Avances Hacia un Algoritmo Optimizado para la Inferencia de
Restricciones Locales de Rendimiento en Grafos

A. Garcia Dominguez), I. Medina Bulo), M. Marcos Barcena ¥

MDepartamento de Lenguajes y Sistemas Informéaticos, C/Chile 1, CP 11003 Cadiz. Teléfono: 956015780.

Correo electrdnico: antonio.garciadominguez@uca.es.

@ Departamento de Ingenieria Mecanica y Disefio Industrial, C/Chile 1, CP 11003 Cadiz.

Resumen

Grafos como los diagramas de actividades UML son cominmente
usados para modelar programas con diversos fines. En un trabajo
anterior se presentaron algoritmos para inferir restricciones de
rendimiento para cada nodo de un diagrama de actividades UML. Sin
embargo, uno de los algoritmos requeria recorrer todos los posibles
caminos, exhibiendo costes exponenciales. En este trabajo se presenta
un reemplazo més robusto en el caso promedio y generalizado a todo
tipo de grafos. Tras esbozar una definicion preliminar basada en
reescritura de grafos, se deriva una version mas facil de implementar

basada en un simple recorrido del grafo.

1. Introduccion

En muchos &mbitos, asegurar un cierto nivel de
rendimiento es de gran importancia. En el
dmbito de las Arquitecturas Orientadas a
Servicios (AOS) [1], el software se estructura
como un catdlogo de servicios. Algunos
servicios se construyen reutilizando servicios de
otras partes de la organizaciéon o incluso de
organizaciones externas: Se conocen como
composiciones de servicios.

Conseguir un nivel adecuado de rendimiento de
estas composiciones requiere pruebas continuas
y una monitorizacién constante. Sin embargo,
esto requiere conocer el nivel de rendimiento
exigido a cada parte de la composicion, a partir
del rendimiento exigido al todo. En algunos
casos se dispondré de acuerdos de niveles de
servicio o de informacién de monitorizacion,
pero en muchos casos no dispondremos de esa
informacion: por ejemplo, cuando el servicio
externo en cuestién ain no haya sido contratado
0 desarrollado. Se podria asumir un valor a
partir de la experiencia, pero existe el riesgo de
sobreestimar o infravalorar el rendimiento
necesario. En el primer caso, se incurren en
costes por contratar demasiada capacidad o
dedicar demasiado tiempo de desarrollo; en el
segundo, se podrian violar los acuerdos de nivel
de servicio con terceras partes o0 perder
oportunidades de negocio: pedidos en empresas
de fabricacion, ventas en mayoristas, etc.

En un trabajo anterior, se presentaron dos
algoritmos dirigidos a inferir las restricciones
locales de rendimiento (tiempo limite y nimero
de peticiones por segundo) a partir de
restricciones locales y globales sobre un

diagrama de actividades UML [2]. El objetivo
era modelar una composicion de servicios a
través de un diagrama de actividades UML y
obtener especificaciones para pruebas de
rendimiento a partir de los valores inferidos,
siguiendo un enfoque dirigido por modelos. Las
herramientas dedicadas a este proceso formaran
parte de la metodologia AOS SODM+Testing
dirigida por modelos con apoyo explicito para
pruebas [3], que es el objetivo principal de la
tesis asociada a este trabajo.

Tras analizar el rendimiento de estos algoritmos,
se concluy6 que el algoritmo de inferencia de
peticiones por segundo tenia coste temporal
0(n3), y el algoritmo de inferencia de tiempos
limite tenia coste temporal O(n? + n2?), para
un diagrama de actividades = UML
correspondiente a un grafo orientado aciclico
con n Vértices, de los cuales b < n tenian 2
aristas salientes y el resto s6lo una o ninguna.
Este alto coste era debido a que la inferencia de
tiempos limites de acuerdo con las restricciones
impuestas necesita recorrer todos los nodos de
todos los posibles caminos.

Tras hallar este problema, se observé que en la
practica, la mayoria de los caminos en los grafos
correspondientes a diagramas de actividades
UML no suelen ser disjuntos, sino que
comparten una parte considerable de los nodos.
A partir de esta idea, se ha disefiado un
algoritmo mejorado mas eficiente en promedio.

Este trabajo se estructura de la siguiente forma:
tras presentar de forma concisa el algoritmo
original de inferencia de tiempos limite, se
esboza una primera formulacién basada en
reescritura de grafos del nuevo algoritmo. De

mailto:antonio.garciadominguez@uca.es

®

b4

E (0, 1) J [A (04, 0)

A (04, 0)

c) Reunidn de ramas

|

b) Reunién de secuencia de nodos

o ®
[A (04, 0) H {0, {B, C+D}} (0, 2) H E (0, 1) }

d) Reunién de ramas

@

[A+{0, {B, C+D}}+E (04, 3) J

e) Reunidn de secuencia de nodos y supernodos

Figura 1. Proceso de reduccion de un diagrama de actividad UML

esta versién se deriva una definicién preliminar
simplificada de un algoritmo generalizado a
grafos orientados aciclicos. Finalmente, se
proporcionan una serie de conclusiones y lineas
de trabajo futuro.

2. Algoritmo original
El algoritmo original (descrito en detalle en [2])
opera sobre diagramas de actividades UML,
extendidos con una restriccién global manual
sobre el nimero de peticiones a atender por
unidad de tiempo, y el tiempo limite disponible
para todos los caminos. A su vez, cada actividad
tiene una restriccién (manual o inferida) local.

El algoritmo sigue estos pasos para anotar cada

actividad libre (sin restricciones manuales) con

su tiempo limite:

1. Seretiran las restricciones antes inferidas.
2. Se calculan todos los caminos posibles
desde el nodo inicial hasta un nodo final.

3. Se ordenan los caminos de mas a menos
restrictivos. Informalmente, la métrica
usada es el tiempo no usado por las
restricciones manuales de sus actividades,
dividido por el nimero de actividades libres
en el camino mas 1.

4. Para cada camino en la lista ordenada, se
reparte el tiempo sobrante por igual entre
las actividades aln sin restricciones.

El algoritmo es sencillo y consigue asignaciones
de tiempos equitativas, consistentes con las
restricciones manuales y tan permisivas como es

posible. Sin embargo, el algoritmo ha de
recorrer todos los nodos de cada uno de los
caminos posibles, incurriendo en costes que
crecen de forma exponencial a medida que
aumenta el numero de ramificaciones del grafo
subyacente al diagrama de actividades UML.

3. Aproximacion por reescritura de grafos
Tras los problemas identificados en el algoritmo
anterior, se observé que muchos de los nodos
eran compartidos entre varios caminos. Sin
embargo, cada nodo s6lo nos interesa en el
camino mas restrictivo en que aparece. Por
tanto, seria Gtil resumir los posibles caminos de
forma que las partes comunes sélo se evaluaran
una vez. Para ello, puede simplificarse el grafo
paso a paso, agregando sus nodos Yy
restricciones en supernodos (nodos que
contienen subgrafos de nodos y supernodos)
hasta tener un grafo de un solo supernodo. A
continuacion, se puede desagregar mientras se
infieren las restricciones.

En la Figura 1 puede verse un ejemplo de un
proceso de reduccion de un diagrama de
actividades UML. Cada nodo incluye un par
(m,p), donde m es la suma de los tiempos
debidos a restricciones manuales en su interior,
y p es el peso que tiene para el reparto del
tiempo sobrante. Normalmente, un nodo con
una restriccion manual tendra peso 0, y uno sin
ella tendra peso 1, pero se pueden utilizar otros
pesos para conseguir asignaciones Mas

flexibles. Las reducciones se implementarian

mediante reglas de reescritura de grafos [4].

Tras reducir el diagrama a un solo nodo, el

proceso para conseguir los tiempos limite en el

nodo anterior seria el siguiente:

1. Se comienza por el supernodo raiz (como el
de la subfigura e) de la Figura 1) que
engloba todo el grafo. Se le asigna el
tiempo limite de la restriccion global.

2. Se comprueba de qué tipo es el nodo actual,
cuyo par es (m, p) y tiempo asignado es t:
2.1. Si engloba una secuencia, se asigna a

cada hijo h; con par (m;,p;) del nodo
actual el tiempo m; + (p;/p)(t — m),

y se sigue recursivamente por él.

2.2. Siengloba una ramificacion, se asigna
el tiempo disponible a todas las ramas.

2.3. Sies un nodo normal, se usa el tiempo
disponible como tiempo limite.

En particular, para el ejemplo de la Figura 1 y

asumiendo que todos los caminos han de acabar

en 1 segundo 0 menos, operaria asi:

1. Tiempo: 1s, nodos: (0’4, 3). Se asigna el
segundo al Unico nodo, que representa a
todo el grafo.

2. Tiempo: 1s, nodos: (0’4, 0), (0,2), (0,1). Se
asignan 0’4 segundos al primer nodo, y los
0’6 restantes se reparten de acuerdo con los
pesos de los demds nodos: 0’4 para el
segundo y 0’2 para el tercero. El primero y
tercero son nodos simples, asi que no se
desciende por ellos, pero si por el segundo.

3. Tiempo: 0’4s, nodos: (0, 2). Al tratarse de
una ramificacion, se asignan 0’4s a ambas
ramas, pero una de ellas estd vacia. Se
desciende por la otra.

4. Tiempo: 0’4s, nodos: (0, 1), (0, 2). De
nuevo se tiene una ramificacion, por lo que
se asignan 0°4s a ambos nodos. Ahora se
debe descender por ambas ramas.

a. Primera rama. Tiempo: 0’4s,
nodos: (0, 1). Le asignamos los
0’4s al inico nodo disponible.

b. Segunda rama. Tiempo: 0°4s,
nodos: (0, 1), (0, 1). Repartimos
los 0°4s por igual entre ambos.

Este enfoque consigue los mismos resultados
que el original para este caso particular [2]. Sin
embargo, queda pendiente demostrar si es asi o
no en general.
La idea de reducir un grafo a un solo nodo para
obtener informacién acerca de su calidad de
servicio no es nueva: Cardoso aplicé un enfoque
similar en [5]. Sin embargo, su intencién era
muy distinta: agrega las restricciones manuales
de cada nodo para conseguir las globales. Por el
contrario, la idea de este trabajo es agregar las
restricciones manuales (tanto locales como
globales) para inferir las locales.

| A |
[To4, 0
Sec.
0,0
Sec. Ram. Sec. B
04,3/ 0,2 0,1 0, 1
Sec. Ram. C
0,2 0,2 0,1
[E Sec.
0,1 0,2
D
0,1

Figura 2. Arbol de reduccion del grafo de
la Figura 1.

4. Definicién basada en recorrido del grafo

El anterior enfoque basado en reescritura de
grafos es sencillo de comprender y puede evitar
la explosion combinatoria que supone una
ramificacién tras otra. Sin embargo, un sistema
de reescritura de grafos es, en general, dificil de
implementar y puede tener problemas de
rendimiento [6]. Estos problemas son resolubles
en este caso, pero de todos modos es deseable
buscar una alternativa mas sencilla.

Tras una busqueda bibliogréafica, se observd que
el algoritmo anterior producia grafos
jerarquicos [7]. Un grafo jerarquico es un grafo
que puede contener subgrafos en sus vértices
y/o aristas. Busatto et &l. plantean una
representacion: modelar las aristas usuales con
un grafo normal, y las relaciones de contencién
con un arbol separado [8].
En base a esta idea, puede verse que lo que
interesa del anterior algoritmo no es realmente
el grafo jerérquico, sino el arbol propuesto por
Busatto. Por ello, se puede utilizar un algoritmo
estandar para construir dicho arbol a la vez que
se recorre el diagrama de actividades UML, sin
tener que recurrir a toda la potencia de un
sistema de reescritura de grafos. Sin embargo,
como el arbol se construiria a partir de la raiz en
vez de a partir de las hojas, seria necesario
recorrer el arbol producido dos veces: subiendo
para agregar las restricciones, y bajando para
inferir. Se bajaria como antes, y subir consistiria
en sumar los pares elemento a elemento para las
secuencias y tomar el elemento mayor en orden
lexicogréfico en las ramificaciones.

Por limitaciones de espacio, se eshoza el

algoritmo sobre el ejemplo de la Figura 1. El

arbol de reduccidn resultante es el de la Figura

2: los hijos estan ordenados de arriba abajo.

1. Se comienza por el nodo inicial (hodo sin
aristas entrantes). El grafo completo se
modela como una secuencia, asi que el
arbol de reduccién comienza con un Unico
nodo de secuencia.

2. Se visita el nodo A que viene a
continuacion, afadiéndolo como primer
hijo de la secuencia.

3. A continuaci6n viene una ramificacion, por
lo que se afiade un nodo de ramificacion,
gue contiene un nodo de secuencia por cada
rama. La primera rama esta vacia, asi que
no hacemos nada. La segunda rama no esta
vacia: se prosigue por ella.

4. El primer nodo de la segunda rama es una
ramificacion: se afiade un nodo de
ramificacion al nodo secuencia de la
segunda rama. Este nuevo nodo de
ramificacion tendra un nodo de secuencia a
su vez por cada una de sus dos ramas: una
contiene al nodo B, y laotraa CyD.

5. Hemos completado las ramificaciones:
seguimos por el punto de reunion y
encontramos el nodo E. Lo afiadimos como
hijo de la secuencia principal.

6. Hemos llegado al nodo final (nodo sin
aristas salientes): hemos terminado.

El algoritmo actualmente definido es mas
complejo, ya que ha de tratar con grafos mas
flexibles que el de la Figura 1: puede haber
varios nodos finales, y puede ocurrir que no
todas las ramas que parten de un nodo se redinan
en otro. Incluso puede ocurrir que en un nodo se
retinan ramas provenientes de nodos distintos.
Para ello, es necesario mantener mas
informacién, anotando las aristas visitadas y las
ramas reunidas, entre otras cosas. Ademas, hay
que considerar que implicitamente todos los
nodos finales se retnen en un “verdadero” nodo
final. De todos modos, la idea general es la
expuesta en el ejemplo anterior. Actualmente, el
algoritmo se encuentra generalizado a todo
grafo orientado aciclico y conexo.

5. Conclusiones

En este trabajo, se han esbozado dos algoritmos
para mejorar un algoritmo previamente
publicado en [2] para inferir restricciones de
rendimiento en diagramas de actividades UML
a partir de informacion local y global. EI primer
algoritmo utiliza reescritura de grafos, y el
segundo es una simplificacion del anterior,
aprovechando el hecho de que s6lo nos interesa
el arbol que representa las relaciones jerarquicas
del grafo jerarquico producido por el primer
algoritmo. Ademaés, el segundo algoritmo ha
sido generalizado a todo tipo de grafo.
Actualmente, los algoritmos han sido probados
manualmente sobre un conjunto de casos
representativos. Queda pendiente implementar
el segundo algoritmo y realizar estudios acerca
de su correccion y rendimiento. Se consideraran
diversos arquetipos de grafos, tales como grafos
lineales, dipolos en secuencia, rejillas, etc.

6. Agradecimientos

Se agradecen a Francisco Palomo Lozano sus
consejos acerca de la formulacién del algoritmo
y la organizacion de las pruebas a realizar.

7. Referencias

[1] T. Erl, SOA: Principles of Service Design,
Indiana, EEUU: Prentice Hall, 2008.

[2] A. Garcia Dominguez, I. Medina Bulo, and
M. Marcos Barcena, “Inference of
performance constraints in Web Service
composition models,” CEUR Workshop
Proceedings of the 2nd International
Workshop on Model-Driven Service
Engineering, vol. 608, Jun. 2010, pp. 55-
66.

[3] A. Garcia Dominguez, I. Medina Bulo, and
M. Marcos Barcena, “Hacia la Integracion
de Técnicas de Pruebas en Metodologias
Dirigidas por Modelos para SOA,” Actas
de las V Jornadas Cientifico-Técnicas en
Servicios Web y SOA, Madrid, Espafia:
2009, pp. 167-180.

[4] R. Heckel, “Graph Transformation in a
Nutshell,” Proceedings of the School on
Foundations of Visual Modelling
Techniques (FOVMT 2004) of the SegraVis
Research Training Network, Elsevier,
2006, pp. 187-198.

[5] J. Cardoso, A. Sheth, J. Miller, J. Arnold,
and K. Kochut, “Quality of service for
workflows and web service processes,”
Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 1,
Abril. 2004, pp. 281-308.

[6] D. Blostein, H. Fahmy, and A. Grbavec,
“Issues in the Practical Use of Graph
Rewriting,” Proceedings of the 5th
Workshop on Graph Grammars and Their
Application To Computer Science, J. Cuny,
H. Ehrig, G. Engels, and G. Rozenberg,
Eds., Williamsburg, Virginia, EEUU:
Springer-Verlag, 1995, pp. 38-55.

[7] F. Drewes, B. Hoffmann, and D. Plump,
“Hierarchical =~ graph transformation,”
Foundations of Software Science and
Computation Structures, J. Tiuryn, Ed.,
Berlin, Alemania: Springer-Verlag, 2000.

[8] G. Busatto, G. Engels, K. Mehner, and A.
Wagner, “A Framework for Adding
Packages to Graph Transformation
Approaches,” Proceedings of the 6th Int.
Workshop on Theory and Application of
Graph Transformation, H. Ehrig, G.
Engels, H. Kreowski, and G. Rozenberg,
Eds., Paderborn, Alemania: Springer-
Verlag, 1998, pp. 352-367.

