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Chapter 6 

Multiparametric Interfaces 

 

Overview 

This chapter explains the background, purpose and construction of the user interface 

trials to test the hypothesis given in Chapter 5.  It clarifies what is meant by 

multiparametric interfaces and gives details about their characteristics.  Emphasis is 

given to the mapping between human gesture and the resulting changes in synthesis 

parameters.   

The particular multiparametric interface used in the test is then described along with the 

other interfaces in the study.  The musical task for the trials is then outlined and 

compared with some alternative tasks which may form the basis of further work.  Finally 

there is a description of the MIDAS system which was used to build the test framework, 

the interfaces and the data gathering/analysis system.  

 

6.1 Aim of the Study 

The purpose of the tests was to study the effectiveness of different interfaces when used 

for a real-time musical control task.  The data gathered was used to compare how a 

group of human test subjects performed in the exercise.  Particular emphasis was given 

to comparing the results from different interfaces over a period of time.  In other words 

the aim of the tests was to gather a set of data which measures how people respond to a 

range of interfaces and shows how that performance varies over time.   

At least one of the interfaces chosen for the task needed to represent the commonly 

accepted way of controlling a system, so this used a mouse to select individual 

parameters and alter them.  At least one of the other interfaces needed to be a more 
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radical design which allowed the user to control multiple parameters at the same time in 

an explorative (holistic) manner. 

 

6.2 Multiparametric Interfaces and Mapping Strategies 

Section 5.4 stated that in order for a human to explore a device in 'Performance Mode' 

we would require that: 

The control mechanism is a physical and multiparametric device which must 

be learnt by the user until the actions become automatic. 

and that: 

There is no exclusive 'set of options' (e.g. choices from a menu) but rather a 

set of continuous controls. 

In other words for a device to permit Performance Mode to occur it needs to allow 

the user to have continuous control of several parameters at the same time. 

 

Such multiparametric interfaces are rare in the computing world, but are abundant in the 

world of mechanical devices such as musical instruments and vehicles.  Two particular 

concepts are now discussed which I believe are the key to the design and development of 

richer interfaces for computing systems.   

 Multiple parameters should be coupled together 

 The system should utilise the human operator's energy.  

  

6.2.1 Parameter Mapping in conventional interactive systems 

Consider a violin and ask the question “where is the volume control?”.  There is no 

single control, rather a combination of inputs such as bow-speed, bow pressure, choice 

of string and even finger position.  This is an example of a „many-to-one‟ mapping, 

where several inputs are needed to control one parameter (see Figure 6.1).  Rovan et al 

[1997] refer to this as Convergent Mapping. 
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Figure 6.1: Convergent Mapping; Many controls operate one parameter 

Again, considering the violin, ask the question “which sonic parameter does the bow 

control?”  It actually influences many aspects of the sound such as volume, timbre, 

articulation and (to some extent) pitch.  This is therefore an example of a „one-to-many‟ 

mapping (see Figure 6.2).  Rovan et al call this Divergent Mapping.  

 

 

 

 

 

Figure 6.2: Divergent Mapping: One control operates many parameters 

Human operators expect to encounter complex mappings, and yet so often engineers 

provide nothing but „one-to-one‟ correspondences (for example a set of sliders, each 

controlling a single synthesis parameter).   

 

 6.2.2 Use of Energy in conventional interactive systems 

In many real-time devices (for example a violin, a bicycle, a clarinet or a drum-kit) the 

human operator has to inject energy or „excite‟ the system before it will operate, and 

must continue to supply energy to keep it going.  Then, the energy is steered through the 

system or damped (dissipated) in order to achieve the task such as playing a note or 

climbing up a hill.   

These two operations (inject/excite & steering/damping) are often carried out by 

different conscious body controls (e.g. bowing with one arm and fingering notes with 
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another, pushing bicycle pedals with the legs and steering with the arms, blowing a 

clarinet and using the fingers to key the notes).  Even in motorised systems (the car being 

the most common example) the concept of injecting energy with one limb and steering 

with another holds true.  A motor actually generates the energy, but its injection and 

damping is controlled by the driver. 

  

  

 

 

 

 

 

Figure 6.3: Human energy input and control 

 

6.2.3 Further discussion of Mapping Strategies 

The incoming parameters from the control device can be mapped in a variety of ways 

onto the synthesis variables.  For example, two inputs can be summed or averaged to 

give a single output, suitable for the control of one synthesis variable.  In this way both 

inputs have an effect on the resultant sound parameter.  In the example of a violin, the 

pitch is controlled by a combination of the effects of finger position (on the string) and 

bow pressure.  The finger position is the predominant effect, so we can also consider the 

weighting of each input parameter.  The equation for the violin pitch might look like 

this: 

Pitch = (finger position x (large weighting)) + (bow pressure x (small weighting)) 

Note how this is a convergent mapping (more than one input controls a sound 

parameter), but there are also simultaneous divergent mappings taking place in a violin.  

The bow pressure (which contributes to the pitch, as shown above) also has an effect on 

the volume and the timbre of the sound, each of which is affected by a range of other 
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inputs.  We can therefore see that the resulting mapping of input parameters to sound 

parameters in a traditional acoustic instrument resembles a „web‟ of interconnections. 

Rovan et al [1997] describe this process in more detail for an acoustic clarinet.  They 

introduce a new form of gestural interaction known as biasing.  This is more than just a 

summing function; it describes the situation where one parameter needs to be activated 

to a certain level before another one can even begin to have an effect.  The example cited 

is of a clarinet‟s embouchure which needs to be set to an appropriate level before the 

„air-flow‟ parameter has any effect. 

There are many possible strategies for mapping.  Mappings may be arbitrary, perhaps 

done purely for the convenience of the technical designer or programmer.  They may be 

experimental, involving user trials to see which combination of inputs gives the best 

sense of control for the user.  To begin with, it is sensible to emulate some of the 

mappings that are common to acoustic musical instruments.  These, at least, have stood 

the test of time and are well understood by many musicians.   

Serafin et al [1999] describe the issues involved in controlling a physical model of a 

string by user input gestures.  They use a stylus to allow the user to perform pen-strokes 

in a similar manner to the bowing action of a string player.  The rate of change of the 

„bow‟ position (i.e. the bow velocity) is used to determine the overall sound level, 

whereas the orthogonal bow position (up and down the string) is used to determine the 

tonal quality.  Many-to-one mappings are introduced by using the downward bow force 

to inflect both the volume and timbre.  Interestingly the designers use a second stylus to 

allow the performer to control pitch (continuously, as on one string) with the other hand.  

They comment on the effectiveness of these mappings.  Essentially the user‟s energy 

primarily controls volume, but also inflects timbre.   

Some mappings are very subtle indeed.  Wanderley et al [1999] describe how a 

clarinettist‟s  „non-obvious‟ gestures (e.g. swaying with the instrument) contribute a 

great deal to the overall effect of the performance.  They show that gestures such as these 

are not restricted to enhancing the visual effect of the live performance, but are integral 

to the quality of the sound.  Displacements in the sound source (in this case, movement 

of the clarinet) give a continuous variation in early reflections from the room (which 

cause filtering effects and amplitude modulation).  Such mappings are subtle because 
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they concern gestures that are not directly related to sound generation, but nevertheless 

are present in nearly all live instrumental performances. 

The total effect of all these convergent and divergent mappings, with various weightings 

and biasing, is to make a traditional acoustic instrument into a highly non-linear device.  

Such a device will necessarily take a substantial time to learn, but will give the user (and 

the listener) a rich and rewarding experience.  Many computer interfaces concentrate on 

simple one-to-one mappings and, though easier to learn, can give an impoverished 

experience to the player and listener.  The experimental work described in this thesis 

attempts to define a relatively simple interface that exhibits some of these complex 

mapping strategies. 

 

 6.2.4 Design of Multiparametric interfaces for the tests 

The characteristics identified in this report for allowing Performance Mode are thus: 

 Continuous control of many parameters in real time 

 More than one conscious body control (or limb) is used 

 Parameters are coupled together 

 User's energy is required 

With this type of operation each physical device (for example a slider) controls a variety 

of parameters.  In other words there is no longer a one-to-one mapping between a control 

device and a system parameter.  There will be more than one control device for the user 

to control simultaneously (for example, several sliders and a mouse).  The parameters 

are grouped under each control device such that each control device has a distinct 

characteristic (for example, one pedal in a car “increases engine speed” whereas the 

other “slows down the wheels”).   

To illustrate this imagine a design where moving the mouse to the left decreases the 

pitch and softens the timbre, whilst moving the mouse upwards (i.e. pushing it forwards) 

increases the volume and decreases the reverb level.  In this example a circular mouse 

movement would control pitch, timbre, volume and reverb level, all at the same time. 
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The way that the parameters are grouped will affect which areas of the system parameter 

space can be covered.  In our imaginary example it is impossible for the user to have a 

very loud sound with a high reverb level.   

The purpose of the user interface experiments is to see how human users react to 

having grouped parameters which steer them away from an analytical one-to-one 

control/parameter mapping to a more holistic performance exploration of the 

parameter space. 

 

6.3 Choice of Interfaces for comparison 

A range of different interfaces was originally envisaged for the tests.  The intention was 

to allow the user to perform a real-time task on those interfaces which are commonplace 

in computer music and to compare these with a new multiparametric interface operating 

on the principles outlined in the above section. 

The following three interfaces were chosen for the study: 

 A set of on-screen sliders controlled by a mouse. 

 A set of physical sliders moved by the user's fingers. 

 A multiparametric interface which uses parameter coupling and the user's energy. 

They represent a series of stages – from the most commonly accepted through to the 

most radical.   

 

In order for the tests to be compared in a fair manner it was important to define what 

parameters were being controlled and to have exactly the same parameters in each of the 

interfaces.  All the sounds were made up of the following four parameters: 

 Pitch 

 Volume 

 Timbre 

 Panning 
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Each of the chosen interfaces is now described.  Following this is a discussion of those 

interfaces which were initially considered, but were not chosen for the final tests. 

 

 6.3.1  Mouse Interface 

This interface consists of four sliders on a computer screen, one for each of the sonic 

parameters that can change.  During the test, the player uses the mouse to move the 

sliders (see Figure 6.4).   

 

 

 

 

 

 

Figure 6.4: The Mouse & Sliders Interface 

Each slider control can be „dragged‟ to produce a trajectory or „clicked‟ to produce a step 

change.  The mouse can even be moved left and right across the bank of sliders and if 

the button is held down, each slider will 'snap' into position as the mouse is passed over 

it. 

Some initial pre-trial studies of this interface showed that the only way it could be made 

viable was to „pre-set‟ the starting positions of each slider control to correspond with the 

starting values of the sound in question.  At least this way, the user had some chance of 

reproducing the sounds.  Otherwise, too much time was spent trying to set each of the 

sliders into an appropriate starting position.  

Note also that this interface is not a „true‟ WIMP interface as it has no menus.  The user 

does not have to search for the parameters, but simply move the mouse to the 

appropriate sliders.   An interface with menus would actually slow down the whole 

process so as to make interactive continuous control impossible (see section 6.3.4 for 

further discussion). 
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This interface does not allow the user to change more than one parameter at a time, so it 

is not a multiparametric interface.  The following section describes an interface which 

does allow the user to operate more than one of the parameters simultaneously, whilst 

remaining conceptually similar. 

 

 6.3.2 Sliders Interface 

This interface uses four of the sliders on a Roland SC-155 sound module (see Figures 

6.5 and 6.6).  This was configured to send out MIDI information and thus control the 

sound algorithms on the MIDAS computer system.   

 

 

 

 

 

 

Figure 6.5: The Roland SC-155 Sound Module 

Each slider controls a single sound parameter (i.e. a one-to-one mapping).  The user can 

move each of the sliders independently and can thus simultaneously control all four 

sound parameters.  The slider positions are also shown on the screen, but the user does 

not need to look at the screen in order to use this interface. 

 

 

 

 

 

 

Figure 6.6: The Physical Sliders Interface 
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Note that this sliders-based interface fulfils the first two requirements of a 

multiparametric interface outlined in section 6.2.3 (i.e. 'many parameters' and 'more than 

one body control'), but not the final two ('coupled parameters' and 'use of energy').  Of 

course the user expends a small amount of energy in moving the sliders, but it is only the 

slider position that determines the state of the parameters.  We therefore need to design 

an interface which fulfils all of the requirements in order to establish the effect of 

parameter coupling and energy use.  The following section describes such an interface. 

 

 6.3.3 Multiparametric Interface 

This interface uses the same hardware as interfaces 6.3.1 and 6.3.2 (the mouse and 

physical sliders on a sound module), but it uses them in two radically different ways.  

Firstly the system expects the user to expend some physical energy to continuously 

activate the system.  Secondly, there is only one direct one-to-one correspondence 

(mapping) between a physical control and an internal sound parameter (panning).  All 

other mappings are complex, as shown in Figure 6.8. 

The multiparametric interface used in the study is shown in Figure 6.7.  The user finds 

that the computer screen is blank (in contrast to the two previous interfaces where the 

screen shows a representation of four sliders).  Sound is only made when the mouse is 

moved.  The sound‟s volume is proportional to the speed of mouse movement.  This 

ensures that the user‟s physical energy is needed for any sound to be made, and that the 

amount of energy has an effect on the quality of the sound.  

 

 

 

 

 

 

 

Figure 6.7: The Multiparametric Interface 
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The volume, pitch, timbre and panning are controlled by combinations of the mouse 

position and the position of two sliders, as shown here and in Figure 6.8:  

Volume = speed of mouse + mouse button pressed + average position of two sliders. 

Pitch = vertical position of the mouse + speed of movement of slider no. 2. 

Timbre = Horizontal position of the mouse + difference in the two slider positions. 

Panning = Position of slider no. 1. 

 

 

 

 

 

Figure 6.8: Multiparametric mappings 

This ensures that there are several many-to-one mappings.  Simultaneously there are 

various one-to-many mappings (e.g. slider 1 affects volume, timbre and panning).   Two 

limbs are used, as the player has to use two hands – one on the mouse, one on the sliders.   

There is no „obvious‟ mapping of hand position to sound produced.  The user must 

experiment.  During the tests users tended to be somewhat baffled at first, because they 

could not find „the volume control‟.  After a while (and a few verbal hints, such as „try 

wobbling the mouse left and right, and listen to what happens‟)  then they gradually 

developed a „feel‟ for the interface.  After more time most people finally began to think 

in terms of gestures and shapes, a holistic control, rather than a one-to-one analytical 

approach. 

 

 6.3.4 Rejected Interfaces 

Several interface styles commonly used for computer music were rejected from the 

outset, as they do not allow any form of real-time interaction.   
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6.3.4.1  Non-real-time number lists 

The available parameters are edited into a text file as numbers along with time-stamps 

(see Figure 6.9). The file is then compiled and played as audio.  This type of interaction 

is very predominant in the computer music world and is the basis of the „score‟ file 

concept for ubiquitous synthesis programs such as Csound (see section 3.1.1). 

 

 

 

 

Figure 6.9: Text file of numbers and times 

However there is no real-time feedback whatsoever.  It is an off-line preparation system 

which involves thinking about the music as numbers in advance.  It has nothing 

whatsoever to do with generating values in a performance.   

While it might be technically possible to type numbers in interactively, the sheer amount 

of numbers needed to adequately define a parameter stream makes this impractical.  

Therefore it was deemed unnecessary to incorporate such an interface into those to be 

compared for real-time response. 

 

6.3.4.2  Parameter selection and adjustment. 

Section 3.1.4 describes a commonly encountered synthesiser interface consisting of an 

LCD screen with a set of Cursor Keys (see Figure 6.10).  The „Left-Right‟ keys are 

pressed to select the parameter being edited and then the value itself is changed by using 

the „Up-Down‟ keys, or by typing in a number, or sometimes by adjusting a slider.  The 

synthesis parameter is then updated and can be heard if a note is triggered (usually by 

playing a keyboard). 

It was reasoned that the process of selecting a parameter and adjusting a number takes a 

minimum of one second, and usually a lot longer.  This is clearly inappropriate for a 

musical task where up to four parameters need to be adjusted in a reasonably continuous 

manner.  Therefore this interface was rejected.  
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Figure 6.10 – LCD screen and cursors 

 

6.4 Different types of Test Scenario 

A number of audio tasks were considered as the vehicle for this study.  All of these 

experiments required the user to control sounds in real time.  The following sections 

describe the task that was finally chosen, followed by some alternatives which were not 

selected but which may form the basis of some future work.  

 

6.4.1 Listen and Copy 

This task requires the human test subject to listen to a musical phrase lasting no more 

than a few seconds and then attempt to reproduce it accurately on the interface to hand.   

In order to simplify the number of variables involved, the musical phrase consists of 

changes in up to four sonic variables (pitch, volume, timbre and stereo panning).   The 

computer generates a 'sonic trajectory' - a moving set of the four parameters - and the 

user then aims to recreate that sound via the user interface. 

The complexity of the phrases ranges from those involving a single change in one 

parameter to those containing simultaneous trajectories of all four parameters.  More 

details of the sonic content of the tests are given in section 7.2. 

 

6.4.2  Pitch-following 

This task involves the user listening to a tone whose pitch is being controlled by the 

computer.  The user has control of the pitch of another tone.  The aim is to try to 

reproduce the pitch that the computer is producing. 

There are several variations on this task: 

 

Parameter 1:  Val 65 

Parameter 2: Val 127 
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i)  The user has continuous control of pitch and follows a continuously changing 

signal.  In this task we would always expect the user to be lagging behind the 

computer.  This task could be termed ‘pitch tracking’. 

ii)  The user has discrete pitch steps (for example semitones) and follows a 

discrete set of pitches produced by the computer. This is another form of pitch 

tracking so again there will be a continual time lag. 

iii)  The computer changes the pitch (either to a new value in the continuous 

range or to one of the agreed discrete values) then the clock starts.  The user has 

to match the pitch and then press a button when they feel they have done this.  

The button press stops the clock and so this could be termed a ‘race against time’ 

task and may yield results about the relationship between „time taken‟ and 

„accuracy achieved‟. 

 

6.4.3  Holding a pitch steady in a dynamic system. 

One of the first tasks that many teachers of „bowed  string‟ or „wind‟ instruments ask 

their pupils to do is to hold a steady note.  This is because it is quite a difficult feat to 

control a complex, unstable system and mastery of one note is needed before melodies 

can be attempted. 

In this task, the user will have control over several parameters of a real-time simulation 

of an audio system (e.g. excitation pitch and amplitude, system pressure such as 

controlled by the covering of holes on a woodwind instrument).  Other factors such as 

the effect of a change in air temperature on musical tuning would be simulated via the 

computer.  The prerequisite for the simulation is that pitch cannot be controlled directly 

by a single input device. i.e. more than one parameter is required to change the pitch and 

the parameters interact in some way. 

 

6.4.4  Reasons for selecting the ‘Listen and Copy’ task 

The Listen and Copy task was chosen above the others because the sonic tests can be 

created in advance, stored on the computer and used in every session without change.  

This gives the facility of having a graded set of input sounds which is consistently played 
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for all tests and for all subjects.  Whilst this is also true for the Pitch-Following scenario, 

only the „Listen and Copy‟ tests involve several simultaneous audio parameters. 

 

6.5 Implementation on the MIDAS system 

The University of York, UK‟s MIDAS system, running on a Silicon Graphics Indy 

machine, was used to construct the audio algorithms, the user interfaces and the data 

monitoring systems.  For some of the interfaces, an external piece of hardware was used.  

The hardware was linked to the MIDAS system via a MIDI connection. 

This section describes the MIDAS system, and explains the role the author has had in its 

development.  It then outlines how the user interfaces were constructed, before giving 

details on how the system was configured for each of the tasks for creating sound, 

gathering data and analysing results. 

 

 6.5.1 Description of MIDAS 

MIDAS [Kirk, Hunt 1996] is an acronym for the Musical Instrument Digital Array 

Signal-processor.  It was conceived by Ross Kirk in the early 1990s as a test-bed for real-

time performance control of audio signal processing algorithms and for associated 

studies in Human-Computer Interaction.  In this respect it was intended as a follow-on 

from MidiGrid (see chapter 3) to allow the construction of user interface experiments 

with real-time synthesis systems.  It has since been under development at the University 

of York.   

MIDAS allows users to manipulate a 'tool-kit' of audio-visual algorithms for 

constructing interactive systems.  It also provides a means of distributing these 

algorithms over a network of connected computers of different types, so as to maximise 

the available processing power.  A full description of the system is given Appendix F, 

but a summary is now provided so that those unfamiliar with the system will understand 

how it has been developed and used as part of the research described in this thesis.  

MIDAS is based around the concept of the Unit Generator Process (UGP).  A UGP is a 

piece of code which handles an individual task, such as drawing a rectangle, establishing 
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the current position of the mouse or generating a sound output.  The concept will be 

familiar to computer musicians in the form of audio units, such as oscillators and filters 

(see section 1.7.1) in programs such as Csound, but MIDAS UGPs are designed to run in 

real-time on distributed processors.  UGPs can be connected together into networks 

which together perform a more complex audio-visual processing task.  MIDAS is 

therefore capable of being configured into performing any possible synthesis method. 

Figure 6.11 is a graphical representation of a MIDAS network running on several 

different computing platforms. 

Figure 6.11 – The MIDAS system  

The entire network of UGPs is run from top to bottom within a single sample period.  

This ensures that data flows from the 'upper' UGPs to the lower ones and can be updated 

at a maximum rate equivalent to the audio sampling period.  Each UGP is buffered from 

the one above and the one below by a 'data holder' (a variable).  Therefore MIDAS does 

not need the concept of a separate 'control rate' and 'sample rate' since any lower rate 

data is just read repeatedly by a UGP which works at the audio sample rate. 

 

The MIDAS web-site (http://www-users.york.ac.uk/~adh2/midas/midas.html) provides 

full details of the UGPs that are available.  It divides them into a series of categories for 

easy reference and these are shown here: 
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Category    Example UGPs 

Audio      ('oscillator', 'stereo output') 

Data      ('integer variable', 'array') 

Graphical & User Interface   ('rectangle', 'slider') 

Maths & Logical    ('adder', 'inverter') 

MIDI Handling    ('extract note', 'filter channel') 

Musical Structure    ('sequencer', 'draw score') 

Signal Manipulation & Flow Control ('rate-of-change', 'conditional subroutine') 

  

6.5.2 Work done on MIDAS 

The core of the original MIDAS system was written by Ross Kirk in 1992 and was tested 

on a network of transputer systems to prove the concept.  My roles in the development of 

the system since 1993 were as follows: 

 Port the C program code onto the Silicon Graphics (Indigo/Indy) machines. 

 Write the audio and synthesis routines for real-time operation. 

 Create the suite of UGPs which are now available (some work done in conjunction 

with student projects). 

 Write the user C programming library which is used to control the system. 

 Code the interface layer that takes the user's instructions and drives the kernel. 

 Build up and maintain the MIDAS web-site which was begun by Owen Upton (MSc 

project 1994). 

 Write specific UGPs for this DPhil work (see following sections). 

The above tasks represent a substantial amount of work approximating one year's full-

time programming and development.  The benefits of producing the system are 

manifold.  Not only do we now have a cross-platform architecture for audio-visual 

interaction, but it is easily open to development.  It has allowed practical exercises in 

multimedia, MIDI systems and audio synthesis & control to be run on the Masters course 

at York.  If anyone creates and publishes a UGP it can be employed by any other user in 

any network.  The user interface tests described in this thesis are therefore not locked 

into a single configuration on a fixed computer platform, but rather can be used for 

future experiments by reconfiguring the unit generators.  
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For this study it was possible to use the some of the UGPs developed by others and to 

write new ones to help create the entire test environment.  The following sections 

describe how MIDAS was used in different ways to implement the user interface study. 

 

 6.5.3 Network for Sound Generation 

The first role of the MIDAS system in this study is to generate sound that is continuously 

controlled by the four parameters pitch, volume, timbre and panning.  Figure 6.12 shows 

the network of UGPs which carries out this task. 

 

 

 

 

 

 

 

Figure 6.12: The MIDAS sound generation network 

The sound source is kept extremely simple.  It consists of a square-wave oscillator which 

has the two controls Frequency (pitch input) and Amplitude (volume input).  The 

harmonically rich square-wave is passed through a low-pass filter whose cut-off 

frequency is controlled by the timbre input.  Finally the filtered signal is panned in stereo 

according to the panning input. 

When MIDAS is required to play a sound, data values are fed into the inputs at the 

appropriate time.  When the computer is meant to play a sound for the user to listen to 

(see section 6.4.1) these data values are read from a set of data files by a C program.  

This program (listed in Appendix D) loads the data values onto each of the four sound 

parameter inputs then instructs the MIDAS network to run. 
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6.5.4 Network for Data Gathering 

The same sound synthesis network is used when the human test subject performs on the 

interface.  Data comes in from the interface, is stored for future reference and is also 

passed on to the appropriate input of the synthesis network.   The storage is done by a set 

of four 'data-logger' UGPs.  As the data on each input changes, the new value is stored in 

a text file along with the current time (measured in audio sample ticks) for later analysis.  

Since the whole network is run from top to bottom in a single sample frame, the data-

loggers add no latency to the system, and do not affect the response of the user interface 

in any way. 

Figure 6.13 shows how the sound synthesis network is controlled from the changes in 

the user interface. 

 

 

 

 

 

 

Figure 6.13 - The data gathering network 

 6.5.5 Networks for the User Interfaces 

The interfaces themselves are made up from real physical devices which feed data into 

the computer.  The data is processed by a set of UGPs specific to each interface before 

being fed into the data gathering and sound processing networks (as shown above in 

Figure 6.13). 

 

6.5.5.1  The Mouse Interface  

This consists of the standard Silicon Graphics mouse which is used to control four on-

screen sliders (see section 6.3.1).  These graphical sliders are in fact MIDAS slider 

UGPs.  They allow the user to adjust the current value (between upper and lower limits) 
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by moving the mouse pointer over the slider area when the button is held down.  This 

means that the slider bar can be 'clicked' into position, or 'dragged' up and down.   The 

current value of the slider is sent out of the UGP as a data value into the data-logger 

UGPs and on to the sound synthesis engine (see Figure 6.14). 

 

 

 

 

 

 

 

Figure 6.14: The 'mouse' interface network 

 

6.5.5.2 The Sliders Interface  

This is an extension of the above network which allows the on-screen sliders to be 

controlled from a bank of physical sliders on an external MIDI device (see section 6.3.2).  

This is made possible because the 'slider' UGP can be controlled not only by the mouse 

pointer, but by a data value injected at one of its inputs.  Figure 6.15 shows the UGP 

network which creates this interface.   

 

 

 

 

 

 

 

Figure 6.15: The 'sliders' interface network 
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The Roland Sound Canvas SC-155 has a built-in bank of physical sliders which can be 

configured to send out MIDI 'volume control' messages.   Each slider sends out a 

message on a different MIDI channel so they are distinguishable when sent down a 

single MIDI cable.  These volume messages are picked up by specially written 'MIDI 

control extract' UGPs and are fed into the slider UGPs.  Thus any movement on a 

physical slider causes a corresponding slider on the screen to move to the same position.  

In addition the result of moving that slider is stored in a data file and causes a change of 

sound from the synthesis engine. 

 

6.5.5.3 The Multiparametric Interface  

As described in section 6.3.3 this interface consists of two physical devices - the Silicon 

Graphics mouse and two sliders of the SC-155 module.  The module communicates with 

MIDAS via a MIDI cable as with the 'sliders' interface, outlined above.  The mouse is 

read by the MIDAS 'window_manager' which makes available the current mouse 

position and button state to any UGP that requires it. 

Where this interface really differs from the other two is in the processing of the inputs 

before they reach the sound engine (see Figure 6.16).   

 

 

 

 

 

 

 

Figure 6.16 - The 'multiparametric' interface layout 

There are no 'slider' UGPs and so there is no visual representation on the screen.  All the 

user sees is a blank window containing the mouse pointer.  A network of UGPs is used 
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engine.  This is the 'mapping' outlined in section 6.3.3.  The user inputs are gathered 

from the mouse (x position, y position and left-button-state) and from the MIDI port 

(volume controllers on channels 1 and 2).  Figure 6.17 shows the set of interconnections 

that implement the mapping function.   Two special UGPs were developed for this 

purpose.   

The first is the 'speed' UGP which outputs the rate of change of the input variable.  This 

is central to getting a measure of the user's energy.   In the network below it is mainly 

used to turn the speed of mouse movement back and forth in the x dimension into a 

volume control. 

The second is the 'range' UGP which scales any input range into any desired output 

range.  This is required, for example, when implementing the 'volume' input from a 

combination of slider position and speed of movement in the x direction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 - The 'multiparametric' mapping network 
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6.5.6 Network for Analysis 

MIDAS was also used to aid the processing of the test data.  An identical synthesis 

network was used to play the original tests and then the files recorded from the user.  In 

this way a human marker was able to compare each test with the 'ideal' sound played by 

the computer.  Chapter 7 describes in detail how the tests were analysed.  

 

6.6 Summary 

This chapter has described how the MIDAS system was used to create three user 

interfaces for comparison in a series of user tests.  These interfaces are based on the 

mouse, a set of physical sliders and a new multiparametric interface.  Some thoughts 

about the general attributes of multiparametric interface have been given; particularly the 

interaction of parameters and the use of the human operator's energy. 

The tests themselves took the form of a series of  'Listen and Copy' sound trajectories 

which were played by the computer and then recreated by the user on each of the 

interfaces.  The data values generated by the user were stored in files for later analysis.  

Further details on the test environment, the human subjects, the musical nature of the 

tests and the analysis are given in Chapter 7. 

 


