
Avances Hacia un Algoritmo Optimizado para la Inferencia de
Restricciones Locales de Rendimiento en Grafos

A. García Domínguez (1), I. Medina Bulo(1), M. Marcos Bárcena (2)

(1)Departamento de Lenguajes y Sistemas Informáticos, C/Chile 1, CP 11003 Cádiz. Teléfono: 956015780.

Correo electrónico: antonio.garciadominguez@uca.es.
(2) Departamento de Ingeniería Mecánica y Diseño Industrial, C/Chile 1, CP 11003 Cádiz.

Resumen
Grafos como los diagramas de actividades UML son comúnmente

usados para modelar programas con diversos fines. En un trabajo

anterior se presentaron algoritmos para inferir restricciones de

rendimiento para cada nodo de un diagrama de actividades UML. Sin

embargo, uno de los algoritmos requería recorrer todos los posibles

caminos, exhibiendo costes exponenciales. En este trabajo se presenta

un reemplazo más robusto en el caso promedio y generalizado a todo

tipo de grafos. Tras esbozar una definición preliminar basada en

reescritura de grafos, se deriva una versión más fácil de implementar

basada en un simple recorrido del grafo.

1. Introducción

En muchos ámbitos, asegurar un cierto nivel de

rendimiento es de gran importancia. En el

ámbito de las Arquitecturas Orientadas a

Servicios (AOS) [1], el software se estructura

como un catálogo de servicios. Algunos

servicios se construyen reutilizando servicios de

otras partes de la organización o incluso de

organizaciones externas: se conocen como

composiciones de servicios.

Conseguir un nivel adecuado de rendimiento de

estas composiciones requiere pruebas continuas

y una monitorización constante. Sin embargo,

esto requiere conocer el nivel de rendimiento

exigido a cada parte de la composición, a partir

del rendimiento exigido al todo. En algunos

casos se dispondrá de acuerdos de niveles de

servicio o de información de monitorización,

pero en muchos casos no dispondremos de esa

información: por ejemplo, cuando el servicio

externo en cuestión aún no haya sido contratado

o desarrollado. Se podría asumir un valor a

partir de la experiencia, pero existe el riesgo de

sobreestimar o infravalorar el rendimiento

necesario. En el primer caso, se incurren en

costes por contratar demasiada capacidad o

dedicar demasiado tiempo de desarrollo; en el

segundo, se podrían violar los acuerdos de nivel

de servicio con terceras partes o perder

oportunidades de negocio: pedidos en empresas

de fabricación, ventas en mayoristas, etc.

En un trabajo anterior, se presentaron dos

algoritmos dirigidos a inferir las restricciones

locales de rendimiento (tiempo límite y número

de peticiones por segundo) a partir de

restricciones locales y globales sobre un

diagrama de actividades UML [2]. El objetivo

era modelar una composición de servicios a

través de un diagrama de actividades UML y

obtener especificaciones para pruebas de

rendimiento a partir de los valores inferidos,

siguiendo un enfoque dirigido por modelos. Las

herramientas dedicadas a este proceso formarán

parte de la metodología AOS SODM+Testing

dirigida por modelos con apoyo explícito para

pruebas [3], que es el objetivo principal de la

tesis asociada a este trabajo.

Tras analizar el rendimiento de estos algoritmos,

se concluyó que el algoritmo de inferencia de

peticiones por segundo tenía coste temporal

, y el algoritmo de inferencia de tiempos

límite tenía coste temporal , para

un diagrama de actividades UML

correspondiente a un grafo orientado acíclico

con vértices, de los cuales tenían 2

aristas salientes y el resto sólo una o ninguna.

Este alto coste era debido a que la inferencia de

tiempos límites de acuerdo con las restricciones

impuestas necesita recorrer todos los nodos de

todos los posibles caminos.

Tras hallar este problema, se observó que en la

práctica, la mayoría de los caminos en los grafos

correspondientes a diagramas de actividades

UML no suelen ser disjuntos, sino que

comparten una parte considerable de los nodos.

A partir de esta idea, se ha diseñado un

algoritmo mejorado más eficiente en promedio.

Este trabajo se estructura de la siguiente forma:

tras presentar de forma concisa el algoritmo

original de inferencia de tiempos límite, se

esboza una primera formulación basada en

reescritura de grafos del nuevo algoritmo. De

mailto:antonio.garciadominguez@uca.es

esta versión se deriva una definición preliminar

simplificada de un algoritmo generalizado a

grafos orientados acíclicos. Finalmente, se

proporcionan una serie de conclusiones y líneas

de trabajo futuro.

2. Algoritmo original

El algoritmo original (descrito en detalle en [2])

opera sobre diagramas de actividades UML,

extendidos con una restricción global manual

sobre el número de peticiones a atender por

unidad de tiempo, y el tiempo límite disponible

para todos los caminos. A su vez, cada actividad

tiene una restricción (manual o inferida) local.

El algoritmo sigue estos pasos para anotar cada

actividad libre (sin restricciones manuales) con

su tiempo límite:

1. Se retiran las restricciones antes inferidas.

2. Se calculan todos los caminos posibles

desde el nodo inicial hasta un nodo final.

3. Se ordenan los caminos de más a menos

restrictivos. Informalmente, la métrica

usada es el tiempo no usado por las

restricciones manuales de sus actividades,

dividido por el número de actividades libres

en el camino más 1.

4. Para cada camino en la lista ordenada, se

reparte el tiempo sobrante por igual entre

las actividades aún sin restricciones.

El algoritmo es sencillo y consigue asignaciones

de tiempos equitativas, consistentes con las

restricciones manuales y tan permisivas como es

posible. Sin embargo, el algoritmo ha de

recorrer todos los nodos de cada uno de los

caminos posibles, incurriendo en costes que

crecen de forma exponencial a medida que

aumenta el número de ramificaciones del grafo

subyacente al diagrama de actividades UML.

3. Aproximación por reescritura de grafos

Tras los problemas identificados en el algoritmo

anterior, se observó que muchos de los nodos

eran compartidos entre varios caminos. Sin

embargo, cada nodo sólo nos interesa en el

camino más restrictivo en que aparece. Por

tanto, sería útil resumir los posibles caminos de

forma que las partes comunes sólo se evaluaran

una vez. Para ello, puede simplificarse el grafo

paso a paso, agregando sus nodos y

restricciones en supernodos (nodos que

contienen subgrafos de nodos y supernodos)

hasta tener un grafo de un solo supernodo. A

continuación, se puede desagregar mientras se

infieren las restricciones.

En la Figura 1 puede verse un ejemplo de un

proceso de reducción de un diagrama de

actividades UML. Cada nodo incluye un par

, donde es la suma de los tiempos

debidos a restricciones manuales en su interior,

y es el peso que tiene para el reparto del

tiempo sobrante. Normalmente, un nodo con

una restricción manual tendrá peso 0, y uno sin

ella tendrá peso 1, pero se pueden utilizar otros

pesos para conseguir asignaciones más

a) Grafo original

b) Reunión de secuencia de nodos

c) Reunión de ramas

d) Reunión de ramas

e) Reunión de secuencia de nodos y supernodos

Figura 1. Proceso de reducción de un diagrama de actividad UML

flexibles. Las reducciones se implementarían

mediante reglas de reescritura de grafos [4].

Tras reducir el diagrama a un solo nodo, el

proceso para conseguir los tiempos límite en el

nodo anterior sería el siguiente:

1. Se comienza por el supernodo raíz (como el

de la subfigura e) de la Figura 1) que

engloba todo el grafo. Se le asigna el

tiempo límite de la restricción global.

2. Se comprueba de qué tipo es el nodo actual,

cuyo par es y tiempo asignado es :

2.1. Si engloba una secuencia, se asigna a

cada hijo con par del nodo

actual el tiempo ,

y se sigue recursivamente por él.

2.2. Si engloba una ramificación, se asigna

el tiempo disponible a todas las ramas.

2.3. Si es un nodo normal, se usa el tiempo

disponible como tiempo límite.

En particular, para el ejemplo de la Figura 1 y

asumiendo que todos los caminos han de acabar

en 1 segundo o menos, operaría así:

1. Tiempo: 1s, nodos: (0’4, 3). Se asigna el

segundo al único nodo, que representa a

todo el grafo.

2. Tiempo: 1s, nodos: (0’4, 0), (0,2), (0,1). Se

asignan 0’4 segundos al primer nodo, y los

0’6 restantes se reparten de acuerdo con los

pesos de los demás nodos: 0’4 para el

segundo y 0’2 para el tercero. El primero y

tercero son nodos simples, así que no se

desciende por ellos, pero sí por el segundo.

3. Tiempo: 0’4s, nodos: (0, 2). Al tratarse de

una ramificación, se asignan 0’4s a ambas

ramas, pero una de ellas está vacía. Se

desciende por la otra.

4. Tiempo: 0’4s, nodos: (0, 1), (0, 2). De

nuevo se tiene una ramificación, por lo que

se asignan 0’4s a ambos nodos. Ahora se

debe descender por ambas ramas.

a. Primera rama. Tiempo: 0’4s,

nodos: (0, 1). Le asignamos los

0’4s al único nodo disponible.

b. Segunda rama. Tiempo: 0’4s,

nodos: (0, 1), (0, 1). Repartimos

los 0’4s por igual entre ambos.

Este enfoque consigue los mismos resultados

que el original para este caso particular [2]. Sin

embargo, queda pendiente demostrar si es así o

no en general.

La idea de reducir un grafo a un solo nodo para

obtener información acerca de su calidad de

servicio no es nueva: Cardoso aplicó un enfoque

similar en [5]. Sin embargo, su intención era

muy distinta: agrega las restricciones manuales

de cada nodo para conseguir las globales. Por el

contrario, la idea de este trabajo es agregar las

restricciones manuales (tanto locales como

globales) para inferir las locales.

4. Definición basada en recorrido del grafo

El anterior enfoque basado en reescritura de

grafos es sencillo de comprender y puede evitar

la explosión combinatoria que supone una

ramificación tras otra. Sin embargo, un sistema

de reescritura de grafos es, en general, difícil de

implementar y puede tener problemas de

rendimiento [6]. Estos problemas son resolubles

en este caso, pero de todos modos es deseable

buscar una alternativa más sencilla.

Tras una búsqueda bibliográfica, se observó que

el algoritmo anterior producía grafos

jerárquicos [7]. Un grafo jerárquico es un grafo

que puede contener subgrafos en sus vértices

y/o aristas. Busatto et ál. plantean una

representación: modelar las aristas usuales con

un grafo normal, y las relaciones de contención

con un árbol separado [8].

En base a esta idea, puede verse que lo que

interesa del anterior algoritmo no es realmente

el grafo jerárquico, sino el árbol propuesto por

Busatto. Por ello, se puede utilizar un algoritmo

estándar para construir dicho árbol a la vez que

se recorre el diagrama de actividades UML, sin

tener que recurrir a toda la potencia de un

sistema de reescritura de grafos. Sin embargo,

como el árbol se construiría a partir de la raíz en

vez de a partir de las hojas, sería necesario

recorrer el árbol producido dos veces: subiendo

para agregar las restricciones, y bajando para

inferir. Se bajaría como antes, y subir consistiría

en sumar los pares elemento a elemento para las

secuencias y tomar el elemento mayor en orden

lexicográfico en las ramificaciones.

Por limitaciones de espacio, se esboza el

algoritmo sobre el ejemplo de la Figura 1. El

árbol de reducción resultante es el de la Figura

2: los hijos están ordenados de arriba abajo.

1. Se comienza por el nodo inicial (nodo sin

aristas entrantes). El grafo completo se

modela como una secuencia, así que el

árbol de reducción comienza con un único

nodo de secuencia.

Figura 2. Árbol de reducción del grafo de

la Figura 1.

2. Se visita el nodo A que viene a

continuación, añadiéndolo como primer

hijo de la secuencia.

3. A continuación viene una ramificación, por

lo que se añade un nodo de ramificación,

que contiene un nodo de secuencia por cada

rama. La primera rama está vacía, así que

no hacemos nada. La segunda rama no está

vacía: se prosigue por ella.

4. El primer nodo de la segunda rama es una

ramificación: se añade un nodo de

ramificación al nodo secuencia de la

segunda rama. Este nuevo nodo de

ramificación tendrá un nodo de secuencia a

su vez por cada una de sus dos ramas: una

contiene al nodo B, y la otra a C y D.

5. Hemos completado las ramificaciones:

seguimos por el punto de reunión y

encontramos el nodo E. Lo añadimos como

hijo de la secuencia principal.

6. Hemos llegado al nodo final (nodo sin

aristas salientes): hemos terminado.

El algoritmo actualmente definido es más

complejo, ya que ha de tratar con grafos más

flexibles que el de la Figura 1: puede haber

varios nodos finales, y puede ocurrir que no

todas las ramas que parten de un nodo se reúnan

en otro. Incluso puede ocurrir que en un nodo se

reúnan ramas provenientes de nodos distintos.

Para ello, es necesario mantener más

información, anotando las aristas visitadas y las

ramas reunidas, entre otras cosas. Además, hay

que considerar que implícitamente todos los

nodos finales se reúnen en un “verdadero” nodo

final. De todos modos, la idea general es la

expuesta en el ejemplo anterior. Actualmente, el

algoritmo se encuentra generalizado a todo

grafo orientado acíclico y conexo.

5. Conclusiones

En este trabajo, se han esbozado dos algoritmos

para mejorar un algoritmo previamente

publicado en [2] para inferir restricciones de

rendimiento en diagramas de actividades UML

a partir de información local y global. El primer

algoritmo utiliza reescritura de grafos, y el

segundo es una simplificación del anterior,

aprovechando el hecho de que sólo nos interesa

el árbol que representa las relaciones jerárquicas

del grafo jerárquico producido por el primer

algoritmo. Además, el segundo algoritmo ha

sido generalizado a todo tipo de grafo.

Actualmente, los algoritmos han sido probados

manualmente sobre un conjunto de casos

representativos. Queda pendiente implementar

el segundo algoritmo y realizar estudios acerca

de su corrección y rendimiento. Se considerarán

diversos arquetipos de grafos, tales como grafos

lineales, dipolos en secuencia, rejillas, etc.

6. Agradecimientos

Se agradecen a Francisco Palomo Lozano sus

consejos acerca de la formulación del algoritmo

y la organización de las pruebas a realizar.

7. Referencias

[1] T. Erl, SOA: Principles of Service Design,

Indiana, EEUU: Prentice Hall, 2008.

[2] A. García Domínguez, I. Medina Bulo, and

M. Marcos Bárcena, “Inference of

performance constraints in Web Service

composition models,” CEUR Workshop

Proceedings of the 2nd International

Workshop on Model-Driven Service

Engineering, vol. 608, Jun. 2010, pp. 55-

66.

[3] A. García Domínguez, I. Medina Bulo, and

M. Marcos Bárcena, “Hacia la Integración

de Técnicas de Pruebas en Metodologías

Dirigidas por Modelos para SOA,” Actas

de las V Jornadas Científico-Técnicas en

Servicios Web y SOA, Madrid, España:

2009, pp. 167-180.

[4] R. Heckel, “Graph Transformation in a

Nutshell,” Proceedings of the School on

Foundations of Visual Modelling

Techniques (FoVMT 2004) of the SegraVis

Research Training Network, Elsevier,

2006, pp. 187-198.

[5] J. Cardoso, A. Sheth, J. Miller, J. Arnold,

and K. Kochut, “Quality of service for

workflows and web service processes,”

Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 1,

Abril. 2004, pp. 281-308.

[6] D. Blostein, H. Fahmy, and A. Grbavec,

“Issues in the Practical Use of Graph

Rewriting,” Proceedings of the 5th

Workshop on Graph Grammars and Their

Application To Computer Science, J. Cuny,

H. Ehrig, G. Engels, and G. Rozenberg,

Eds., Williamsburg, Virginia, EEUU:

Springer-Verlag, 1995, pp. 38-55.

[7] F. Drewes, B. Hoffmann, and D. Plump,

“Hierarchical graph transformation,”

Foundations of Software Science and

Computation Structures, J. Tiuryn, Ed.,

Berlin, Alemania: Springer-Verlag, 2000.

[8] G. Busatto, G. Engels, K. Mehner, and A.

Wagner, “A Framework for Adding

Packages to Graph Transformation

Approaches,” Proceedings of the 6th Int.

Workshop on Theory and Application of

Graph Transformation, H. Ehrig, G.

Engels, H. Kreowski, and G. Rozenberg,

Eds., Paderborn, Alemania: Springer-

Verlag, 1998, pp. 352-367.

