
Chapter 16
The execution environment

16.1 The role of the execution
environment

16.2 Tailoring the execution
environment

16.3 Scheduling models

16.4 Hardware support
Summary
Further reading
Exercises

By their very nature, real-time systems have to exhibit a timely response to
events occurring in their surrounding environment. This has led to the view
that real-time systems must be as fast as possible, and that any overheads
introduced by language or operating system features that support high-level ab-
stractions (such as monitors, exceptions, atomic actions and so on) cannot be
tolerated. The term ‘efficiency’ is often used to express the quality of the code
produced by a compiler or the level of abstraction provided by mechanisms sup-
ported by an operating system or run-time support system. This term, however,
is not well-defined. Furthermore, efficiency is in many ways a poor metric for
assessing an application and its implementation. In real-time systems, what
is actually important is the meeting of deadlines or the attainment of adequate
response times in a particular execution environment. This chapter considers
some of the issues associated with meeting this goal. Firstly, the impact of the
execution environment on the design and implementation of real-time systems
is considered. Then, ways in which the software execution environment can
be tailored to the needs of the application are discussed. Scheduling models of
kernels are then reviewed so as to facilitate the complete schedulability analysis
of an application. This is followed by illustrations of how some of the abstrac-
tions presented in this book can be supported by hardware in the execution
environment.

16.1 The role of the execution environment

In Chapter 13, schedulability analysis was considered to be essential for predicting the
real-time properties of software. It is difficult to undertake this analysis unless the details

635



636 THE EXECUTION ENVIRONMENT

of the proposed execution environment are known. The term ‘execution environment’
is used to mean those components that are used together with the application’s code to
make the complete system: the processors, networks, operating systems and so on. The
nature of the proposed execution environment will dictate whether a particular design
will meet its real-time requirements. Clearly, the more ‘efficient’ use of the execution
environment, the more likely the requirements will be met. But this is not always the
case, and a poorly structured design may fail to meet its requirements irrespective of
how efficiently it is implemented. For example, a design suffering from significant
priority inversion will fail to meet attainable deadlines irrespective of how efficiently
it is implemented – as was so poignantly illustrated in the Mars Pathfinder mission
(Jones, 1997; Reeves, 1997).

The design process can be viewed as a progression of increasingly specificcom-
mitments andobligations. The commitments define properties of the system design
which designers operating at a more detailed level are not at liberty to change. Those
aspects of a design to which no commitment is made at some particular level in the
design hierarchy are effectively the subject of obligations that lower levels of design
must address.

The process of refining a design – transforming obligations into commitments –
is often subject toconstraints imposed primarily by the execution environment. The
choice of the execution environment and how it is used may also be constrained. For
example, there may be a requirement which dictates that a space-hardened processor be
used, or there may be a certification requirement which dictates that the capacity of the
processor (or network) shall not exceed 50%.

Many design methods distinguish between a logical and physical design. The
logical design focuses on meeting the functional requirements of the application and
assumes a sufficiently fast execution environment. The physical architecture is the re-
sult of combining the functional and the proposed execution environment to produce a
complete software and hardware architecture design.

The physical architecture forms the basis for asserting that all the application’s
requirements will be met once the detailed design and implementation have taken place.
It addresses timing (and even dependability) analysis that will ensure (guarantee) that
the system once built will (within some stated failure hypotheses) satisfy the real-time
requirements. To undertake this analysis, it will be necessary to make some initial
estimations of resource usage of the proposed system (hardware and software). For
example, initial estimates of the timing properties of the application can be made and
schedulability analysis undertaken to give confidence that deadlines will be met once
the final system has been implemented.

The focus of physical architecture design is to take the functional architecture and
to map it on to the facilities provided by the execution environment. Any mismatch
between the assumptions made by the functional architecture and the facilities provided
by the execution environment must be addressed during this activity. For example, the
functional architecture might assume that all functions are immediately visible from all
other functions. When functions are mapped to processors in the physical architecture,
there may be no direct communication path provided by the infrastructure, and conse-
quently it may be necessary to add extra application-level router functions. Furthermore,
the infrastructure may only support low-level message passing, whereas the functions



TAILORING THE EXECUTION ENVIRONMENT 637

may communicate using procedure calls; consequently it will be necessary to provide
an application-level RPC facility. There is clearly a trade-off between the sophistica-
tion of the execution environment and the need to add extra application facilities to the
functional architecture during the production of the physical architecture. However, it
is also important not to provide sophisticated mechanisms in the execution environment
if they are not needed by the application, or worse, the application needs more primitive
facilities which it must then try to construct from high-level ones. This is often called
abstraction inversion.

Once the initial architectural design activities are complete, the detailed design can
begin in earnest and all components for the application produced. When this has been
achieved, each component must be analyzed using tools to measure characteristics of
the application such as its worst-case execution time (or its complexity, for example, if
dependability is being considered) to confirm that estimated worst-case execution times
are accurate, (or that certain modules were complex and therefore prone to software
errors, resulting in design diversity being needed). If these estimations were not accurate
(which will usually be the case for a new application), then either the detailed design
must be revisited (if there are small deviations), or the designer must return to the
architectural design activities (if serious problems exist). If the estimation indicates that
all is well, then testing of the application proceeds. This should involve measuring the
actual timing of code, the number of bugs found and so on. The process is illustrated in
Figure 16.1 (this is actually the life cycle supported by the HRT-HOOD design methods
considered in Chapter 2 and used in the case study presented in Chapter 17).

What is important, therefore, is not so much efficiency of compiled code or op-
erating systems overheads, but rather that timing analysis be undertaken as early on in
the life cycle as possible. Having said this, a grossly inefficient compiler would clearly
be an inappropriate tool to employ; such inefficiencies being an indication of a poorly
engineered product.

16.2 Tailoring the execution environment

Modern operating systems, and the run-time support systems associated with languages
like Ada, are awash with functionality because they try to be as general purpose as
possible. Clearly, if a particular application does not use certain features of an operating
system, it would be advantageous to customize its run-time existence. This ability is
essential for three main reasons:

(1) it avoids unnecessary resource usage, be it processor time or memory;

(2) it reduces the amount of software whose correctness has to be argued during any
certification process;

(3) many development standards require ‘dead code’ to be removed.

This section considers the facilities provided by Ada and POSIX that aid this process.
Real-Time Java does not, in general, support optional components as it is contrary to



638 THE EXECUTION ENVIRONMENT

Requirements definition

Logical architecture design

Execution environment
constraints

Execution environment
constraints

Physical architecture design
(including timing and schedulability analysis

Detailed design

Coding
(including code timing estimations)

Testing
(including code timing measurements)

Figure 16.1 A hard real-time life cycle.

the Write Once Run Anywhereprinciple. However, it does accept that some compo-
nents cannot be implemented if the underlying support system does not provide that
functionality. The most obvious case being the class that interfaces to POSIX signals.

16.2.1 Restricted tasking in Ada

The Real-Time Annex of Ada allows the programmer to specify a set of restrictions that
a run-time system should recognize and ‘reward’ by giving more effective support. The
following are examples of restrictions which are identified by pragmas, and are checked
and enforced before run-time:

� No_Task_Hierarchy – This significantly simplifies the support required for
task termination.

� No_Abort_Statement – This affects all aspects of the run-time support sys-
tem, as there is no need to worry about a task being aborted while in a rendezvous,
in a protected operation, propagating an exception, waiting for child termination
and so on.

� No_Terminate_Alternatives – Again simplifies the support required for
task termination.



TAILORING THE EXECUTION ENVIRONMENT 639

� No_Task_Allocators – Allows the run-time system to be configured for a
static number of tasks and removes a need for dynamic memory allocation.

� No_Dynamic_Priorities – Simplifies many aspects of the support for task
priorities as priority will not change dynamically (other than via the use of ceiling
priorities).

� No_Asynchronous_Control – This affects all aspects of the run-time sup-
port system as there is no need to worry about a task receiving an asynchronous
event while in a rendezvous, in a protected operation, propagating an exception,
waiting for child termination and so on.

� Max_Select_Alternatives – Allows the use of static data structures and
removes a need for dynamic memory allocation.

� Max_Task_Entries – Again allows the use of static data structures and re-
moves a need for dynamic memory allocation. A value of zero indicates that no
rendezvous are possible.

� Max_Protected_Entries – Again allows the use of static data structures
and removes a need for dynamic memory allocation. A value of zero indicates
that no condition synchronization is allowed for protected objects.

� Max_Tasks – Specifies the maximum number of tasks and therefore allows the
run-time to provide a fixed amount of static support structures.

Note that Ada also has a Safety and Security Annex which sets all the above
restrictions to zero (that isno tasking!). It also introduces a further restriction that
disallows protected types and objects. Current practice, in the safety critical application
area, forbids the use of tasks or interrupts. This is unfortunate, as it is possible to define
a subset of the tasking facilities that is both predictable and amenable to analysis. It
is also possible to specify run-time systems so that they can be implemented to a high
level of integrity.

One of the challenges facing Ada practitioners over the coming decade is to
demonstrate that concurrent programming is an effective and safe technique for even
the most stringent of requirements. Towards this goal, the 8th International Real-Time
Ada Workshop (Burns, 1999) defined a tasking profile (known as theRavenscar Profile)
for use in high-integrity or performance-sensitive applications. In the Ravenscar Profile,
use of the following features is forbidden:

� Task types and object declarations other than at the library level. Thus, there is
no hierarchy of task types.

� Unchecked deallocation of protected and task objects (and hence finalization).
Dynamic allocation of such objects may be allowed, but only if the sequential part
of the high-integrity language profile allows dynamic allocation of other objects.

� Requeue.

� ATC (asynchronous transfer of control via theselect then abortstatement).

� Abort statements.

� Task entries.



640 THE EXECUTION ENVIRONMENT

� Dynamic priorities.

� PackageCalendar .

� Relative delays.

� Protected types other than at the library level.

� Protected types with more than one entry.

� Protected entries with barriers other than a single boolean variable declared within
the same protected type.

� Attempts to queue more than one task on a single protected entry.

� Locking policies other thanCeiling locking.

� Scheduling policies other thanFIFO within priorities.

� All forms of the select statement.

� User-defined task attributes.

In addition to these restrictions, an implementation can make the assumption that
none of the program’s tasks will terminate. Note that most, but not all, of these con-
straints can be defined using theRestrictions pragma. Even with these limitations,
an application conforming to the Ravenscar Profile still has:

� Task objects, restricted as above.

� Protected objects, restricted as above.

� Suspension objects.

� Atomic and volatile pragmas.

� ‘Delay until’ statements.

� Ceiling lockingpolicy andFIFO within priority dispatching.

� The Count attribute (but not within entry barriers).

� Task identifiers.

� Task discriminants.

� TheReal Time package.

� Protected procedures as interrupt handlers.

Protected types with only subprogram interfaces are provided for simple mutual
exclusion. The special form of protected entry (that is, only one per protected object
and a maximum of one possible caller of that entry) is available as an event signalling
mechanism to allow aperiodic or sporadic tasks to be supported.

In addition to the features described above, the Real-Time Systems Annex defines
a number of implementation requirements, documentation requirements and metrics.
The metrics allow the costs (in processor cycles) of the run-time system to be obtained.
They also indicate which primitives can lead to blocking, and which must not.

The timing features (that is, real-time clock and delay primitives) are defined
precisely. It is thus, for example, possible to know the maximum time between a task’s



SCHEDULING MODELS 641

delay value expiring and it being placed on the run queue. All this information is needed
for the analysis of an application within the context of its execution environment.

16.2.2 POSIX

POSIX consists of a variety of standards. There is the base standard, the real-time
extensions, the threads extensions and so on. If implemented in a single system, it
would contain a huge amount of software. To help produce more compact versions
of operating systems which conform to the POSIX specifications, a set of application
environmentprofileshave been developed, the idea being that implementors can support
one or more profiles. For real-time systems, four profiles have been defined:

� PSE50 – Minimal real-time system profile – intended for small sin-
gle/multiprocessor embedded systems controlling one or more external devices;
no operator interaction is required and there is no file system. Only a single
multithreaded process is supported.

� PSE51 – Real-time controller system profile – an extended PSE50 for potentially
multiple processors with a file system interface and asynchronous I/O.

� PSE52 – Dedicated real-time system profile – an extension of PSE50 for single
or multiple processor systems with memory management units; includes multiple
multithreaded processes, but no file system.

� PSE53 – Multi-purpose real-time system profile – capable of running a mix of
real-time and non real-time processes executing on single/multiprocessor systems
with memory management units, mass storage devices, networks and so on.

Table 16.1 illustrates the type of functionality provided by PSE50, PSE51 and
PSE52.

In general, a POSIX system is also free not to support any of the optional units
of functionality it chooses, and so much finer control over the supported functionality
is possible. All of the real-time and the thread extensions are optional. However, con-
forming to one of the profiles means that all the required units of functionality must be
supported.

16.3 Scheduling models

The execution environment has a significant impact on the timing properties of an appli-
cation. Where there is a software kernel, the overheads incurred by the kernel must be
taken into account during the schedulability analysis of the application. The following
characteristics are typical of many real-time software kernels:

� The cost of a context switch between processes is not negligible and may not be
a single value. The cost of a context switch to a higher-priority periodic process
(following, for example, a clock interrupt) may be higher than a context switch



642 THE EXECUTION ENVIRONMENT

Functionality PSE50 PSE51 PSE52
pthreads

p p p
fork � � p
semaphores

p p p
mutexes

p p p
message passing

p p p
signals

p p p
timers

p p p
synchronous I/O

p p p
asynchronous I/O � p p
priority scheduling

p p p
shared memory objects

p p p
file system � p �

Table 16.1 POSIX real-time profile functionality.

from a process to a lower-priority process (at the end of the high-priority process’s
execution). For systems with a large number of periodic processes, an additional
cost will be incurred for manipulating the delay queue (for periodic tasks when
they execute, say, an Ada ‘delay until’ statement).

� All context switch operations are non preemptive.

� The cost of handling an interrupt (other than the clock) and releasing an appli-
cation sporadic process is not insignificant. Furthermore, for DMA and channel-
program controlled devices, the impact of shared-memory access can have a non-
trivial impact on worst-case performance; such devices are best avoided in hard
real-time systems.

� A clock interrupt (say every 10 ms) could result in periodic processes being
moved from a delay queue to the dispatch queue. The costs for this operation
varies depending on the number of processes to be moved.

In addition to the above, the scheduling analysis must take into account the features of
the underlying hardware, such as the impact of the cache and pipeline.

16.3.1 Modelling non-trivial context switch times

Most scheduling models ignore context switch times. This approach is, however, too
simplistic if the total cost of the context switches is not trivial when compared with the
application’s own code. Figure 16.2 illustrates a number of significant events in the
execution of a typical periodic process.



SCHEDULING MODELS 643

Clock handler

Context
switch

Context
switch

Task execution

A B C D E A′

Figure 16.2 Overheads when executing processes.

A – the clock interrupt that designates the notional time at which the process should
start (assuming no release jitter or non-preemptive delay, if the interrupts were
disabled due to the operation of the context switch then the clock handler would
have its execution delayed; this is taken into account in the scheduling equations
by the blocking factorB).

B – the earliest time that the clock handler can complete, this signifies the start of the
context switch to the process (assume it is the highest priority runnable process)

C – the actual start of the execution of the process

D – the completion of the process (the process may be preempted a number of times
between C and D)

E – the completion of the context switch away from the process

A0 – the next release of the process

The typical requirement for this process is that it completes before its next release (that
is, D < A0), or before some deadline prior to its next release. Either way, D is the
significant time, not E. Another form of requirement puts a bound on the time between
the start of execution and termination (that is, D–C). This occurs when the first action
is an input and the last an output (and there is a deadline requirement between the
two). While these factors affect the meaning of the process’s own deadline (and hence
its response time) they do not affect the interference this process has on lower-priority
processes; here the full cost of both context switches counts. Recall that the basic



644 THE EXECUTION ENVIRONMENT

scheduling equation (13.7) has the form:

Ri = Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
Cj

This now becomes (for periodic processes only):

Ri = CS1 + Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
(CS1 + CS2 + Cj) (16.1)

whereCS1 is the cost of the initial context switch (to the process) andCS2 is the cost
of the context switch away from each process at the end of its execution. The cost of
putting the process into the delay queue (if it is periodic) is incorporated intoCi. Note
that in practice this value may depend on the size of the queue; a maximum value would
need to be incorporated intoCi.

This measure of the response time is from point B in Figure 16.2. To measure
from point C, the firstCS1 term is removed. To measure from point A (the notional true
release time of the process) requires the clock behaviour to be measured (see Section
16.3.3).

16.3.2 Modelling sporadic processes

For sporadic processes released by other sporadic processes, or by periodic processes,
Equation (16.1) is a valid model of behaviour. However, the computation time for the
process,Ci, must include the overheads of blocking on the agent that controls its release.

When sporadics are released by an interrupt, priority inversion can occur. Even if
the sporadic has a low priority (due to it having a long deadline) the interrupt itself will
be executed at a high hardware priority level. Let�s be the set of sporadic processes
released by interrupts. Each interrupt source will be assumed to have the same arrival
characteristics as the sporadic that it releases. The additional interference these interrupt
handlers have on each application process is given by:

X
k2�s

�
Ri

Tk

�
IH

whereIH is the cost of handling the interrupt (and returning to the running process,
having released the sporadic process).

This representation assumes that all interrupt handlers give rise to the same cost;
if this is not the case thenIH must be defined for eachk. Equation (16.1) now becomes:

Ri = CS1 + Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
(CS1 + CS2 + Cj)



SCHEDULING MODELS 645

Queue state Clock handling time,�s
No processes on queue 16

Processes on queue but none removed 24
One process removed 88

Two processes removed 128
Twenty five processes removed 1048

Table 16.2 Clock handling overheads.

+
X
k2�s

�
Ri

Tk

�
IH (16.2)

16.3.3 Modelling the real-time clock handler

To support periodic processes, the execution environment must have access to a real-
time clock that will generate interrupts at appropriate times. An ideal system will use an
interval timer, and will interrupt only when a periodic process needs to be released. The
more common approach, however, is one in which the clock interrupts at a regular rate
(say once every 10 ms) and the handler must decide if none, one, or a number of periodic
processes must be released. The ideal approach can be modelled in an identical way
to that introduced for sporadic processes (see Section 16.3.2). With the regular clock
method, it is necessary to develop a more detailed model as the execution times of the
clock handler can vary considerably. Table 16.2 gives possible times for this handler
(for a clock period of 10 ms). Note that if the worst case was assumed to occur on all
occasions over 100% of the processor would have to be assigned to the clock handler.
Moreover, all this computation occurs at a high (highest) hardware priority level, and
hence considerable priority inversion is occurring. For example, with the figures given
in the table, at the LCM (least common multiple) of 25 periodic processes1048�s
of interference would be suffered by the highest priority application process that was
released. If the process was released on its own then only88�s would be suffered. The
time interval is represented by B–A in Figure 16.2.

In general, the cost of movingN periodic processes from the delay queue to the
dispatch queue can be represented by the following formulae:

Cclk = CT c + CT s + (N � 1)CTm

WhereCT c is the constant cost (assuming there is always at least one process
on the delay queue),CT s is the cost of making a single move, andCTm is the cost of
each subsequent move. This model is appropriate due to the observation that the cost
of moving just one process is often high when compared with the additional cost of
moving extra processes. With the kernel considered here, these costs were:



646 THE EXECUTION ENVIRONMENT

CT c 24 �s
CT s 64 �s
CTm 40 �s

To reduce the pessimism of assuming that a computational cost ofCclk is con-
sumed on each execution of the clock handler, this load can be spread over a number
of clock ticks. This is valid if the shortest period of any application process,Tmin is
greater than the clock period,Tclk. LetM be defined by:

M =

�
Tmin

Tclk

�

If M is greater than 1 then the load from the clock handler can be spread overM
executions. In this situation, the clock handler is modelled as a process with period
Tmin and computation timeC 0

clk:

C 0

clk = M(CT c + CT s) + (N � M)CTm

This assumesM <= N .
Equation (16.2) now becomes

Ri = CS1 + Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
(CS1 + CS2 + Cj)

+
X
k2�s

�
Ri

Tk

�
IH

+

�
Ri

Tmin

�
C 0

clk (16.3)

To give further improvements (to the model) requires a more exact representation of the
clock handlers actual execution. For example, using justCT c andCT s the following
equation can easily be derived:

Ri = CS1 + Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
(CS1 + CS2 + Cj)

+
X
k2�s

�
Ri

Tk

�
IH +

�
Ri

Tclk

�
CTc

+
X
g2�p

�
Ri

Tg

�
CTs

(16.4)



SCHEDULING MODELS 647

where�p is the set of periodic processes.
It is left as an exercise for the reader to incorporate the three-parameter model of

clock handling (see Exercise 16.2).

16.3.4 The impact of the cache on worst-case execution time analysis

The problems of undertaking WCET analysis for processes executing on modern pro-
cessors has already been mentioned in Section 13.12.1. In particular, it is necessary to
model the behaviour of the processor’s cache and pipeline. In Equation (16.4),Ci and
Cj are the values that are affected. If these values are calculated following a detailed
analysis of the processor’s architecture, preemptions caused by interrupts need to be
taken into account in the scheduling equations. Otherwise, the values used will be opti-
mistic. Fortunately, for hard real-time systems, it is necessary to place bounds on how
often interrupts can occur. Each interrupt handler is treated as a sporadic process of a
high priority and is considered in the same way as a periodic process of higher priority.
Equation (16.4) already specifies the number of preemptions that can occur while pro-
cessi is executing. It is simply the number of times each higher-priority process can
be released during process’si response time. Each preemption will potentially flush the
cache and the pipeline. This leads to the following approaches to integrating the pre-
emption penalties. AssumeCi is the worst-case value calculated using models which
account for the benefits gained by caches and pipelining inthe absenceof interrupt.
Calculate, the maximum possible penalty that can be accrued from an interrupt, this
being the time taken to refill the cache and the pipeline. Equation (16.4) can now be
modified to calculate the effect of interrupts on processi (Busquets and Wellings, 1996):

Ri = CS1 + Ci + Bi +
X

j2hp(i)

�
Ri

Tj

�
(CS1 + CS2 + Cj)

+
X
k2�s

�
Ri

Tk

�
(IH + ) +

�
Ri

Tclk

�
(CTc + )

+
X
g2�p

�
Ri

Tg

�
CTs

(16.5)

Of course, this is quite pessimistic because not all preemptions will require the whole
cache to be refilled. Furthermore, some memory blocks which are replaced would have
been replaced anyway. A less pessimistic approach tries to identify the number of cache
blocks.



648 THE EXECUTION ENVIRONMENT

16.4 Hardware support

When concurrent processes are introduced into the solution to any real-time problem,
overheads with scheduling, interprocess communication, and so on, occur. Section
16.3.3 has attempted to model these overheads in the schedulability analysis. Several
attempts have also been made to reduce these overheads by providing direct hardware
support. This section briefly considers two hardware kernels. The first is the transputer
which was designed to execute occam2 programs efficiently, and the second is the Ada
Tasking Coprocessor (ATAC).

In more recent years, there have been moves to support the Java Virtual Machine
directly in hardware (for example, Sun Microsystems’ picoJava processor (Sun Mi-
crosystems, 2000) or the aJ-100 from aJile Systems Inc (aJile Systems, 2000)). This
support goes beyond the support for just concurrent execution and attempts to improve
the performance over interpreting Java byte code.

16.4.1 The transputer and occam2

The transputer was designed as an occam2 machine which, on a single chip, has a 32-
bit processor, a 64-bit floating-point coprocessor, internal memory and a number of
communication links for direct connection to other transputers. An address bus joins
external memory to the internal provision by means of a continuous address space.
Typically a transputer will have 16 kbyte of internal memory; this acts as, in effect, a
large collection of non-sharable registers for the executing processes.

The links are connected to the main processor via link interfaces. These interfaces
can independently manage the communications of the link (including direct access to
memory). As a result, a transputer can simultaneously communicate on all links (in
both directions), execute an internal process and undertake a floating-point operation.

The transputer has a reduced instruction set but with an operations stack of only
three registers. Each instruction has been designed to be of use in the code generation
phase of the occam2 compiler; direct programming in assembler, although allowed, has
not been taken into account in the design of the instruction set. Being a reduced in-
struction machine, not all instructions are immediately available; those that are directly
accessible are precisely those that are commonly generated from real occam2 programs.

Unfortunately the transputer can only support a limited priority model. But by this
restriction, a run-time support system that is essentially cast in silicon can be provided.
The result of this architecture (plus the axiom that context switches only take place
when the operations stack is empty) is very small context switch times.

Although the operational characteristics of a single transputer are impressive it is
only when they are grouped together that their full potential is realized. Transputers use
point-to-point communication, which has the disadvantage that a message may have to
be forwarded to its destination via intermediates if no direct link is available. Never-
theless link transfer rates are very high and transmission failure rates very low, giving a
real-time engine of considerable power and reliability.



SUMMARY 649

16.4.2 ATAC and Ada

There have been several attempts to produce Ada machines, for example (Ericsson,
1986; Runner and Warshawsky, 1988). The one considered here is an Ada tasking
coprocessor (ATAC) designed by Roos (1991).

The ATAC is a hardware device designed to support the Ada 83 tasking and clock
models. It also anticipated some of the Ada 95 features such as support for priority
inheritance and ‘delay until’. It goal is to remove the burden of supporting Ada tasking
from the application CPU, thereby allowing tasks to proceed efficiently without the
overheads normally incurred by the Ada run-time support system.

Communication between CPU and the ATAC is based on standard memory-
mapped read and write instructions. A set of primitive operations provide the interface;
they include:

� CreateTask – create a new task;

� ActTasks – activate one or more created tasks;

� Activated – signal activation to creating task;

� EnterTBlock – enter a new task block;

� ExitTBlock – wait for dependent tasks to exit a task block;

� EntryCall – make an entry call;

� TimedECall – make a timed entry call;

� SelectArg – open a select alternative;

� SelectRes – choose an alternative in a select;

� RndvCompl – set caller runnable after the rendezvous is complete;

� Activate – make a suspended task runnable;

� Suspend – suspend the current task;

� Switch – perform a reschedule;

� Delay – delay a task.

The ATAC also fields all interrupt and interrupts the CPU only if a higher-priority task
becomes runnable. An internal timer is used to support the Ada delay facilities and
package calendar.

The overall goal of ATAC is to increase the performance of Ada tasking by two
orders of magnitude over a pure software run-time system.

Summary

The execution environment is a key component of any implemented real-time
system. It supports the application, but also introduces overheads and con-
strains the facilities that the application can use. A full-blown operating system
(OS) could be used to provide the execution environment, but this is usually
rejected due to:



650 THE EXECUTION ENVIRONMENT

� size of the OS (that is, memory occupancy);

� efficiency of key functions (such as context switching);

� complexity and hence reliability of the complete OS.

In this chapter it has been shown how an execution environment can be tailored
to an application’s specific needs, how its overheads can be modelled, and how
hardware support can be provided. Other parts of the book have also introduced
issues of significance to the execution environment. For example:

� its role in providing damage confinement (that is, firewalls);

� its role in error detection;

� its role in supporting communications in a distributed system.

The second issue has a number of facets. Various aspects of the application’s
execution can be monitored (array bounds violation, memory violation, time
overruns). Also ‘built-in test’ facilities can be run in background mode to exer-
cise parts of the hardware in order to isolate faulty components and generate
maintenance data for fault removal.

As many features of an execution environment are important to a wide
range of applications, there is a need to reuse trusted components and to move
towards the provision of standard environments. The use of standardized lan-
guages and operating system interfaces will help to bring this about.

Further reading

Allen, R. K., Burns, A. and Wellings, A. J. (1995) Sporadic Tasks in Hard Real-Time
Systems.Ada Letters, XV(5), 46–51.

Burns, A., Tindell, K. and Wellings, A. J. (1995) Effective Analysis for Engineering
Real-Time Fixed Priority Schedulers.IEEE Transactions on Software Engineer-
ing, 21(5), 475–480.

Venners, B. (1999)Inside the Java 1.2 Virtual Machine. New York: Osborne McGraw-
Hill.

Exercises

16.1 Should the real-time system’s programmer be aware of the implementation cost
of all the implementation language’s features?

16.2 Develop a model of clock handling which incorporates the three parametersCT c,
CT s andCTm (see Section 16.3.3).

16.3 Rather than using a clock interrupt to schedule periodic processes, what would be
the ramifications of only having access to a real-time clock?



EXERCISES 651

16.4 A periodic process of period 40 ms is controlled by a clock interrupt that has a
granularity of 30 ms. How can the worst-case response time of this process be
calculated?






