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Resumen 
Grafos como los diagramas de actividades UML son comúnmente 

usados para modelar programas con diversos fines. En un trabajo 

anterior se presentaron algoritmos para inferir restricciones de 

rendimiento para cada nodo de un diagrama de actividades UML. Sin 

embargo, uno de los algoritmos requería recorrer todos los posibles 

caminos, exhibiendo costes exponenciales. En este trabajo se presenta 

un reemplazo más robusto en el caso promedio y generalizado a todo 

tipo de grafos. Tras esbozar una definición preliminar basada en 

reescritura de grafos, se deriva una versión más fácil de implementar 

basada en un simple recorrido del grafo. 

 
 

1. Introducción 

En muchos ámbitos, asegurar un cierto nivel de 

rendimiento es de gran importancia. En el 

ámbito de las Arquitecturas Orientadas a 

Servicios (AOS) [1], el software se estructura 

como un catálogo de servicios. Algunos 

servicios se construyen reutilizando servicios de 

otras partes de la organización o incluso de 

organizaciones externas: se conocen como 

composiciones de servicios. 

Conseguir un nivel adecuado de rendimiento de 

estas composiciones requiere pruebas continuas 

y una monitorización constante. Sin embargo, 

esto requiere conocer el nivel de rendimiento 

exigido a cada parte de la composición, a partir 

del rendimiento exigido al todo. En algunos 

casos se dispondrá de acuerdos de niveles de 

servicio o de información de monitorización, 

pero en muchos casos no dispondremos de esa 

información: por ejemplo, cuando el servicio 

externo en cuestión aún no haya sido contratado 

o desarrollado. Se podría asumir un valor a 

partir de la experiencia, pero existe el riesgo de 

sobreestimar o infravalorar el rendimiento 

necesario. En el primer caso, se incurren en 

costes por contratar demasiada capacidad o 

dedicar demasiado tiempo de desarrollo; en el 

segundo, se podrían violar los acuerdos de nivel 

de servicio con terceras partes o perder 

oportunidades de negocio: pedidos en empresas 

de fabricación, ventas en mayoristas, etc. 

En un trabajo anterior, se presentaron dos 

algoritmos dirigidos a inferir las restricciones 

locales de rendimiento (tiempo límite y número 

de peticiones por segundo) a partir de 

restricciones locales y globales sobre un 

diagrama de actividades UML [2]. El objetivo 

era modelar una composición de servicios a 

través de un diagrama de actividades UML y 

obtener especificaciones para pruebas de 

rendimiento a partir de los valores inferidos, 

siguiendo un enfoque dirigido por modelos. Las 

herramientas dedicadas a este proceso formarán 

parte de la  metodología AOS SODM+Testing 

dirigida por modelos con apoyo explícito para 

pruebas [3], que es el objetivo principal de la 

tesis asociada a este trabajo. 

Tras analizar el rendimiento de estos algoritmos, 

se concluyó que el algoritmo de inferencia de 

peticiones por segundo tenía coste temporal 

, y el algoritmo de inferencia de tiempos 

límite tenía coste temporal , para 

un diagrama de actividades UML 

correspondiente a un grafo orientado acíclico 

con  vértices, de los cuales  tenían 2 

aristas salientes y el resto sólo una o ninguna. 

Este alto coste era debido a que la inferencia de 

tiempos límites de acuerdo con las restricciones 

impuestas necesita recorrer todos los nodos de 

todos los posibles caminos. 

Tras hallar este problema, se observó que en la 

práctica, la mayoría de los caminos en los grafos 

correspondientes a diagramas de actividades 

UML no suelen ser disjuntos, sino que 

comparten una parte considerable de los nodos. 

A partir de esta idea, se ha diseñado un 

algoritmo mejorado más eficiente en promedio. 

Este trabajo se estructura de la siguiente forma: 

tras presentar de forma concisa el algoritmo 

original de inferencia de tiempos límite, se 

esboza una primera formulación basada en 

reescritura de grafos del nuevo algoritmo. De 
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esta versión se deriva una definición preliminar 

simplificada de un algoritmo generalizado a 

grafos orientados acíclicos. Finalmente, se 

proporcionan  una serie de conclusiones y líneas 

de trabajo futuro. 

 

2. Algoritmo original 

El algoritmo original (descrito en detalle en [2]) 

opera sobre diagramas de actividades UML, 

extendidos con una restricción global manual 

sobre el número de peticiones a atender por 

unidad de tiempo, y el tiempo límite disponible 

para todos los caminos. A su vez, cada actividad 

tiene una restricción (manual o inferida) local. 

El algoritmo sigue estos pasos para anotar cada 

actividad libre (sin restricciones manuales) con 

su tiempo límite: 

1. Se retiran las restricciones antes inferidas. 

2. Se calculan todos los caminos posibles 

desde el nodo inicial hasta un nodo final. 

3. Se ordenan los caminos de más a menos 

restrictivos. Informalmente, la métrica 

usada es el tiempo no usado por las 

restricciones manuales de sus actividades, 

dividido por el número de actividades libres 

en el camino más 1. 

4. Para cada camino en la lista ordenada, se 

reparte el tiempo sobrante por igual entre 

las actividades aún sin restricciones. 

El algoritmo es sencillo y consigue asignaciones 

de tiempos equitativas, consistentes con las 

restricciones manuales y tan permisivas como es 

posible. Sin embargo, el algoritmo ha de 

recorrer todos los nodos de cada uno de los 

caminos posibles, incurriendo en costes que 

crecen de forma exponencial a medida que 

aumenta el número de ramificaciones del grafo 

subyacente al diagrama de actividades UML. 

 

3. Aproximación por reescritura de grafos 

Tras los problemas identificados en el algoritmo 

anterior, se observó que muchos de los nodos 

eran compartidos entre varios caminos. Sin 

embargo, cada nodo sólo nos interesa en el 

camino más restrictivo en que aparece. Por 

tanto, sería útil resumir los posibles caminos de 

forma que las partes comunes sólo se evaluaran 

una vez. Para ello, puede simplificarse el grafo 

paso a paso, agregando sus nodos y 

restricciones en supernodos (nodos que 

contienen subgrafos de nodos y supernodos) 

hasta tener un grafo de un solo supernodo. A 

continuación, se puede desagregar mientras se 

infieren las restricciones. 

En la Figura 1 puede verse un ejemplo de un 

proceso de reducción de un diagrama de 

actividades UML. Cada nodo incluye un par 

, donde  es la suma de los tiempos 

debidos a restricciones manuales en su interior, 

y  es el peso que tiene para el reparto del 

tiempo sobrante. Normalmente, un nodo con 

una restricción manual tendrá peso 0, y uno sin 

ella tendrá peso 1, pero se pueden utilizar otros 

pesos para conseguir asignaciones más 

 
 

a) Grafo original 

 
 

b) Reunión de secuencia de nodos 

 

 
 

c) Reunión de ramas 

 
 

d) Reunión de ramas 

 

 
 

e) Reunión de secuencia de nodos y supernodos 

 

Figura 1. Proceso de reducción de un diagrama de actividad UML 



flexibles. Las reducciones se implementarían 

mediante reglas de reescritura de grafos [4]. 

Tras reducir el diagrama a un solo nodo, el 

proceso para conseguir los tiempos límite en el 

nodo anterior sería el siguiente: 

1. Se comienza por el supernodo raíz (como el 

de la subfigura e) de la Figura 1) que 

engloba todo el grafo. Se le asigna el 

tiempo límite de la restricción global. 

2. Se comprueba de qué tipo es el nodo actual, 

cuyo par es  y tiempo asignado es : 

2.1. Si engloba una secuencia, se asigna a 

cada hijo  con par  del nodo 

actual el tiempo , 

y se sigue recursivamente por él. 

2.2. Si engloba una ramificación, se asigna 

el tiempo disponible a todas las ramas. 

2.3. Si es un nodo normal, se usa el tiempo 

disponible como tiempo límite. 

En particular, para el ejemplo de la Figura 1 y 

asumiendo que todos los caminos han de acabar 

en 1 segundo o menos, operaría así: 

1. Tiempo: 1s, nodos: (0’4, 3). Se asigna el 

segundo al único nodo, que representa a 

todo el grafo. 

2. Tiempo: 1s, nodos: (0’4, 0), (0,2), (0,1). Se 

asignan 0’4 segundos al primer nodo, y los 

0’6 restantes se reparten de acuerdo con los 

pesos de los demás nodos: 0’4 para el 

segundo y 0’2 para el tercero. El primero y 

tercero son nodos simples, así que no se 

desciende por ellos, pero sí por el segundo. 

3. Tiempo: 0’4s, nodos: (0, 2).  Al tratarse de 

una ramificación, se asignan 0’4s a ambas 

ramas, pero una de ellas está vacía. Se 

desciende por la otra. 

4. Tiempo: 0’4s, nodos: (0, 1), (0, 2). De 

nuevo se tiene una ramificación, por lo que 

se asignan 0’4s a ambos nodos. Ahora se 

debe descender por ambas ramas. 

a. Primera rama. Tiempo: 0’4s, 

nodos: (0, 1). Le asignamos los 

0’4s al único nodo disponible. 

b. Segunda rama. Tiempo: 0’4s, 

nodos: (0, 1), (0, 1). Repartimos 

los 0’4s por igual entre ambos. 

Este enfoque consigue los mismos resultados 

que el original para este caso particular [2]. Sin 

embargo, queda pendiente demostrar si es así o 

no en general. 

La idea de reducir un grafo a un solo nodo para 

obtener información acerca de su calidad de 

servicio no es nueva: Cardoso aplicó un enfoque 

similar en [5]. Sin embargo, su intención era 

muy distinta: agrega las restricciones manuales 

de cada nodo para conseguir las globales. Por el 

contrario, la idea de este trabajo es agregar las 

restricciones manuales (tanto locales como 

globales) para inferir las locales. 

 

4. Definición basada en recorrido del grafo 

El anterior enfoque basado en reescritura de 

grafos es sencillo de comprender y puede evitar 

la explosión combinatoria que supone una 

ramificación tras otra. Sin embargo, un sistema 

de reescritura de grafos es, en general, difícil de 

implementar y puede tener problemas de 

rendimiento [6]. Estos problemas son resolubles 

en este caso, pero de todos modos es deseable 

buscar una alternativa más sencilla. 

Tras una búsqueda bibliográfica, se observó que 

el algoritmo anterior producía grafos 

jerárquicos [7]. Un grafo jerárquico es un grafo 

que puede contener subgrafos en sus vértices 

y/o aristas. Busatto et ál. plantean una 

representación: modelar las aristas usuales con 

un grafo normal, y las relaciones de contención 

con un árbol separado [8]. 

En base a esta idea, puede verse que lo que 

interesa del anterior algoritmo no es realmente 

el grafo jerárquico, sino el árbol propuesto por 

Busatto. Por ello, se puede utilizar un algoritmo 

estándar para construir dicho árbol a la vez que 

se recorre el diagrama de actividades UML, sin 

tener que recurrir a toda la potencia de un 

sistema de reescritura de grafos. Sin embargo, 

como el árbol se construiría a partir de la raíz en 

vez de a partir de las hojas, sería necesario 

recorrer el árbol producido dos veces: subiendo 

para agregar las restricciones, y bajando para 

inferir. Se bajaría como antes, y subir consistiría 

en sumar los pares elemento a elemento para las 

secuencias y tomar el elemento mayor en orden 

lexicográfico en las ramificaciones. 

Por limitaciones de espacio, se esboza el 

algoritmo sobre el ejemplo de la Figura 1. El 

árbol de reducción resultante es el de la  Figura 

2: los hijos están ordenados de arriba abajo. 

1. Se comienza por el nodo inicial (nodo sin 

aristas entrantes). El grafo completo se 

modela como una secuencia, así que el 

árbol de reducción comienza con un único 

nodo de secuencia. 

 
 

Figura 2. Árbol de reducción del grafo de 

la Figura 1. 

 



2. Se visita el nodo A que viene a 

continuación, añadiéndolo como primer 

hijo de la secuencia. 

3. A continuación viene una ramificación, por 

lo que se añade un nodo de ramificación, 

que contiene un nodo de secuencia por cada 

rama. La primera rama está vacía, así que 

no hacemos nada. La segunda rama no está 

vacía: se prosigue por ella. 

4. El primer nodo de la segunda rama es una 

ramificación: se añade un nodo de 

ramificación al nodo secuencia de la 

segunda rama. Este nuevo nodo de 

ramificación tendrá un nodo de secuencia a 

su vez por cada una de sus dos ramas: una 

contiene al nodo B, y la otra a C y D. 

5. Hemos completado las ramificaciones: 

seguimos por el punto de reunión y 

encontramos el nodo E. Lo añadimos como 

hijo de la secuencia principal. 

6. Hemos llegado al nodo final (nodo sin 

aristas salientes): hemos terminado. 

El algoritmo actualmente definido es más 

complejo, ya que ha de tratar con grafos más 

flexibles que el de la Figura 1: puede haber 

varios nodos finales, y puede ocurrir que no 

todas las ramas que parten de un nodo se reúnan 

en otro. Incluso puede ocurrir que en un nodo se 

reúnan ramas provenientes de nodos distintos. 

Para ello, es necesario mantener más 

información, anotando las aristas visitadas y las 

ramas reunidas, entre otras cosas. Además, hay 

que considerar que implícitamente todos los 

nodos finales se reúnen en un “verdadero” nodo 

final. De todos modos, la idea general es la 

expuesta en el ejemplo anterior. Actualmente, el 

algoritmo se encuentra generalizado a todo 

grafo orientado acíclico y conexo. 

 

5. Conclusiones 

En este trabajo, se han esbozado dos algoritmos 

para mejorar un algoritmo previamente 

publicado en [2] para inferir restricciones de 

rendimiento en diagramas de actividades UML 

a partir de información local y global. El primer 

algoritmo utiliza reescritura de grafos, y el 

segundo es una simplificación del anterior, 

aprovechando el hecho de que sólo nos interesa 

el árbol que representa las relaciones jerárquicas 

del grafo jerárquico producido por el primer 

algoritmo. Además, el segundo algoritmo ha 

sido generalizado a todo tipo de grafo. 

Actualmente, los algoritmos han sido probados 

manualmente sobre un conjunto de casos 

representativos. Queda pendiente implementar 

el segundo algoritmo y realizar estudios acerca 

de su corrección y rendimiento. Se considerarán 

diversos arquetipos de grafos, tales como grafos 

lineales, dipolos en secuencia, rejillas, etc. 

 

6. Agradecimientos 

Se agradecen a Francisco Palomo Lozano sus 

consejos acerca de la formulación del algoritmo 

y la organización de las pruebas a realizar.  

 

7. Referencias 

[1] T. Erl, SOA: Principles of Service Design,  

Indiana, EEUU: Prentice Hall, 2008. 

[2] A. García Domínguez, I. Medina Bulo, and 

M. Marcos Bárcena, “Inference of 

performance constraints in Web Service 

composition models,” CEUR Workshop 

Proceedings of the 2nd International 

Workshop on Model-Driven Service 

Engineering,  vol. 608, Jun. 2010, pp. 55-

66. 

[3] A. García Domínguez, I. Medina Bulo, and 

M. Marcos Bárcena, “Hacia la Integración 

de Técnicas de Pruebas en Metodologías 

Dirigidas por Modelos para SOA,” Actas 

de las V Jornadas Científico-Técnicas en 

Servicios Web y SOA,  Madrid, España: 

2009, pp. 167-180. 

[4] R. Heckel, “Graph Transformation in a 

Nutshell,” Proceedings of the School on 

Foundations of Visual Modelling 

Techniques (FoVMT 2004) of the SegraVis 

Research Training Network, Elsevier, 

2006, pp. 187-198. 

[5] J. Cardoso, A. Sheth, J. Miller, J. Arnold, 

and K. Kochut, “Quality of service for 

workflows and web service processes,” 

Web Semantics: Science, Services and 

Agents on the World Wide Web,  vol. 1, 

Abril. 2004, pp. 281-308. 

[6] D. Blostein, H. Fahmy, and A. Grbavec, 

“Issues in the Practical Use of Graph 

Rewriting,” Proceedings of the 5th 

Workshop on Graph Grammars and Their 

Application To Computer Science, J. Cuny, 

H. Ehrig, G. Engels, and G. Rozenberg, 

Eds.,  Williamsburg, Virginia, EEUU: 

Springer-Verlag, 1995, pp. 38-55. 

[7] F. Drewes, B. Hoffmann, and D. Plump, 

“Hierarchical graph transformation,” 

Foundations of Software Science and 

Computation Structures, J. Tiuryn, Ed.,  

Berlin, Alemania: Springer-Verlag, 2000. 

[8] G. Busatto, G. Engels, K. Mehner, and A. 

Wagner, “A Framework for Adding 

Packages to Graph Transformation 

Approaches,” Proceedings of the 6th Int. 

Workshop on Theory and Application of 

Graph Transformation, H. Ehrig, G. 

Engels, H. Kreowski, and G. Rozenberg, 

Eds.,  Paderborn, Alemania: Springer-

Verlag, 1998, pp. 352-367. 


