

Inference and propagation of performance constraints from abstract to

concrete business workflows

A. García-Domínguez
a
, I. Medina-Bulo

a
, Mariano Marcos-Bárcena

b

a
 Department of Computer Languages and Systems, University of Cádiz, C/Chile 1, CP 11003, Cádiz. E-mail:

{antonio.garciadominguez,inmaculada.medina}@uca.es
b
 Department of Mechanical Engineering and Industrial Design, University of Cádiz, C/Chile 1, CP 11003

Cádiz. E-mail: mariano.marcos@uca.es

Abstract

 Currently, manufacturing organizations of all sizes need to collaborate with others in order to meet their

goals. However, achieving an adequate level of communication between their people and their information

systems is difficult. Organizations are urged to formalize their processes and implement their information

systems flexibly. These tasks can be achieved using workflows and service-oriented architectures, respectively.

Abstract business-level workflows can be refined into executable workflows which compose services from the

established service-oriented architecture, integrating disparate systems. However, it is hard to ensure that the

target performance of the business process is achieved from the concrete software components. In this work, we

present two algorithms which infer performance constraints for tasks in a workflow from its global and local

restrictions. These tasks can be then further decomposed into nested subgraphs automatically. By repeatedly

decomposing the tasks and inferring their constraints, target key performance indicator values can propagate

from abstract business processes down to concrete activities.

Keywords: workflow modelling, service-oriented architectures, holonic enterprise, business processes, Web

Services.

1. Introduction

In the current rapidly changing market,

manufacturing enterprises need to focus on their key

value adding processes in order to remain

competitive. Non-core processes are outsourced or

shared with external organizations. This is the case

for both large firms and their collaborative

manufacturing meganetworks (CMMNs) [1] and

small firms which join together to compete with

them [2]. Virtual enterprises pool the firms’

resources into specific projects, and extended

enterprises take form from trust relationships

between the organizations [3].

 However, these collaborations introduce new

challenges. Business practices and software

platforms will usually differ, hampering

communications at the business and information

system levels.

 In order to reach a common understanding,

enterprises need to agree on well-defined business

processes in order to collaborate. At the same time,

the information systems needs to implement these

business processes, accommodating their

reconfiguration and monitorization and integrating

disparate software platforms.

 In the business process modelling field, several

workflow modelling languages are being developed,

such as BPMN 2.0 [4] or WS-BPEL 2.0 [5]. These

workflows can describe the business process, run it

and monitor its progress, seamlessly aggregating

human and computer resources. Workflows can be

used at every abstraction level, from the high-level

business activities down to the individual activities

performed by each participant. At the information

system level, the basic building block in these

workflows is a service: a self-contained piece of

software which performs a task and can be reused

across the entire organization.

 However, the more detailed the model, the

harder it is to see the high-level picture and check if

the individual activities are meeting the high-level

key performance indicators. When the desired level

of performance is not obtained, it is important to be

able to pinpoint the cause quickly. This could be

achieved if the low-level activities were annotated

with constraints which could be traced back to the

high-level key performance indicators.

 In this work, we propose a top-down approach to

derive the desired performance of the individual

activities performed by each resource from the target

values of the key performance indicators of the

abstract business process. After introducing some

basic concepts and our simplified workflow

modelling language, we present two algorithms

which infer local performance constraints from

global ones, and a transformation which expands the

graph so the user can increase the level of detail.

Finally, we offer some conclusions and future lines

of work.

2. Background

 Before presenting the algorithms, we will

introduce some basic concepts and related works.

2.1. Workflow modelling

 Formalizing the business practices of an

organization is a common practice nowadays. A

formal business process can guide the collaboration

between different organizations or different parts of

an organization, and provides a holistic view of all

the work required. Aguilar-Savén classifies business

process models into 4 categories, depending on their

purpose [6]:

a) Learning about the existing process;

b) Improving or developing new processes;

c) Providing decision support during process

execution and control; and

d) Supporting the enactment of Information

Technology.

 In this work, we are most interested in purposes

b) and c): we want to model the existing or projected

business process and transform it so the information

systems can support their execution and control.

There are quite a few alternatives for modelling

business processes, such as function diagrams (i.e.

IDEF0 [7]) or Gantt charts, but not all cover both

purposes.

 Workflows are defined by the Workflow

Management Coalition as “the automation of a

business process, in whole or part, during which

documents, information or tasks are passed from one

participant to another for action, according to a set of

procedural rules”. As such, they are clearly oriented

towards purpose c), and can serve purpose b)

depending on their abstraction level. Normally, these

workflows are described in a specific language,

supported by a Workflow Management System

(WFMS). The WFMS communicates with the

participants (both humans and software entities) to

execute the workflows and monitor them.

 There are several workflow modelling

languages currently in use. Some of them are

designed to be directly run and monitored by a

WFMS automatically, such as the Web Service

Business Process Execution Language (WS-BPEL)

2.0 [5]. Others work at the business level, describing

the process in a more abstract way, such as the

Business Process Modeling Notation (BPMN) 2.0

[4]. Usually, modellers start with abstract workflows

such as BPMN, and later on derive concrete

workflows (i.e. in WS-BPEL 2.0) from them.

2.2. Service-oriented architectures

 Previously, we described how workflows can

help an organization formalize their practices,

assisting the improvement and control of their

business processes. However, the information

systems need to provide the basic building blocks to

make them work.

 This requires a change in the way the systems

are conceived: instead of closed silos of information

which are solely manipulated through a user

interface, they must now provide a catalogue of

services which can be flexibly reused over all

workflows in the organization. These new systems

are known as service-oriented architectures (SOAs).

 According to Erl, services “exist as physically

independent software programs with distinct design

characteristics that support the attainment of the

strategic goals associated with service-oriented

computing” [8]. The definition is intentionally

vague: any combination of technologies can be used

to build a SOA. However, in practice, most SOA

development uses Web Services (WS) as defined by

the W3C [9]. By using a standardized technology

stack, users can interoperate between differing

software platforms.

 It is interesting to note the interactions between

workflows as business processes and SOA: a

business process can be modelled as a concrete WS-

BPEL 2.0 composition of several existing Web

Services. After performing this composition, the

WS-BPEL 2.0 workflow is now yet another Web

Service which can be reused from anywhere else in

the organization. This allows for building more

advanced business processes in a bottom-up fashion,

and improve the processes more quickly. In a way,

this view of the system as a network of collaborating

entities which join simpler entities and take part in

several others can be seen as a software

implementation of the holonic enterprise [10].

 At the same time, reusing the services to this

degree increases our reliance in them: we depend on

their performance in order to meet the target values

for the key performance indicators of the business

processes. However, it is hard to know if we are

meeting these high-level indicators from the

individual services. For this reason, we propose in

this paper several techniques to derive the required

performance values for each service, from the high-

level abstract workflows down to the low-level,

executable workflows.

3. Inference of performance constraints

 In the previous sections, we introduced the key

concepts required to understand the work presented

in this paper, and our motivation. In this section, we

will describe the inference algorithms used to

annotate the workflow activities with the expected

performance, using the global and local information

set by the modeller on the workflow.

3.1. Workflow language

We use a simplification of UML activity diagrams to

describe our workflows [11]. Figure 1 shows an

UML diagram class with each of the element types:

 Activities encapsulate some behaviour,

described textually.

 Activities can have manual or automatic

performance annotations on the number of

requests they must handle per second and the

time limit for each of these requests.

 Initial nodes are the starting execution points of

the graphs. There can be only one per graph.

 Final nodes end the current execution branch.

There can be more than one.

 Decision nodes select one execution branch

among several, depending on whether the

condition for their outgoing edge holds or not.

Only the outgoing flow edges from a decision

node may have a non-empty condition and a

probability less than 1.

 Fork nodes split the current execution branch

into several parallel branches.

 Join nodes integrate several branches back into

one, whether they started off from a decision

node or a fork node. This is a simplification

from UML, which uses different elements to

integrate each kind of branch: join nodes and

Figure 1. UML class diagram for the elements of our simplified workflow language

merge nodes, respectively.

3.2. Example model

 In order to illustrate the algorithms, we will use

the order processing workflow shown in Figure 2:

1. Upon receiving an order, it is evaluated: 20% of

all orders are estimated to be rejected, and the

remaining 80% are accepted.

2. If the order is accepted, perform these activities

in parallel:

2.1. Create and post a shipping order.

2.2. Create an invoice and receive payment for

it from the client.

3. Close the order.

3.3. Inference of concurrent requests

 This first algorithm infers how many requests

each task in the workflow must be able to handle per

second in order not to become a bottleneck. The

algorithm propagates the global performance

constraint starting from the initial node, traversing

the nodes in ascending order of depth. The depth of a

node is defined as the length of the longest path from

the initial node to it.

 For the most part, the number of requests per

second () is propagated without changes from the

initial node. There are two special cases when the

propagated value changes:

 Flow edges with probability lower than 1

propagate .

 Join nodes which connect mutually exclusive

branches (split off at a decision node) propagate

the sum of the values from each branch.

Otherwise, the branches split off at a fork node

and the minimum value from all branches is

propagated. Finding out where the branches split

off requires computing the lowest common

ancestor of every branch. Using the naïve

approach recommended by Bender et al. [12]

works best for the sparse graphs commonly used

in workflows.

 As an example, let us consider the activity “Pay”

in Figure 2, when the whole process is required to

handle 5 requests per second. This global constraint

is propagated mostly unchanged, except for the

conditional flow edge from the decision node to the

fork node which precedes “Pay”. Since its

probability is 0.8, “Pay” must handle 0.8 · 5 = 4

requests per second.

3.4. Inference of time limits

 This algorithm infers the time limit for each task

from the local and global information available in the

workflow, meeting the three following properties:

1. The sum of the time limits in every path

from the initial node to any of the final

nodes meets the global constraint.

2. Available time is split equally among the

nodes, to distribute the load equally across

the system. We are also interested in

avoiding services that are too coarse-

grained or fine-grained.

3. Time limits should be as lenient as possible.

Figure 2. Running example for the inference algorithms

 Before describing the algorithm, we need to

define this minimal set of terms:

 is the set of all activities in the path p

which lack manual time limits (they are free).

 is the time limit for every path in the

workflow graph .

 is the sum of the manual time limits in

the path .

 is the slack left

unassigned by the manual times on path of the

workflow graph .

 is an

estimate of the magnitude of the time limit each

task would obtain with only the information of

the path of the graph . The lower the value,

the more restrictive the path is.

The algorithm follows these steps:

1. Previous automatic constraints are removed.

2. Store all paths from the initial node to a final

node in , and sort them in ascending order

of .

3. For each path in , check its slack, :

4.1. If it is negative, that means that the

manual times exceed the global

constraint. The algorithm is aborted.

4.2. If it is zero, check if there are any free

nodes. In that case, we cannot assign a

time limit to them, and an error should

be reported. Otherwise, continue.

4.3. If it is greater than zero, distribute it

equally among the unrestricted

activities in the path.

 The correctness of the algorithm relies on the

ordering defined on the paths: since paths are

traversed from most to least restrictive and

previously inferred annotations are not overwritten,

the algorithm will ensure the global constraint still

holds for the previous paths. When all paths are

done, the global constraint holds for all of them.

 To illustrate the algorithm, let us assume that all

requests to the process in Figure 2 should require 1

time unit or less of processing time, and that

“Evaluate” is assumed (according to prior

knowledge) to take never more than 0.4 seconds. In

this case, the bottom path is the most restrictive,

followed by the middle and top paths. The bottom

path is visited first and the 0.6 seconds of slack are

split equally among the 3 unrestricted nodes. The

middle path is visited next, and the remaining 0.4

seconds of slack are assigned to “Ship”. Finally, the

top path has no unrestricted nodes, so we are done.

4. Propagation of performance constraints

 In the previous section, we described how the

existing global and local information can be used to

augment the activities in the workflow with target

values for their performance indicators.

 In order to describe each activity in further

detail, the user can automatically expand them with a

new subgraph including a single initial node, a final

node and a single subactivity. The local

performance constraints in each activity are now the

global constraints for their subgraphs.

 Therefore, all the user needs to do is repeatedly

design the workflows, annotate them, and expand

them. Once the high-level business activities have

been broken down into simple actions, the process

can be executed in a WFMS, using a workflow

language such as WS-BPEL 2.0 [13]. These

executable actions can be monitored to ensure that

the key performance indicators of each high-level

Figure 3. Inference of time limits for the running example

business activity can be reached.

5. Conclusions and future work

 Manufacturing firms need to collaborate with

others, and to do that they need to formalize their

business processes and integrate their information

systems. Workflows can model business processes at

each level of abstraction. In a service-oriented

architecture, the information system is a portfolio of

services which can be reused as building blocks for

the workflows. However, checking that the desired

performance for the business process is obtained

from the concrete activities is difficult.

 In this work we have presented a top-down

approach which ultimately derives the expected

performance of the lowest-level activities from the

target key performance indicators of the process.

Two algorithms fill in the details at a certain level

and a transformation lets the modeller proceed.

 The algorithms have been successfully

implemented as part of the SODM+T toolset [14],

which is a set of plug-ins for the Eclipse integrated

development environment [15]. The code is freely

available under the Eclipse Public License.

 However, the algorithms right now only operate

on a simplified workflow language, and the time

limit algorithm requires all paths in the workflow to

be enumerated. We intend to optimize the

performance of the algorithms and extend them to

popular languages such as BPMN or WS-BPEL 2.0.

Later on, the algorithms will allow for finer-grained

control of the inference process.

Acknowledgements

This work was co-financed by the Junta de

Andalucía. The University of Cádiz is an Academic

Associate of the FP6 I*PROMS Network of

Excellence on Innovative Production Machines and

Systems.

References

[1] K. Johansen, M. Comstock, and M. Winroth,

“Coordination in collaborative manufacturing

mega-networks: A case study,” Journal of

Engineering and Technology Management,

vol. 22, Sep. 2005, pp. 226-244.

[2] C. Piddington, “SME interoperability in the

global economy: A discussion paper,”

Proceedings of the 16th IFAC World

Congress, P. Zítek, Ed., Czech Republic:

2005.

[3] J. Browne, I. Hunt, and J. Zhang, “The

Extended Enterprise (EE),” Handbook of Life

Cycle Engineering: Concepts, models and

technologies, A. Molina Gutiérrez, A. Kusiak,

and J.M. Sánchez García, Eds., London,

United Kingdom: Kluwer Academic

Publishers, 1998, pp. 3-30.

[4] Object Management Group, “Business Process

Modeling Notation 2.0 - Beta2,” 2010.

Available at

http://www.omg.org/spec/BPMN/2.0/Beta2/.

[5] OASIS, “Web Service Business Process

Execution Language (WS-BPEL) 2.0,” Apr.

2007.

[6] R.S. Aguilar-Savén, “Business process

modelling: Review and framework,”

International Journal of Production

Economics, vol. 90, Jul. 2004, pp. 129-149.

[7] Computer Systems Laboratory of the National

Institute of Standards and Technology (NIST),

“FIPS 183: Integration Definition for Function

Modeling (IDEF0),” Dec. 1993.

[8] T. Erl, SOA: Principles of Service Design,

Indiana, EEUU: Prentice Hall, 2008.

[9] W3C, “Web Services Glossary,” 2004.

Available at http://www.w3.org/TR/ws-gloss/.

[10] A. Tharumarajah, A. Wells, and L. Nemes, “A

comparison of the bionic, fractal and holonic

manufacturing concepts,” International

Journal of Computer Integrated

Manufacturing, vol. 9, 1996, pp. 217-226.

[11] Object Management Group, “Unified

Modeling Language (UML) 2.2,” 2009.

Available at

http://www.omg.org/spec/UML/2.2/.

[12] M.A. Bender, G. Pemmasani, S. Skiena, and P.

Sumazin, “Finding Least Common Ancestors

in Directed Acyclic Graphs,” Proceedings of

the 12th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA'01), 2001, pp.

845-853.

[13] OASIS, “WS-BPEL 2.0 Primer,” 2010.

Available at http://docs.oasis-

open.org/wsbpel/2.0/Primer/wsbpel-v2.0-

Primer.html.

[14] A. García-Domínguez, “Homepage of the

SODM+T project,” 2010. Available at

https://neptuno.uca.es/redmine/projects/sodmt.

[15] Eclipse Foundation, “Eclipse.org home,”

2010. Available at http://eclipse.org/.

