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Abstract 

 

        Currently, manufacturing organizations of all sizes need to collaborate with others in order to meet their 

goals. However, achieving an adequate level of communication between their people and their information 

systems is difficult. Organizations are urged to formalize their processes and implement their information 

systems flexibly. These tasks can be achieved using workflows and service-oriented architectures, respectively. 

Abstract business-level workflows can be refined into executable workflows which compose services from the 

established service-oriented architecture, integrating disparate systems. However, it is hard to ensure that the 

target performance of the business process is achieved from the concrete software components. In this work, we 

present two algorithms which infer performance constraints for tasks in a workflow from its global and local 

restrictions. These tasks can be then further decomposed into nested subgraphs automatically. By repeatedly 

decomposing the tasks and inferring their constraints, target key performance indicator values can propagate 

from abstract business processes down to concrete activities. 

 

Keywords: workflow modelling, service-oriented architectures, holonic enterprise, business processes, Web 

Services. 

  
 

  

1. Introduction 
 

In the current rapidly changing market, 

manufacturing enterprises need to focus on their key 

value adding processes in order to remain 

competitive. Non-core processes are outsourced or 

shared with external organizations. This is the case 

for both large firms and their collaborative 

manufacturing meganetworks (CMMNs)  [1] and 

small firms which join together to compete with 

them [2]. Virtual enterprises pool the firms’ 

resources into specific projects, and extended 

enterprises take form from trust relationships 

between the organizations [3]. 

 However, these collaborations introduce new 

challenges. Business practices and software 

platforms will usually differ, hampering 

communications at the business and information 

system levels. 

 In order to reach a common understanding, 

enterprises need to agree on well-defined business 

processes in order to collaborate. At the same time, 

the information systems needs to implement these 

business processes, accommodating their 

reconfiguration and monitorization and integrating 

disparate software platforms. 

 In the business process modelling field, several 

workflow modelling languages are being developed, 



such as BPMN 2.0 [4] or WS-BPEL 2.0 [5]. These 

workflows can describe the business process, run it 

and monitor its progress, seamlessly aggregating 

human and computer resources. Workflows can be 

used at every abstraction level, from the high-level 

business activities down to the individual activities 

performed by each participant. At the information 

system level, the basic building block in these 

workflows is a service: a self-contained piece of 

software which performs a task and can be reused 

across the entire organization. 

 However, the more detailed the model, the 

harder it is to see the high-level picture and check if 

the individual activities are meeting the high-level 

key performance indicators. When the desired level 

of performance is not obtained, it is important to be 

able to pinpoint the cause quickly. This could be 

achieved if the low-level activities were annotated 

with constraints which could be traced back to the 

high-level key performance indicators. 

 In this work, we propose a top-down approach to 

derive the desired performance of the individual 

activities performed by each resource from the target 

values of the key performance indicators of the 

abstract business process. After introducing some 

basic concepts and our simplified workflow 

modelling language, we present two algorithms 

which infer local performance constraints from 

global ones, and a transformation which expands the 

graph so the user can increase the level of detail. 

Finally, we offer some conclusions and future lines 

of work. 

 

2. Background 

 

 Before presenting the algorithms, we will 

introduce some basic concepts and related works. 

 

2.1. Workflow modelling 

 

 Formalizing the business practices of an 

organization is a common practice nowadays. A 

formal business process can guide the collaboration 

between different organizations or different parts of 

an organization, and provides a holistic view of all 

the work required. Aguilar-Savén classifies business 

process models into 4 categories, depending on their 

purpose [6]: 

a) Learning about the existing process; 

b) Improving or developing new processes; 

c) Providing decision support during process 

execution and control; and 

d) Supporting the enactment of Information 

Technology. 

 

 In this work, we are most interested in purposes 

b) and c): we want to model the existing or projected 

business process and transform it so the information 

systems can support their execution and control. 

There are quite a few alternatives for modelling 

business processes, such as function diagrams (i.e. 

IDEF0 [7]) or Gantt charts, but not all cover both 

purposes. 

 Workflows are defined by the Workflow 

Management Coalition as “the automation of a 

business process, in whole or part, during which 

documents, information or tasks are passed from one 

participant to another for action, according to a set of 

procedural rules”. As such, they are clearly oriented 

towards purpose c), and can serve purpose b) 

depending on their abstraction level. Normally, these 

workflows are described in a specific language, 

supported by a Workflow Management System 

(WFMS). The WFMS communicates with the 

participants (both humans and software entities) to 

execute the workflows and monitor them. 

  There are several workflow modelling 

languages currently in use. Some of them are 

designed to be directly run and monitored by a 

WFMS automatically, such as the Web Service 

Business Process Execution Language (WS-BPEL) 

2.0 [5]. Others work at the business level, describing 

the process in a more abstract way, such as the 

Business Process Modeling Notation (BPMN) 2.0 

[4]. Usually, modellers start with abstract workflows 

such as BPMN, and later on derive concrete 

workflows (i.e. in WS-BPEL 2.0) from them. 

 

2.2. Service-oriented architectures 

 

 Previously, we described how workflows can 

help an organization formalize their practices, 

assisting the improvement and control of their 

business processes. However, the information 

systems need to provide the basic building blocks to 

make them work. 

 This requires a change in the way the systems 

are conceived: instead of closed silos of information 

which are solely manipulated through a user 

interface, they must now provide a catalogue of 

services which can be flexibly reused over all 

workflows in the organization. These new systems 

are known as service-oriented architectures (SOAs). 



 According to Erl, services “exist as physically 

independent software programs with distinct design 

characteristics that support the attainment of the 

strategic goals associated with service-oriented 

computing” [8]. The definition is intentionally 

vague: any combination of technologies can be used 

to build a SOA. However, in practice, most SOA 

development uses Web Services (WS) as defined by 

the W3C [9]. By using a standardized technology 

stack, users can interoperate between differing 

software platforms. 

 It is interesting to note the interactions between 

workflows as business processes and SOA: a 

business process can be modelled as a concrete WS-

BPEL 2.0 composition of several existing Web 

Services. After performing this composition, the 

WS-BPEL 2.0 workflow is now yet another Web 

Service which can be reused from anywhere else in 

the organization. This allows for building more 

advanced business processes in a bottom-up fashion, 

and improve the processes more quickly. In a way, 

this view of the system as a network of collaborating 

entities which join simpler entities and take part in 

several others can be seen as a software 

implementation of the holonic enterprise [10]. 

 At the same time, reusing the services to this 

degree increases our reliance in them: we depend on 

their performance in order to meet the target values 

for the key performance indicators of the business 

processes. However, it is hard to know if we are 

meeting these high-level indicators from the 

individual services. For this reason, we propose in 

this paper several techniques to derive the required 

performance values for each service, from the high-

level abstract workflows down to the low-level, 

executable workflows. 

 

3. Inference of performance constraints 

 

 In the previous sections, we introduced the key 

concepts required to understand the work presented 

in this paper, and our motivation. In this section, we 

will describe the inference algorithms used to 

annotate the workflow activities with the expected 

performance, using the global and local information 

set by the modeller on the workflow. 

 

3.1. Workflow language 

 

We use a simplification of UML activity diagrams to 

describe our workflows [11]. Figure 1 shows an 

UML diagram class with each of the element types: 

 Activities encapsulate some behaviour, 

described textually. 

 Activities can have manual or automatic 

performance annotations on the number of 

requests they must handle per second and the 

time limit for each of these requests. 

 Initial nodes are the starting execution points of 

the graphs. There can be only one per graph. 

 Final nodes end the current execution branch. 

There can be more than one. 

 Decision nodes select one execution branch 

among several, depending on whether the 

condition for their outgoing edge holds or not. 

Only the outgoing flow edges from a decision 

node may have a non-empty condition and a 

probability less than 1. 

 Fork nodes split the current execution branch 

into several parallel branches. 

 Join nodes integrate several branches back into 

one, whether they started off from a decision 

node or a fork node. This is a simplification 

from UML, which uses different elements to 

integrate each kind of branch: join nodes and 

 

Figure 1. UML class diagram for the elements of our simplified workflow language 

 



merge nodes, respectively. 

 

3.2. Example model 

 

 In order to illustrate the algorithms, we will use 

the order processing workflow shown in Figure 2: 

 

1. Upon receiving an order, it is evaluated: 20% of 

all orders are estimated to be rejected, and the 

remaining 80% are accepted. 

2. If the order is accepted, perform these activities 

in parallel: 

2.1. Create and post a shipping order. 

2.2. Create an invoice and receive payment for 

it from the client. 

3. Close the order. 

 

3.3. Inference of concurrent requests 

 

 This first algorithm infers how many requests 

each task in the workflow must be able to handle per 

second in order not to become a bottleneck. The 

algorithm propagates the global performance 

constraint starting from the initial node, traversing 

the nodes in ascending order of depth. The depth of a 

node is defined as the length of the longest path from 

the initial node to it. 

 For the most part, the number of requests per 

second ( ) is propagated without changes from the 

initial node. There are two special cases when the 

propagated value changes: 

 Flow edges with probability  lower than 1 

propagate . 

 Join nodes which connect mutually exclusive 

branches (split off at a decision node) propagate 

the sum of the values from each branch. 

Otherwise, the branches split off at a fork node 

and the minimum value from all branches is 

propagated. Finding out where the branches split 

off requires computing the lowest common 

ancestor of every branch. Using the naïve 

approach recommended by Bender et al. [12] 

works best for the sparse graphs commonly used 

in workflows. 

 

 As an example, let us consider the activity “Pay” 

in Figure 2, when the whole process is required to 

handle 5 requests per second. This global constraint 

is propagated mostly unchanged, except for the 

conditional flow edge from the decision node to the 

fork node which precedes “Pay”. Since its 

probability is 0.8, “Pay” must handle  0.8 · 5 = 4 

requests per second. 

 

3.4. Inference of time limits 

 

 This algorithm infers the time limit for each task 

from the local and global information available in the 

workflow, meeting the three following properties:  

1. The sum of the time limits in every path 

from the initial node to any of the final 

nodes meets the global constraint. 

2. Available time is split equally among the 

nodes, to distribute the load equally across 

the system. We are also interested in 

avoiding services that are too coarse-

grained or fine-grained. 

3. Time limits should be as lenient as possible. 

 

Figure 2. Running example for the inference algorithms 

 



 Before describing the algorithm, we need to 

define this minimal set of terms: 

  is the set of all activities in the path p 

which lack manual time limits (they are free). 

  is the time limit for every path in the 

workflow graph . 

  is the sum of the manual time limits in 

the path . 

  is the slack left 

unassigned by the manual times on path  of the 

workflow graph . 

  is an 

estimate of the magnitude of the time limit each 

task would obtain with only the information of 

the path  of the graph . The lower the value, 

the more restrictive the path is. 

 

The algorithm follows these steps: 

1. Previous automatic constraints are removed. 

2. Store all paths from the initial node to a final 

node in , and sort them in ascending order 

of . 

3. For each path  in , check its slack, : 

4.1. If it is negative, that means that the 

manual times exceed the global 

constraint. The algorithm is aborted. 

4.2. If it is zero, check if there are any free 

nodes. In that case, we cannot assign a 

time limit to them, and an error should 

be reported. Otherwise, continue. 

4.3. If it is greater than zero, distribute it 

equally among the unrestricted 

activities in the path. 

   

 The correctness of the algorithm relies on the 

ordering defined on the paths: since paths are 

traversed from most to least restrictive and 

previously inferred annotations are not overwritten, 

the algorithm will ensure the global constraint still 

holds for the previous paths. When all paths are 

done, the global constraint holds for all of them.  

 To illustrate the algorithm, let us assume that all 

requests to the process in Figure 2 should require 1 

time unit or less of processing time, and that 

“Evaluate” is assumed (according to prior 

knowledge) to take never more than 0.4 seconds. In 

this case, the bottom path is the most restrictive, 

followed by the middle and top paths. The bottom 

path is visited first and the 0.6 seconds of slack are 

split equally among the 3 unrestricted nodes. The 

middle path is visited next, and the remaining 0.4 

seconds of slack are assigned to “Ship”. Finally, the 

top path has no unrestricted nodes, so we are done. 

 

4. Propagation of performance constraints 

 

 In the previous section, we described how the 

existing global and local information can be used to 

augment the activities in the workflow with target 

values for their performance indicators. 

 In order to describe each activity in further 

detail, the user can automatically expand them with a 

new subgraph including a single initial node, a final 

node and a single subactivity.  The local 

performance constraints in each activity are now the 

global constraints for their subgraphs. 

 Therefore, all the user needs to do is repeatedly 

design the workflows, annotate them, and expand 

them. Once the high-level business activities have 

been broken down into simple actions, the process 

can be executed in a WFMS, using a workflow 

language such as WS-BPEL 2.0 [13]. These 

executable actions can be monitored to ensure that 

the key performance indicators of each high-level 

 

Figure 3. Inference of time limits for the running example 

 



business activity can be reached. 

  

5. Conclusions and future work 

 

 Manufacturing firms need to collaborate with 

others, and to do that they need to formalize their 

business processes and integrate their information 

systems. Workflows can model business processes at 

each level of abstraction. In a service-oriented 

architecture, the information system is a portfolio of 

services which can be reused as building blocks for 

the workflows. However, checking that the desired 

performance for the business process is obtained 

from the concrete activities is difficult. 

 In this work we have presented a top-down 

approach which ultimately derives the expected 

performance of the lowest-level activities from the 

target key performance indicators of the process. 

Two algorithms fill in the details at a certain level 

and a transformation lets the modeller proceed. 

 The algorithms have been successfully 

implemented as part of the SODM+T toolset [14], 

which is a set of plug-ins for the Eclipse integrated 

development environment [15]. The code is freely 

available under the Eclipse Public License. 

 However, the algorithms right now only operate 

on a simplified workflow language, and the time 

limit algorithm requires all paths in the workflow to 

be enumerated. We intend to optimize the 

performance of the algorithms and extend them to 

popular languages such as BPMN or WS-BPEL 2.0. 

Later on, the algorithms will allow for finer-grained 

control of the inference process.  
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