also not explicitly provided by Ada (although
an implementation is free to do so – for example see (Wolf, 1998)). However, the Par-
tition Communication Subsystem (PCS) can be extended, so a replicated remote proce-
dure call facility could be provided. Each replicated partition has an associated group
identifier which can be used by the system. All remote procedure calls are potentially
replicated calls. The body of the package would require access to an ordered multicast
facility. Note, however, that this approach does not allow arbitrary partitions to be repli-
cated with the full Ada run-time system being involved at every scheduling decision.
Hence, further restriction would be required.

Asynchronous notification could be provided by providing a protected object in
an extended PCS. The run-time system could then call a procedure when it detects
processor failure. This can open an entry which can then cause an asynchronous transfer
of control in one or more tasks. Alternatively, a single (or group of) task(s) can be
waiting for a failure to occur. The following package illustrates the approach.

package System.RPC.Reliable is

type Group_Id is range 0 .. implementation defined;

-- Synchronous replicated call
procedure Do_Replicated_RPC(Group : in Group_Id;

Params : access Params_Stream_Type;
Results : out Param_Stream_Access);

-- Asynchronous call
procedure Do_Replicated_APC(Group : in Group_Id;

Params : access Params_Stream_Type);

type RRPC_Receiver is access procedure (Service : in Service_Id;
Params : access Params_Stream_Type;
Results : out Param_Stream_Access);

procedure Establish_RRPC_Receiver(Partition : in Partition_Id;
Receiver : in RRPC_Receiver);

protected Failure_Notify is
entry Failed_Partition(P : out Partition_Id);

private
procedure Signal_Failure(P : Partition_Id);
...

end Failure_Notify;

private
...

end System.RPC.Reliable;

Once tasks have been notified, they must assess the damage that has been done
to the system. This requires knowledge of the actual configuration. Reconfiguration is



556 DISTRIBUTED SYSTEMS

possible by using the dynamic binding facilities of the language (see Burns and Wellings
(1998)).

Achieving reliable execution of occam2 programs

Although occam2 was designed for use in a distributed environment, it does not have
any failure semantics. Processes which fail due to internal error (for example, array
bound error) are equivalent to the STOP process. A process which is waiting for com-
munication on a channel where the other process is on a failed processor will wait for-
ever, unless it has employed a timeout. However, it is possible to imagine that suitable
occam2 semantics for this event would be to consider both processes as STOPped and
to provide a mechanism whereby some other process can be informed.

Achieving reliable execution of Real-Time Java programs

Java requires that each method that can be called remotely declaresRemoteExcep-
tion in its throws list. This allows the underlying implementation to give notification
when a remote call fails. Furthermore, Java leaves open the possibility of defining re-
mote services which support replication. Currently, Real-Time Java is silent on its use
in a distributed system.

14.6 Distributed algorithms

So far, this chapter has concentrated on the expression of distributed programs in lan-
guages like Ada, Java and occam2, along with the general problems of tolerating pro-
cessor and communication failure. It is beyond the scope of this book to consider the
specific distributed algorithms which are required for controlling and coordinating ac-
cess to resources in a distributed environment. However, it is useful to establish certain
properties that can be relied on in a distributed environment. In particular, it is necessary
to show how events can be ordered, how storage can be organized so that its contents
survive a processor failure, and how agreement can be reached in the presence of faulty
processors. These algorithms are often needed to implement atomic multicast protocols.

14.6.1 Ordering events in a distributed environment

In many applications, it is necessary to determine the order of events that have occurred
in the system. This presents no difficulty for uniprocessor or tightly coupled systems,
which have a common memory and a common clock. For distributed systems, however,
there is no common clock and the delay which occurs in sending messages between
processors means that these systems have two important properties:



DISTRIBUTED ALGORITHMS 557

� For any given sequence of events, it is impossible to prove that two different
processes will observe, identically, the same sequence.

� As state changes can be viewed as events, it is impossible to prove that any two
processes will have the same global view of a given subset of the system state. In
Chapter 12, the notion of causal ordering of events was introduced to help solve
this problem.

If processes in a distributed application are to coordinate and synchronize their activities
in response to events as they occur, it is necessary to place a causal order on these
events. For example, in order to detect deadlock between processes sharing resources,
it is important to know that a process released resourceA before requesting resourceB.
The algorithm presented here enables events in a distributed system to be ordered and
is due to Lamport (1978).

Consider processP which executes the eventsp0, p1, p2, p3, p4 ... pn. As this is
a sequential process the eventp0 must have happened before eventp1 which must have
happened before eventp2 and so on. This is written asp0 ! p1 ! p2 ! ::: ! pn.
Similarly for processQ : q0 ! q1 ! q2 ! ::: ! qn. If these two processes are
distributed and there is no communication between them, it is impossible to say whether
p0 happened before or afterq0, q1 and so on. Consider now the case where the event
p1 is sending a message toQ, andq3 is the event which receives the message fromP .
Figure 14.12 illustrates this interaction.

As the act of receiving a message must occurafter the message has been sent,
thenp1! q3, and asq3! q4, it follows thatp1! q4 (that is,p1 could have a causal
effect onq4). There is still no information as to whetherp0 or q0 happened first. These
events are termedconcurrent events(as there is no causal ordering). As neither event
can affect the other, it is of no real importance which one is considered to have occurred
first. However, it is important that processes which make decisions based on this order
all assume the same order.

To order all events totally in a distributed system, it is necessary to associate
a time-stampwith each event. However, this is not a physical time-stamp but rather
a logical time-stamp. Each processor in the system keeps a logical clock, which is
incremented every time an event occurs on that processor. An eventp1 in processP
occurred beforep2 in the same process if the value of the logical clock atp1 is less
than the value of the logical clock atp2. Clearly, it is possible using this method for the
logical clock associated with each process to get out of synchronization. For example,
P ’s logical clock atp1 may be greater thanQ’s logical clock atq3; however,p1 must
have occurred beforeq3 because a message cannot be received before it has been sent.
To resolve this problem, it is necessary for every message sent between processes to
carry the time-stamp of the event that sent the message. Furthermore, every time a
process receives a message it must set its logical clock to a value which is the greater of
its own value and:

� the time-stamp found in the message plus at least one – for asynchronous message
passing; or

� the time-stamp – for synchronous message passing.



558 DISTRIBUTED SYSTEMS

P Q

p4

p3

p2

p1

p0 q0

q1

q2

q3

q4

Figure 14.12 Two interacting processes.

This ensures that no message is received before it is sent.
Using the above algorithm, all events in the system have an associated time-stamp

and can be partially ordered accordingly. If two events have the same time-stamp then
it is sufficient to use an arbitrary condition, such as the numeric value of process iden-
tifiers, to give an artificial total order to the events.

14.6.2 Implementing global time

The approach to global ordering described above used logical clocks. An alternative
scheme is to use a global time model based on physical time. This could be achieved
by all nodes having access to a single time source, but it is more usual for nodes to have
their own clocks. Hence it is necessary to coordinate these local clocks. There are many
algorithms for doing this. All involve compensating for the inevitable clock drift that
occurs even when clocks are notionally identical.

With quartz crystals, two clocks may drift apart by over one second in approxi-
mately six days. If timing events are significant at the millisecond level, drift becomes
a problem after only eight minutes.

To bound clock drift, it is necessary to manipulate the time base at each node.
Time must never move backwards and hence, although slow clocks can jump forward a



DISTRIBUTED ALGORITHMS 559

defined number of ticks, fast clocks must be slowed down rather than be moved back-
wards in time.

A clock coordination algorithm will provide a bound,�, on the maximum differ-
ence between any two clocks (as would be perceived by an external reference clock).
EventA can now be assumed to precede eventB if (and only if):

t(A) + � < t(B)

wheret(A) is the time of eventA.
One way to achieve synchronization between nodes is for a central time server

process, S, to supply the time according to its own clock upon request. The time server
may be linked to an external time source or have a more accurate hardware clock.
Alternatively, it may be an arbitrary node in the system that is deemed to be the source
of system time. In a distributed system, communications are not instantaneous, and
hence the time provided by S is subject to two sources of error – variability in the time
taken for the message to be returned from S, and some non-determinism introduced by
the responsiveness of the client once it receives the message. It is also important that S
is not preempted between readings its clock and sending out the message.

To reduce the jitter introduced by the message round trip, S can periodically send
out its ‘time’. If, additionally, a high-priority message is used (and S itself has a high
priority) then the other sources of variability can be minimized.

An alternative approach is for the client of S to send its own time reading with its
message. Upon the receipt of a message, S looks at its clock and calculates a correction
factor,Æ:

Æ = t(client) +min� t(S)

wheremin is the minimum communication delay for the message from the client.
The correction factor is then transmitted back to the client. The transmission time

of this second message is not time-critical. Upon receipt of this second message, the
client will either advance its own clock byÆ if its value is negative, or slow down its
clock by this amount ifÆ is positive. The use of a single time source gives a simple
scheme but is subject to the single point failure of S (or the node on which it is execut-
ing). Other algorithms use a decentralized approach whereby all nodes broadcast their
‘time’ and a consensus vote is taken. Such a vote may omit outlying values. These clock
synchronization algorithms must satisfy both anagreementand anaccuracyproperty,
where:

� the agreement condition is satisfied only if the skew between any two non-faulty
clocks is bounded; and

� the accuracy condition is satisfied only if all non faulty clocks have a bounded
drift with respect to real time.



560 DISTRIBUTED SYSTEMS

14.6.3 Implementing stable storage

In many instances, it is necessary to have access to storage whose contents will survive
a processor crash; this is calledstable storage. As the main memory of any processor
is volatile, it is necessary to use a disk (or any other form of non-volatile storage) as
the stable storage device. Unfortunately, write operations to disks are not atomic in
that the operation can crash part way through. When this happens, it is not possible
for a recovery manager to determine whether the operation succeeded or not. To solve
this problem, each block of data is stored twice on separate areas of the disk. These
areas are chosen so that a head crash while reading one area will not destroy the other;
if necessary, they can be on physically separate disk drives. It is assumed that the
disk unit will indicate whether a single write operation completes successfully (using
redundancy checks). The approach, in the absence of a processor failure, is to write the
block of data to the first area of the disk (this operation may have to be repeated until it
succeeds); only when this succeeds is the block written to the second area of the disk.

If a crash occurs while updating stable storage the following recovery routine can
be executed.

read_block1;
read_block2;
if both_are_readable and block_1 = block2 then

-- do nothing, the crash did not affect the stable storage
else

if one_block_is_unreadable then
-- copy good block to bad block

else
if both_are_readable_but_different then

-- copy block1 to block2 (or visa versa)
else

-- a catastrophic failure has occurred and both
-- blocks are unreadable

end
end;

end;

This algorithm will succeed even if there are subsequent crashes during its exe-
cution.

14.6.4 Reaching agreement in the presence of faulty processes

Early on in this chapter it was assumed that if a processor fails it fails silently. By this,
it is meant that the processor effectively stopsall execution and does not take part in
communication with any other processors in the system. Indeed, even the algorithm
for stable storage presented above assumes that a processor crash results in the pro-
cessor immediately stopping its execution. Without this assumption, a malfunctioning
processor might perform arbitrary state transitions and send spurious messages to other
processors. Thus even a logically correct program could not be guaranteed to produce



DISTRIBUTED ALGORITHMS 561

the desired result. This would make fault-tolerant systems seemingly impossible to
achieve. Although every effort can be made to build processors that operate correctly
in spite of component failure,it is impossibleto guarantee this using afiniteamount of
hardware. Consequently, it is necessary to assume a bounded number of failures. This
section considers the problem of how a group of processes executing on different pro-
cessors can reach a consensus in the presence of a bounded number of faulty processes
within the group. It is assumed that all communication is reliable (that is, sufficiently
replicated to guarantee reliable service).

Byzantine generals problem

The problem of agreeing values between processes which may reside on faulty pro-
cessors is often expressed as theByzantine Generals Problem(Lamport et al., 1982).
Several divisions of the Byzantine Army, each commanded by its own general, sur-
round an enemy camp. The generals are able to communicate by messengers and must
come to an agreement as to whether to attack the camp. To do this, each observes the
enemy camp and communicates his or her observations to the others. Unfortunately,
one or more of the generals may be traitors and liable to convey false information. The
problem is for all loyal generals to obtain the same information. In general,3m + 1
generals can cope withm traitors if they havem+1 rounds of message exchanges. For
simplicity, the approach is illustrated with an algorithm for four generals that will cope
with one traitor, and the following assumptions will be made:

(1) Every message that is sent is delivered correctly.

(2) The receiver of a message knows who sent it.

(3) The absence of a message can be detected.

The reader is referred to the literature for more general solutions (Pease et al., 1980;
Lamport et al., 1982).

Consider generalGi and the information that he/she has observedOi. Each gen-
eral maintains a vectorV of information he/she has received from the other generals.
Initially Gi’s vector contains only the valueOi; that isV i(j) = null(for i <> j)
and V i(i) = Oi. Each general sends a messenger to every other general indicating his
or her observation; loyal generals will always send the correct observation; the traitor
general may send a false observation and may send different false observations to differ-
ent generals. On receiving the observations, each general updates his or her vector and
then sends the value of the other three’s observations to the other generals. Clearly, the
traitor may send observations different from the ones he or she has received, or nothing
at all. In the latter case, the generals can choose an arbitrary value.

After this exchange of messages, each loyal general can construct a vector from
the majority value of the three values it has received for each general’s observation. If
no majority exists then they assume, in effect, that no observations have been made.



562 DISTRIBUTED SYSTEMS

1st general

* * * *

4th general

– – – W4

3rd general

– – A3 –

2nd general

– A2 – –

Figure 14.13 Byzantine generals – initial state.

1st general

* * * *

4th general

W1 A2 A3 W4

3rd general

R1 A2 A3 W4

2nd general

R1 A2 A3 W4

Figure 14.14 Byzantine generals – state after first message exchange.

For example, suppose that the observations of a general lead him or her to one of
three conclusions: attack (A), retreat (R), or wait (W). Consider the case whereG1 is a
traitor,G2 concludes attack,G3: attack andG4: wait. Initially the state of each vector
is given in Figure 14.13.

The index into the vector (1..4) gives the General number, the contents of the item
at that index gives the observation from that general and who reported the observation.
Initially then the fourth general stores ‘Wait’ in the fourth element of its vector indicating
that the observation came from him- or herself. Of course, in the general case it might
not be possible to authenticate who reported the observation. However, in this example
it will be assumed that the traitor is not that devious.

After the first exchange of messages, the vectors are (assuming that the traitor
realises the camp is vulnerable and sends the retreat and wait messages randomly to all



DISTRIBUTED ALGORITHMS 563

1st general

* * * *
4th general

W1 A2 A3 W4

3rd general

R1 A2 A3 W4

2nd general

R1 A2 A3 W4

R1 W1

R2 A2

R3 A3

W1 R1

R1 R1

R3 W3

W4 A4

R2 W2

W4 A4

Figure 14.15 Byzantine generals – second message exchange

generals) shown in Figure 14.14. After the second exchange of messages, Figure 14.15
gives the information which is available to each general (again assuming the traitor
sends retreat and wait messages randomly).

To illustrate how this table has been derived, consider the final row for the fourth
general. This has been obtained, allegedly, from the third general (as the 3 indicates)
and includes information about the decisions of the first and the second generals. Hence
R3 in the first column indicates that the third general is of the view that the first general
wishes to retreat.

Figure 14.16 gives a final (majority) vector. Loyal generals have a consistent view
of each others’ observations and, therefore, can make a uniform decision.

If it is possible to restrict the actions of the traitors further (that is, a stricter
failure model), then the number of generals (processors) required to toleratem traitors
(failures) can be reduced. For example, if a traitor is unable to modify a loyal general’s
observation (say, he or she must pass a signed copy of the observation and the signature
cannot be forged or modified), then only2m+ 1 generals (processors) are required.

Using solutions to the Byzantine General problem, it is possible to construct a
fail-silent processor by having internally replicated processors carry out a Byzantine
agreement (Schneider, 1984). If the non-faulty processors detect a disagreement they
stop execution.



564 DISTRIBUTED SYSTEMS

1st general

* * * *

4th general

R A A W

3rd general

R A A W

2nd general

R A A W

Figure 14.16 Byzantine generals – final state.

14.7 Deadline scheduling in a distributed environment

Having considered a number of distributed architectures, communication protocols and
algorithms, it is now possible to return to the key issue of understanding the temporal
behaviour of applications built upon a distributed environment. Here, parts of the system
can be making progress at different rates and communication delays become significant.
Not only must the time of the environment be linked to that of the computer system,
but the different processors/nodes need to have some form of time linkage. The term
synchronous is used (in this context) to designate a distributed system that has the
following properties:

� There is an upper bound on message delays; this consists of the time it takes to
send, transport and receive a message over some communications link.

� Every processor has a local clock, and there is a bounded drift rate between any
two clocks.

� The processors themselves make progress at a minimum rate at least.

Note that this does not imply that faults cannot occur. Rather, the upper bound
on message delay is taken to apply only when non-faulty processor are communicating
over a non-faulty link. Indeed, the existence of the upper bound can be used to provide
failure detection.

A system that does not have any of the above three properties is calledasyn-
chronous.

In this section only synchronous systems are considered. Two main topics will be
investigated. First will be the issue of allocating processes to processors, and then the
scheduling of communications will be discussed.



DEADLINE SCHEDULING IN A DISTRIBUTED ENVIRONMENT 565

14.7.1 Allocation

The development of appropriate scheduling schemes for distributed (and multiproces-
sor) systems is problematic. Graham (1969) showed that multiprocessor systems can
behave quite unpredictably in terms of the timing behaviour they exhibit. He used dy-
namic allocation (that is, processes are assigned to processors as they become runnable),
and was able to illustrate the following anomalies:

� Decreasing the execution time of some process,P , could lead to it having an
increased response time.

� Increasing the priority of process,P , could lead to it having an increased response
time.

� Increasing the number of processors could lead toP having an increased response
time.

All of these results are clearly counter-intuitive.
Mok and Dertouzos (1978) showed that the algorithms that are optimal for sin-

gle processor systems are not optimal for increased numbers of processors. Consider,
for example, three periodic processesP1, P2 andP3 that must be executed on two
processors. LetP1 andP2 have identical deadline requirements, namely a period and
deadline of 50 time units and an execution requirement (per cycle) of 25 units; letP3
have requirements of 100 and 80. If the rate monotonic algorithm (discussed in Chapter
13) is used,P1 andP2 will have highest priority and will run on the two processors
(in parallel) for their required 25 units. This will leaveP3 with 80 units of execution
to accomplish in the 75 units that are available. The fact thatP3 has two processors
available is irrelevant (one will remain idle). As a result of applying the rate monotonic
algorithm,P3 will miss its deadline even though average processor utilization is only
65%. However, an allocation that mapsP1 andP2 to one processor andP3 to the other
easily meets all deadlines.

Other examples can show that the earliest deadline first (EDF) formulation is
similarly non-optimal. This difficulty with the optimal uniprocessor algorithms is not
surprising as it is known that optimal scheduling for multiprocessor systems is NP-hard
(Graham et al., 1979). It is, therefore, necessary to look for ways of simplifying the
problem and to provide algorithms that give adequate sub-optimal results.

Allocation of periodic processes

The above discussion showed that judicious allocation of processes can significantly
affect schedulability. Consider another example; this time let four processes be execut-
ing on the two processors, and let their cycle times be 10, 10, 14 and 14. If the two
10s are allocated to the same processor (and by implication the two 14s to the other)
then 100% processor utilization can be achieved. The system is schedulable even if
execution times for the four processes are 5, 5, 10 and 4 (say). However, if a 10 and a
14 were placed together on the same processor (as a result of dynamic allocation) then
maximum utilization drops to 83%.



566 DISTRIBUTED SYSTEMS

What this example appears to show is that it is better to allocate periodic processes
statically rather than let them migrate and, as a consequence, unbalance the allocation
and potentially downgrade the system’s performance. Even on a tightly coupled system
running a single run-time dispatcher, it is better to keep processes on the same processor
rather than try to utilize an idle processor (and risk unbalancing the allocation).

If static deployment is used, then the deadline monotonic algorithm (or other opti-
mal uniprocessor schemes) can test for schedulability on each processor. In performing
the allocation, processes that are harmonically related should be deployed together (that
is, to the same processor) as this will help increase utilization.

Allocation of sporadic and aperiodic processes

As it appears expedient to allocate periodic processes statically, a similar approach to
sporadic processes would seem to be a useful model to employ. If all processes are
statically mapped then the algorithms discussed in Chapter 13 can be used on each
processor (that is, each processor, in effect, runs its own scheduler/dispatcher).

To calculate execution times (worst case or average) requires knowledge of po-
tential blocking. Blocking within the local processor can be bounded by inheritance
or ceiling protocols. However, in a multiprocessor system there is another form of
blocking: this is when a processes is delayed by a process on another processor. This
is called remote blocking and is not easily bounded. In a distributed system, remote
blocking can be eliminated by adding processes to manage the distribution of data. For
example, rather than be blocked waiting to read some data from a remote site, an extra
process could be added to the remote site whose role is to forward the data to where it
is needed. The data is thus available locally. This type of modification to a design can
be done systematically; however, it does complicate the application (but does lead to a
simpler scheduling model).

One of the drawbacks of a purely static allocation policy is that no benefits can be
gained from spare capacity in one processor when another is experiencing a transient
overload. For hard real-time systems, each processor would need to be able to deal
with worst-case execution times for its periodic processes, and maximum arrival times
and execution times for its sporadic load. To improve on this situation Stankovic et
al. (1985) and Ramamritham and Stankovic (1984) have proposed more flexible task
scheduling algorithms.

In their approach, all safety critical periodic and sporadic processes are statically
allocated but non-critical aperiodic processes can migrate. The following protocol is
used:

� Each aperiodic process arrives at some node in the network.

� The node at which the aperiodic process arrives checks to see if this new process
can be scheduled together with the existing load. If it can, the process is said to
be guaranteed by this node.

� If the node cannot guarantee the new processes, it looks for alternative nodes that
may be able to guarantee it. It does this using knowledge of the state of the whole
network and by bidding for spare capacity in other nodes.



DEADLINE SCHEDULING IN A DISTRIBUTED ENVIRONMENT 567

� The process is thus moved to a new node where there is a high probability that it
will be scheduled. However, because of race conditions, the new node may not
be able to schedule it once it has arrived. Hence the guarantee test is undertaken
locally; if the process fails the test then it must move again.

� In this way, an aperiodic process is either scheduled (guaranteed) or it fails to
meet its deadline.

The usefulness of their approach is enhanced by the use of a linear heuristic algorithm
for determining where a non-guaranteed process should move. This heuristic is not
computationally expensive (unlike the optimal algorithm, which is NP-hard), but does
give a high degree of success; that is, there is a high probability that the use of the
heuristic will lead to an aperiodic process being scheduled (if it is schedulable at all).

The cost of executing the heuristic algorithm and moving the aperiodic processes
is taken into account by the guarantee routine. Nevertheless, the scheme is workable
only if aperiodic processes can be moved, and that this movement is efficient. Some
aperiodic processes may be tightly coupled to hardware unique to one node and will
have at least some component that must execute locally.

14.7.2 Scheduling access to communications links

Communication between processes on different machines in a distributed system re-
quires messages to be transmitted and received on the underlying communication sub-
system. In general, these messages will have to compete with each other to gain access
to the network medium (for example, switch, bus or ring). In order for hard real-time
processes to meet their deadlines, it will be necessary to schedule access to the com-
munication subsystem in a manner which is consistent with the scheduling of processes
on each processor. If this is not the case then priority inversion may occur when a
high-priority process tries to access the communications link. Standard protocols such
as those associated with Ethernet do not support hard deadline traffic, as they tend to
queue messages in a FIFO order or use non-predictable back-off algorithms when there
is a message collision.

Although the communication link is just another resource, there are at least four
issues which distinguish the link scheduling problem from processor scheduling.

� Unlike a processor, which has a single point of access, a communications channel
has many points of access – one for each attached physical node. A distributed
protocol is therefore required.

� While preemptive algorithms are appropriate for scheduling processes on a sin-
gle processor, preemption during message transmission will mean that the entire
message will need retransmitting.

� In addition to the deadlines imposed by the application processes, deadlines may
also be imposed by buffer availability – the contents of a buffer must be transmit-
ted before new data can be placed in it.



568 DISTRIBUTED SYSTEMS

Although manyad hocapproaches are used in distributed environments there are
at least three schemes that do allow for predictable behaviour. These will now be briefly
discussed.

TDMA

The natural extension to using a cyclic executive for uniprocessor scheduling, is to use
a cyclic approach to communications. If all application processes are periodic, it is pos-
sible to produce a communications protocol that is slotted by time. Such protocols are
call TDMA (Time Division Multiple Access). Each node has a clock that is synchro-
nized to all other node clocks. During a communications cycle, each node is allocated
time slots in which it can communicate. These are synchronized to the execution slots
of each node’s cyclic executive. No message collisions can occur, as each node knows
when it can write and, moreover, each node knows when there is a message available
that it needs to read.

The difficulty with the TDMA approach come from constructing the schedule.
This difficulty increases exponentially with the number of nodes in the system. One
architecture that has shown considerable success in using TDMA is the TTA (Time
Triggered Architecture) (Kopetz, 1997). It uses a complex graph reduction heuristic to
construct the schedules. The other drawback of TDMA is that it is difficult to plan when
sporadic messages can be communicated.

Timed token-passing schemes

One approach for generalizing away from a purely time-slotted approach is to use a
token-passing scheme. Here a special message (thetoken) is passed from node to node.
Nodes can send out messages only when they hold the token. As there is only one token,
no message collisions can occur. Each node can hold the token only for a maximum
time, and hence there is a boundedtoken rotation time.

A number of protocols use this approach. An example being the fibre optic FDDI
(Fiber Distributed Data Interface) protocol. Here messages are grouped into two classes
called, confusingly, synchronous and asynchronous. Synchronous messages have hard
time constraints and are used to define each node’s token-holding time and hence the
target token rotation time. Asynchronous messages are not deemed to have hard con-
straints; they can be communicated by a node if either it has no synchronous messages
to send or the token has arrived early (because other nodes have had nothing to trans-
mit). The worst-case behaviour of this protocol occurs when a message arrives at a node
just as the token is being passed on. Moreover, up to that time no node has transmit-
ted messages, and hence the token is being delivered very early. After the token has
been passed on from the node with the new synchronous message, the rest of the nodes
now have lots of messages to send. The first node sends its synchronous load and, as
the token arrived very early, sends a full set of asynchronous messages; all subsequent
nodes send their synchronous load. By the time the token arrives back at the node of



DEADLINE SCHEDULING IN A DISTRIBUTED ENVIRONMENT 569

interest, a time interval equal to twice thetarget token rotation timehas passed. This is
the bounded delivery time.

Priority-based protocols

Given the benefits that have been derived from using priority-based scheduling on pro-
cessors, it is reasonable to assume that a priority-based approach to message scheduling
would be useful. Such protocols tend to have two phases. In the first phase, each node
indicates the priority of the message it wishes to transmit. This is obviously the max-
imum priority of the set of messages it may have outstanding. At the end of this first
phase, one node has gained the right to transmit its message. The second phase is simply
the communication of this message. In some protocols, the two phases can overlap (that
is, while one message is being broadcast, parts of the message are modified so that the
priority of the next message is determined).

While priority-based protocols have been defined for some time, they have tended
to have the disadvantage that only a small range of priorities have been supported by
communication protocols. They have been used to distinguish between broad classes
of messages rather than for message scheduling. As indicated in Chapter 13, the best
results of priority-based scheduling occur when each process (or message in this discus-
sion) has a distinct priority. Fortunately, there are some protocols that do now provide
for a large priority field. One example is CAN (Controller Area Network) (Tindell et
al., 1995).

In CAN 2.0A, an 8 byte message is preceded by an 11 bit identifier that acts as
a priority. At the start of a transmission sequence, each node writes (simultaneously)
to the broadcast bus the first bit of its maximum priority message identifier. The CAN
protocol acts like a large AND gate; if any node writes a 0 then all nodes read a 0.
The 0 bit is said to bedominant. The protocol proceeds as follows (for each bit of the
identifier):

� If a node transmits a zero it continues on to the next bit.

� If a node transmits a one and reads back a one then it continues on to the next bit.

� If a node transmits a one and reads back a zero, it backs off and takes no further
part in this transmission round.

The lower the value of the identifier the higher the priority. As identifiers are unique,
the protocol is forced to end up with just one node left in after the 11 rounds of bitwise
arbitration. This node then transmits its message.

The value of CAN is that it is a genuine priority-based protocol and hence all
the analysis presented in Chapter 13 can be applied. The disadvantage of the type of
protocol used by CAN is that it restricts the speed of communication. In order for
all nodes to write their identifiers’ bits ‘at the same time’ and for them all to read the
subsequent ANDed value (and act on this value before sending out, or not, the next
bit) there must be a severe bound on the transmission speed. This bound is actually
a function of the length of the wire used to transmit the bits, and hence CAN is not



570 DISTRIBUTED SYSTEMS

suitable for geographically dispersed environments. It was actually designed for the
informatics within modern automobiles – where it is having considerable success.

ATM

ATM can be used across both wide area and local area networks. The goal is to support
a wide range of communication requirements such as those needed for voice and video
as well as data transmission. ATM supports point-to-point communication via one or
more switches. Typically, each computer in the network is connected to a switch via
two optical fibres: one taking traffic to the switch, the other relaying traffic from the
switch.

All data to be transmitted is divided into fixed-sized packets callcells, where
each cell has a 5-byte header and a 48-byte data field. Applications communicate via
virtual channels (VC). The data to be transmitted on a particular VC can have certain
timing behaviour associated with it, such as its bit rate, period or its deadline. An
adaptation layer provides specific services to support the particular class of user data;
the precise behaviour of this layer is variable to suit the data transmission needs of a
particular system. It is within the adaption layer that end-to-end error correction and
synchronization, and the segmentation and reassembly of user data into the ATM cells
are performed.

A typical ATM network will contain multiple switches, each of which has an as-
sociated cell queuing policy - the basic FIFO policy was employed in most early com-
mercial switches, but some now cater for priority-based queuing. Within an individual
switch, a set of connections may be established between a number of switch input ports
and output ports according to a connection table. Queuing of cells may occur at input
and/or output ports.

A common approach taken in a real-time ATM solution is as follows:

� Pre-define all VC timing requirements;

� Pre-define the route and hence the network resources allocated to each VC;

� Control the total bandwidth required by each VC at each network resource
through which it is routed;

� Calculate the resulting delays and hence assess the feasibility of a particular allo-
cation of VCs to the network hardware.

The control of bandwidth usage by each VC is required in order to avoid congestion in
the network. The motivation for this is to support predictable behaviour of each VC and
consequently the network as a whole. When congestion is present, ATM cells are at risk
of being discarded (under the normal rules of the ATM layer protocol) and worst-case
delays are difficult to predict without excessive pessimism (allowing for detection of
lost cells and possible retransmission).



DEADLINE SCHEDULING IN A DISTRIBUTED ENVIRONMENT 571

14.7.3 Holistic scheduling

A reasonably large distributed real-time system may contain tens of processors and two
or three distinct communication channels. Both the processor and the communication
subsystems can be scheduled so that the worst-case timing behaviour is predictable.
This is facilitated by a static approach to allocation. Having analyzed each component
of the system it is then possible to link the predictions together to check compliance
with system-wide timing requirements (Tindell and Clark, 1994; Palencia Gutierrez
and Gonzalez Harbour, 1998; Palencia Gutierrez and Gonzalez Harbour, 1999). In
addressing thisholistic schedulingproblem, two important factors need to be taken into
consideration:

� Will variability in the behaviour of one component adversely affect the behaviour
of another part of the system?

� Will the simple summation of each component’s worst-case behaviour lead to
pessimistic predictions?

The amount of variability will depend upon the approach to scheduling. If a purely time-
triggered approach is used (that is, cyclic executives linked via TDMA channels), there
is little room for deviation from the repeating behaviour. However, if priority-based
scheduling is employed on the processors and channels then there could be considerable
variation. For example, consider a sporadic process released by the execution of a
periodic process on another node. On average the sporadic process will execute at the
same rate as the periodic process (say, every 50 ms). But the periodic process (and
the subsequent communication message to release the sporadic) will not take place at
exactly the same time each period. It may be that the process executes relatively late on
one invocation but earlier on the next. As a result the sporadic may be released for the
second time only 30 ms after its previous release. To model the sporadic as a periodic
process with a period of 50 ms would be incorrect and could lead to a false conclusion
that all deadlines can be satisfied. Fortunately, this variability in release time can be
accurately modelled using the release jitter analysis give in Section 13.12.2.

Whereas the response time analysis introduced for single processor scheduling
is necessary and sufficient (that is, gives an accurate picture of the true behaviour of
the processor), holistic scheduling can be pessimistic. This occurs when the worst-case
behaviour on one subsystem implies that less than worst case will be experienced on
some other component. Often only simulation studies will allow the level of pessimism
to be determined (statistically). Further research is needed to accurately determine the
effectiveness of holistic scheduling.

A final issue to note with holistic scheduling is that support can be given to the
allocation problem. Static allocation seems to be the most appropriate to use. But
deriving the best static allocation is still an NP-hard problem. Many heuristics have
been considered for this problem. More recently, search techniques such as simulated
annealing and genetic algorithms have been applied to the holistic scheduling problem.
These have proved to be quite successful; and can be easily extended to systems that
are replicated for fault tolerance (where it is necessary to come up with allocations that
assign replicas to different components).



572 DISTRIBUTED SYSTEMS

Summary

This chapter defined a distributed computer system to be a collection of au-
tonomous processing elements, cooperating in a common purpose or to achieve
a common goal. Some of the issues which arise when considering distributed
applications raise fundamental questions that go beyond simple aspects of im-
plementation. They are: language support, reliability, distributed control algo-
rithms and deadline scheduling.

Language support

The production of a distributed software system to execute on a distributed hard-
ware system involves: partitioning – the process of dividing the system into
parts (units of distribution) suitable for placement onto the processing elements
of the target system; configuration – associating the partitioned components
with particular processing elements in the target system; allocation – the actual
process of turning the configured system into a collection of executable modules
and downloading these to the processing elements; transparent execution –
executing the distributed software so that remote resources are accessed in a
manner which is independent of their location (usually via remote procedure
call); and reconfiguration – changing the location of a software component or
resource.

Occam2, although designed for use in a distributed environment, is fairly
low-level; the process is the unit of partitioning; configuration is explicit in the
language but neither allocation nor reconfiguration are supported. Furthermore,
remote access to resources is not transparent.

Ada allows collection of library units to be grouped into ‘partitions’ which
communicate via remote procedure calls and remote objects. Neither configu-
ration, nor allocation nor reconfiguration are supported directly by the language.

Java allows objects to be distributed which can communication via remote
procedure calls or via sockets. None of configuration, allocation or reconfigura-
tion is supported directly by the language.

CORBA facilitates distributed objects and interoperability between appli-
cations written in different languages for different platforms supported by mid-
dleware software from different vendors.

Reliability

Although the availability of multiple processors enables the application to be-
come tolerant of processor failure, it also introduces the possibility of new types
of faults occurring which would not be present in a centralized single-processor
system. In particular, multiple processors introduce the concept of a partial
system failure. Furthermore, the communication media may lose, corrupt, or
change the order of messages.



SUMMARY 573

Communication between processes across machine boundaries requires
layers of protocols so that transient error conditions can be tolerated. Standards
have been defined to support these layers of protocols. The OSI Reference
Model is a layered model consisting of the Application, Presentation, Session
Transport, Network, Data Link and Physical layers. It was developed primar-
ily for wide area networks to enable open access; wide area networks were
characterized by low-bandwidth communication with high error rates. TCP/IP is
another protocol reference model aimed primarily at wide area networks. Most
distributed embedded systems will, however, use local area network technology
and will be closed to the outside world. Local area networks are characterized
by high-bandwidth communication with low error rates. Consequently, although
it is possible to implement language-level interprocess communication using
the OSI approach, in practice the expense is often prohibitive. Thus, many de-
signers tailor the communication protocols to the requirements of the language
(the application) and the communication medium. These are called lightweight
protocols.

When groups of processes are interacting, it is necessary for communi-
cation to be sent to the whole group. A multicast communication paradigm
provides such a facility. It is possible to design a family of group communication
protocols, each of which provides a multicast communication facility with spe-
cific guarantees: unreliable multicast – no guarantees of delivery to the group
is provided; reliable multicast – the protocol makes a best-effort attempt to
deliver the message to the group; atomic multicast – the protocol guarantees
that if one process in the group receives the message then all members of the
group receive the message; ordered atomic multicast – as well as guarantee-
ing the atomicity of the multicast, the protocol also guarantees that all members
of the group will receive messages from different senders in the same order.

Processor failure can be tolerated through static or dynamic redundancy.
Static redundancy involves replicating application components on different pro-
cessors. The degree of replication can be varied according to the importance
of a particular component. One of the problems of providing fault tolerance
transparently to the application is that it is impossible for the programmer to
specify degraded or safe execution. The alternative to static redundancy is to
allow processor failure to be handled dynamically by the application program-
mer. This requires: the failure of the processor to be detected and communi-
cated to the remaining processors in the system; the damage that has occurred
must then be assessed; using these results the remaining software must agree
on a response and carry out the necessary actions to effect that response; and
as soon as is practicable the failed processor and/or its associated software
must be repaired and the system returned to its normal error free state. Few of
the real-time programming languages provide adequate facilities to cope with
dynamic reconfiguration after processor failure.



574 DISTRIBUTED SYSTEMS

Distributed control algorithms

The presence of true parallelism in an application together with physically dis-
tributed processors and the possibility that processors and communication links
may fail, require many new algorithms for resource control. The following al-
gorithms were considered: event ordering, stable storage implementation, and
Byzantine agreement protocols. Many distributed algorithms assume that pro-
cessors are ”fail-stop”; this means either they work correctly or they halt imme-
diately a fault occurs.

Deadline scheduling

Unfortunately, the general problem of dynamically allocating processes to pro-
cessors (so that system-wide deadlines are met) is computationally expensive.
It is therefore necessary to implement a less flexible allocation scheme. One
rigid approach is to deploy all processes statically or to allow only the non-critical
ones to migrate.

Once processors have been allocated, it is necessary to schedule the com-
munications medium. TDMA, timed token passing and priority-based schedul-
ing are appropriate real-time communication protocols. Finally, end-to-end tim-
ing requirements must be verified by considering the holistic scheduling of the
entire system.

Further reading

Brown, C. (1994)Distributed Programming with Unix. Englewood Cliffs, NJ: Pren-
tice Hall.

Comer, D. E. (1999)Computer Networks and Internets. New York: Prentice Hall.

Coulouris, G. F., Dollimore, J. and Kindberg, T. (2000)Distributed Systems, Concepts
and Design, 3rd Edition. Harlow: Addison-Wesley.

Farley, J. (1998)Java Distributed Computing. Sebastopol, CA: O’Reilly.

Harold, E. (1997)Java Network Programming. Sebastopol, CA: O’Reilly.

Halsall, F. (1995)Data Communications, Computer Networks and OSI2nd Edition.
Reading, MA: Addison-Wesley.

Hoque, R. (1998)CORBA 3. Foster City, CA: IDG Books Worldwide.

Horstmann, C. S. and Cornell, G. (2000)Core Java 2, Volume II – Advanced Features.
Sun Microsystems.

Kopetz, H. (1997)Real-Time Systems: Design Principles for Distributed Embedded
Applications: New York: Kluwer International.

Lynch, N. (1996)Distributed Algorithms. San Mateo, CA: Morgan Kaufmann.



EXERCISES 575

Mullender, S. (ed.) (1993)Distributed Systems, 2nd Edition. Reading, MA: Addison-
Wesley.

Tanenbaum, A. S. (1994)Distributed Operating Systems. Englewood Cliffs, NJ: Pren-
tice Hall.

Tanenbaum, A. S. (1998),Computer Networks. Englewood Cliffs, NJ: Prentice Hall.

Exercises

14.1 Discuss some of thedisadvantagesof distributed systems.

14.2 Ada supports a Real-Time Systems Annex and a Distributed Systems Annex.
Discuss the extent to which these two annexes constitute a Distributed Real-Time
Systems Annex.

14.3 From a data abstraction viewpoint, discuss why variables should not be visible in
the interface to a remote object.

14.4 Consider the implications of having timed and conditional entry calls in a dis-
tributed Ada environment.

14.5 The following occam2 process has five input channels and three output channels.
All integers received down the input channels are output to all output channels:

INT I,J,temp:
WHILE TRUE

ALT I = 1 FOR 5
in[I] ? temp

PAR J = 1 FOR 3
out[J] ! temp

Because this process has an eight channel interface it cannot be implemented on a
single transputer unless its client processes are on the same transputer. Transform
the code so that it can be implemented on three transputers. (Assume a transputer
has only four links.)

14.6 Compare and contrast the Ada, Java and CORBA remote object models.

14.7 To what extent can CORBA’s Message Passing Services be implemented in Java?

14.8 Sketch the layers of communication that are involved when the French delegate
at the United Nations Security Council wishes to talk to the Russian delegate.
Assume that there are interpreters who translate into a common language (say
English) and then pass on the message to telephone operators. Does this layered
communication follow the ISO OSI model?

14.9 Why do the semantics of remote procedure calls differ from the semantics of
ordinary procedure calls?

14.10 If the OSI network layer is used to implement an RPC facility, should a datagram
or a virtual circuit service be used?

14.11 Compare and contrast the stable storage and replicated data approaches for
achieving reliable system data which will survive a processor failure.



576 DISTRIBUTED SYSTEMS

14.12 Redo the Byzantine Generals problem given in Section 14.6.4 with G1 as the
traitor, G2 concluding retreat, G3 concluding wait and G4 concluding attack.

14.13 Given the choice between an Ethernet and a token ring as the real-time com-
munication subsystem, which should be used if deterministic access under heavy
loads is the primary concern?

14.14 Update the algorithm given in Section 10.8.2 for forward error recovery in a
distributed system




