Lenguaje especifico del dominio para generaciéon
de aplicaciones de procesos administrativos

Antonio Garcia Dominguez, Ismael Jerez Ibaniez e Inmaculada Medina Bulo

Departamento de Ingenieria Informética, Universidad de Céadiz
Av. de la Universidad 10, CP 11519, Puerto Real, Cadiz
antonio.garciadominguez@uca.es, ismael. jerezibanez@alum.uca.es,
inmaculada.medina@uca.es,
http://neptuno.uca.es/{~agarcia, ~imedina}

Resumen Muchas organizaciones reimplementan una y otra vez el mis-
mo tipo de proceso de negocio «administrativoy, en el que un formulario
es manipulado por miltiples roles a lo largo de varios estados. Esta re-
implementacién hace perder un tiempo que se podria haber usado en
entender mejor el proceso o cubrir los detalles que si son especificos del
proceso. Por otro lado, las soluciones existentes basadas en motores de
procesos de negocio requieren formacién e infraestructura especificas y
pueden encerrar al usuario en una tecnologia concreta. En este trabajo
se propone usar un lenguaje de alto nivel para describir el proceso ad-
ministrativo y producir a partir de él un sitio web en un marco estandar
de desarrollo web que sea facil de mantener por los técnicos de la orga-
nizacion. Se ha implementado el enfoque mediante tecnologias de codigo
abierto, y se ilustra a través de un caso de estudio.

1. Introduccion

En muchas organizaciones, uno de los tipos de procesos de negocio més co-
munes es lo que llamarfamos un proceso «administrativo». Estos procesos admi-
nistrativos consisten en gestionar un documento estructurado (generalmente un
formulario) a lo largo de varios estados. En cada estado, distintas secciones del
documento pueden ser visibles o editables por distintos roles en la organizacion,
y los estados se suceden a través de plazos o decisiones tomadas a mano (posible-
mente tras la reunion de un comité o algin tipo de negociacion). El proceso suele
concluir llegando a algun estado final («aceptado» o «rechazado», por ejemplo).

Estos procesos normalmente se realizan por completo dentro de una organi-
zacién y no son especialmente complejos de por si, pero su abundancia puede
generar mucho trabajo repetitivo en su implementacion. Rehacer cada uno de
estos procesos desde cero requiere invertir tiempo en implementar las mismas
caracteristicas basicas de siempre (gestion de formularios y estados, integracion
con sistemas de autenticaciéon corporativos y demaés), que se podria haber usado
en conocer mejor el proceso a través de un prototipado méas rapido y atender
los detalles puntuales del proceso que no se pueden estandarizar. En algunos
casos, el desarrollador encargado de implementar el proceso no conoce todas las

capacidades del marco empleado, tardando més tiempo en obtener una version
inicial y obteniendo implementaciones poco satisfactorias.

En otros casos, el marco de desarrollo web escogido para implementar el pro-
ceso puede haberse quedado obsoleto hasta el punto de exigir una reescritura de
la aplicacion. Este fue el caso del marco Symfony, cuyo diseno cambi6 totalmente
en las versiones 2.x y dej6é a muchas aplicaciones sin correccciones de errores para
el propio marco. A esto se le afiade el hecho de que los procesos pueden haber
sufrido cambios y retoques urgentes, con lo que no estaran bien documentados
y su reimplementacién requeriria un complicado proceso de ingenieria inversa.
Habria sido mejor si la mayor parte del cédigo se hubiera producido a partir
de una descripciéon de alto nivel del proceso: cambiar la tecnologia detras de
varias aplicaciones obsoletas entonces solo exigiria escribir un generador distinto
y traducir las personalizaciones puntuales.

Existe una variedad de motores de procesos de negocio generales y solucio-
nes de oficinas virtuales, pero en cuanto el proceso requiere algun tipo de logica
personalizada sus soluciones crecen rapidamente en complejidad. Por otro lado,
para una organizacién con un nimero limitado de desarrolladores como una uni-
versidad, exigirian una formaciéon especifica en una tecnologia mas que podria
quedarse obsoleta o perder soporte a largo plazo. Seria mejor que el proceso
resultante estuviera en un marco corriente de desarrollo web que estuviera es-
tandarizado dentro de la organizaciéon, de forma que en todo momento hubiera
varios técnicos disponibles para su mantenimiento.

En este trabajo se presenta un enfoque basado en un lenguaje especifico de
dominio («Domain Specific Language» o DSL) para describir esta clase particu-
lar de procesos de negocio y generar rapidamente una primera versiéon de una
aplicacién web que pueda ser mantenida sin conocimientos especiales. El lengua-
je ha sido implementado mediante Eclipse Xtext [5], y se ha elaborado un primer
generador a partir de sus descripciones en el Epsilon Generation Language [7],
produciendo codigo para el conocido marco de desarrollo web Django[4]. El sitio
web producido esta listo para ser usado y puede ser mantenido por cualquier
desarrollador familiarizado con Django.

El resto del trabajo se estructura de la siguiente forma: la seccién 2 describe
algunas de las herramientas existentes de modelado de procesos de propédsito
general y algunas soluciones més especificas para procesos administrativos o
aplicaciones basadas en formularios, y las compara con el enfoque propuesto. La
seccion 3 presenta el lenguaje especifico de dominio, empezando con los concep-
tos subyacentes y terminando con la notacién textual adoptada. La seccién 4
ilustra el enfoque aplicando el lenguaje y el generador implementados a un caso
de estudio basado en un proceso de examinacion, y evaltia sus capacidades y limi-
taciones actuales. Por ultimo, la seccion 5 proporciona una serie de conclusiones
y lista las lineas abiertas de trabajo futuro.

2. Trabajos relacionados

Existe una variedad de motores de gestion de procesos de negocio («Busi-
ness Process Management Systems» o BPMS) que incluyen soporte para pasos
basados en formularios, como Bonita [3] o Intalio [11]. Estos motores suelen
estar emparejados con una compleja herramienta de disefio que utiliza una no-
tacion grafica (en muchos casos basada en BPMN) para describir el proceso.
La notacioén grafica se suele extender con anotaciones especificas del motor para
completar la seméantica del proceso, y las definiciones de los procesos se guardan
generalmente en formatos basados en XML.

Aunque estos sistemas pueden describir un amplio conjunto de procesos de
negocio, las definiciones resultantes dependen fuertemente del motor emparejado
a la herramienta de diseno: migrar el mismo proceso a otra tecnologia requerira
una reescritura completa. Se puede realizar control de versiones con formatos
XML, pero hacer comparaciones intuitivas y reunir ramas que hayan manipu-
lado distintas partes del proceso requeriran herramientas especiales. Por otro
lado, usar uno de estos motores requiere un esfuerzo considerable de formacién
y consultoria, que puede no ser factible en organizaciones de menor tamano. El
enfoque propuesto en este trabajo trata de evitar esta complejidad en la notaciéon
y en la infraestructura centrandose en un tipo concreto de proceso de negocio
(un proceso administrativo), y produciendo una aplicaciéon web que usa un mar-
co estandar ya conocido por el personal de la organizacion. Otro beneficio de
emplear un DSL especifico del tipo de proceso es poder incluir detalles que no
entrarian en un lenguaje de procesos mas general, como los controles de acceso
de cada parte del formulario en funciéon del estado y rol del usuario.

Ha habido mas iniciativas aparte de los BPMS para simplificar el desarrollo de
aplicaciones orientadas a formularios. El proyecto EMF Forms [6] de la fundacion
Eclipse es un ejemplo reciente. EMF Forms permite definir el modelo de datos y
la estructura de alto nivel del formulario y generar una implementaciéon en varias
tecnologias, como SWT o JavaFX para el escritorio o Tabris para aplicaciones
moviles. Mientras que EMF Forms cubre el aspecto de la presentacion, el DSL
propuesto en este trabajo se centra mas en la logica de estados y el control de
acceso de las distintas partes del formulario. Se podria barajar la posibilidad
de escribir un generador del DSL propuesto a EMF Forms, para combinar las
ventajas de ambos enfoques.

Otra iniciativa relacionada es la del diseno dirigido por dominio («Domain
Driven Designy o DDD). Este enfoque prioriza la implementaciéon de un modelo
del dominio representativo como nicleo del sistema y punto de unién del resto
de componentes [9]. Apache Isis [1] u OpenXava [15] son dos marcos DDD que
pueden producir una parte considerable de la aplicacién a partir de un modelo
del dominio «puro» (por ejemplo, un conjunto de «beans» Java, que se limitan a
exponer su estado a través de pares de métodos setX/getX). Estas herramientas
de DDD se parecen al DSL propuesto en tanto que tratan de producir una
aplicacion a partir de una descripcion del modelo del dominio, pero el DSL esta
centrado en un problema especifico y puede producir una mayor parte de la
logica requerida.

Centrandose en el contexto del gobierno electronico, en la literatura actual
se recogen varias diferencias en la forma en que los procesos de negocio de go-
bierno electrénico deberian disefiarse de forma distinta a los procesos de negocio
del sector privado. Klischewski y Lenk afirmaron que en el sector publico, mu-
chos procesos requieren tomas de decisiones poco estructuradas (ya sea por una
persona o por un comité) y negociaciones, por lo que es necesario que los ges-
tores puedan alterar el flujo del proceso con mayor flexibilidad [12]. En el DSL
propuesto, algunas de las transiciones de estados pueden basarse en decisiones
tomadas por roles concretos. Los generadores podrian anadir la capacidad de
que los administradores de las aplicaciones pudieran forzar ciertos cambios de
estado en situaciones inesperadas.

Becker et al. propusieron un enfoque distinto para modelar procesos de go-
bierno electronico, denominado PICTURE [2]. En vez de una notacion grafica
de proposito general como BPMN, PICTURE define un proceso como un con-
junto de secuencias alternativas de bloques reutilizables especificos del dominio.
La secuencia concreta es escogida a partir de las circunstancias concretas de la
instancia del proceso. Mientras que Becker et al. evitaron una notacién clasica
de diagramas de flujos para simplificar el analisis de procesos existentes, en el
DSL propuesto se usa una notacion textual para simplificar los generadores de
codigo y reducir la cantidad de formacion necesaria en su uso.

3. Definicion del lenguaje

Resumiendo las anteriores secciones, los requisitos del lenguaje son:

= La descripcién del proceso deberia incluir la informacion a guardar, los roles
que participan y los estados por los que pasa el documento.

= Cada estado deberia indicar quién puede acceder a qué partes del documento,
y de qué forma.

= El lenguaje deberia permitir definir directamente transiciones basadas en
plazos y/o decisiones, y deberia ser posible integrar en el codigo generado
logica personalizada para ciertas transiciones.

= El lenguaje deberfa aportar suficiente informaciéon para generar una imple-
mentacion inicial, y a la vez ser lo bastante sencillo para que crear un nuevo
generador no sea muy costoso.

= El lenguaje deberia permitir anadir anotaciones especificas del generador sin
exigir cambios en su gramatica.

= La edicion y el control de versiones deberfa ser posible con herramientas
estandar.

3.1. Sintaxis abstracta

La figura 1 muestra un diagrama de clases UML con la sintaxis abstracta
del DSL propuesto. Una APPLICATION se divide en ELEMENTs, de los que hay
cinco tipos. SITE es el mas sencillo: declara el nombre de la aplicacion (por ejem-
plo, «Facturasy). Los elementos OPTIONS tienen pares clave/valor (instancias de

Application

0..n
Site Element
name: EString
Options | Role | | Process | | Entity |
|name: EString | |name: EString | |name: EString |
YO.,H to,.n
Property ProcessElement
name: EString 0.n
values: EString[*]
assigned to » T
| | 0..n
State Section Field
target 0..1
name: EString > name: EString name: EString
type: FieldType

% % T

0 0..n
0..n
StateElement
A target
section 0..n
‘ StateRole ‘ StateTransition SectionElement
>

Permission Property Group
type: PermType name: EString
target group 0..1
| target field

Figura 1. Diagrama de clases UML con la sintaxis abstracta del DSL propuesto.

PROPERTY) que pueden ser utiles para generadores externos. Estos pares/clave
valor son utilizados también en otras clases del metamodelo, como FIELD, STA-
TETRANSITION: para ahorrar espacio, en esos casos se han omitido sus atributos.

Los ROLES definen los distintos roles que intervienen de la organizacion,
como «Contabley o «Gestor del Departamento». Estos elementos aportan un
nombre y una serie de objetos PROPERTY que podrian ser usados por el generador
para integrar el rol con sistemas internos de autenticacion (como un directorio
LDAP). Si no se indicase nada, los generadores podrian implementarlo como un
rol interno de la aplicacién, a gestionar a través de su interfaz de administraciéon
interna («back-offices).

Las instancias de ENTITY son entidades del modelo de datos que deben ha-
berse creado antes de poder rellenar cualquier documento, como «Pais» o «Es-
tado». Una ENTITY contiene FIELDs con la informacion a guardar acerca de sus
instancias. Cada FIELD tiene un nombre y un tipo especifico del dominio admi-
nistrativo (como «moneda» o «documento de identidad») y cero o mas instancias
de PROPERTY que aportan informacion adicional a los generadores.

Finalmente, el tipo de elemento mas importante y complejo es un PROCESS.
Cada instancia describe a un proceso completo (por ejemplo, «Peticion de Ba-
ja»). Contienen a su vez varios tipos de PROCESSELEMENTS:

= Instancias de ENTITY especificas del proceso, como seria el caso de RAZON-
BAJA para el proceso de «Peticion de Baja» si se quisiera limitar el conjunto
de razones disponibles para la baja.

Instancias de SECTION que organizan los FIELD del documento gestionado
y se pueden subdividr opcionalmente en GROUPs.

Por ejemplo, en el caso del proceso de facturas se podria tener la seccion
«Conceptosy», y un grupo seria «Concepto» (con los campos «Precio», «Can-
tidad» y «Descripciony, por ejemplo). Esta estructura es atil para generar
codigo y para especificar reglas de control de acceso.

Instancias de STATE, con los estados en los que puede estar el proceso. Un
STATE tiene asociado un conjunto de STATEROLEs para cada rol de interés,
que a su vez tienen instancias de PERMISSION con cada una de las acciones
que un rol puede realizar sobre las distintas partes del documento en el estado
en cuestiéon. Un rol puede recibir todos los permisos de una vez, o puede sé6lo
editar o ver unas secciones, grupos o campos determinados.

Un STATE también puede contener STATETRANSITIONS con transiciones a
otros estados. Una transicién puede activarse cuando todas las condiciones
(especificadas mediante instancias de PROPERTY) se cumplen: estas condi-
ciones podrian combinar decisiones explicitas por usuario («Aceptado» o
«Rechazado»), fechas («Fuera de plazo») o logica de negocio personalizada.
Se podrian disponer varias reglas alternativas para ir al mismo estado usando
miltiples STATETRANSITIONS.

Se han implementado varias reglas de validaciéon sobre los modelos. Actual-
mente estan en Xtend [8] (un dialecto de Java) y se estan migrando a OCL:

= Debe haber exactamente un SITE.

= No se permiten dos ROLE o dos PROCESS con el mismo nombre.

= El nombre de un PROCESS s6lo debe user caracteres alfabéticos.

= En un PROCESS, no puede haber dos SECTION con el mismo nombre.

= En un STATE, no puede haber dos STATEROLE hacia el mismo rol.

= En una SECTION, no puede haber dos elementos con el mismo nombre.

= En un GROUP, no puede haber dos FIELD con el mismo nombre.

= En un contenedor de PROPERTY, no puede haber dos con el mismo nombre.
= Debe haber al menos una SECTION definida por cada PROCESS.

= Debe haber al menos un estado «initial» por cada PROCESS.

3.2. Sintaxis concreta

Dado que la edicién y el control de versiones no deberfan exigir herramientas
especializadas, se decidi6é utilizar una notacién textual para el DSL. La nota-
cion textual es muy cercana a la sintaxis abstracta: por lo general, existe una
correspondencia directa entre el concepto abstracto y su sintaxis.

El listado 1 muestra una gramatica simplificada para la sintaxis concreta. De
la forma habitual, (x) + significa «uno o mas x», (x) * significa «cero o mas x»,
(x) ? quiere decir «cero o un x» y x|y es «x o y». El espaciado es ignorado, y

Listado 1. Sintaxis concreta del DSL propuesto.

site NombreSitio;

options { (Property;)=* }
(role NombreRol { (Property;)x } | role NombreRol;)*
(entity NombreEntidad { (Tipo ((Property (, Property)=*))? Nombre;)x })*

(process NombreProceso {

(entity NombreEntidad { (Tipo ((Property (, Property)x))? Nombre;)x })*
(section NombreSeccidén {
((email|choice|...otros FieldType...) ((Property (, Property)=x))? Nombre;
| group NombreGrupo { (Tipo ((Property (, Property)x))? Nombre;)+ }

) *
P+
(state NombreEstado {
(permissions NombreRol {
((editable|viewable) all;
| (editable|viewable) NombreSeccidn;
| (editable|viewable) NombreSeccidn.NombreGrupo;
| (editable|viewable) NombreSeccidén.NombreCampo;
| (editable|viewable) NombreSeccidén.NombreGrupo.NombreCampo;
) *
})*
(transition (Property (, Property)=*) NombreEstado;)*
P+
})*

las palabras clave y paréntesis literales se muestran en negrita. Una PROPERTY
es de la forma Nombre = Valor (, Valor) x.

Dado que la graméatica ocupa menos de 30 lineas en este formato simplificado,
puede verse que es un lenguaje bastante sencillo que deberia ser facil de aprender.
Sin embargo, tiene muchas referencias cruzadas, por lo que seria ttil tener un
editor que pudiese comprobarlas de forma continua. El editor deberia disponer
de autocompletado sensible al contexto, como en el momento de rellenar las
referencias a un campo concreto para el control de acceso.

El analizador sintactico se podria implementar de forma que no limitase los
nombres de las PROPERTY asociadas a los distintos conceptos, de manera que
se pueda aportar informacién al generador sin tener que cambiar la gramaética.
Cada generador documentara las opciones adicionales que aporte mas alla de las
definidas por el DSL en si.

4. Caso de estudio

En esta seccién se presentard un caso de estudio que utiliza el DSL para
describir un proceso sencillo de examinacién y generar una aplicaciéon que lo
implementa. Tras una descripciéon general del proceso, se detallardn los puntos
maés importantes de la implementacion y se evaluaran los resultados obtenidos

4.1. Descripcién

El proceso de este caso estudio modela un examen, con dos roles («estudian-
te» y «profesory) y estos pasos:

© W N oW

e
= o

NN NN NN SRR e e
AO R WNRO® XN TN ®N

1. El estudiante inicia el proceso introduciendo su informacién personal y res-
pondiendo a la primera parte del examen. Algunas de las preguntas son de
respuesta libre, otras tienen respuestas predefinidas, y una de las preguntas
saca las posibles respuestas de la base de datos.

El profesor ya puede ver los exdmenes parcialmente realizados, pero no puede
introducir todavia notas.

2. Tras una cierta fecha, la segunda parte del examen (con dos preguntas numé-
ricas) se hace visible y la primera parte ya no es editable por el estudiante.
Los estudiantes pueden rellenar lo que piensan sobre el examen, y los profe-
sores pueden seguir viéndolo todo, pero no pueden introducir notas todavia.

3. Tras una cierta fecha o si el estudiante lo indica explicitamente, el examen
es «entregado» y ya deja de ser editable por el estudiante. El profesor ya
puede poner la nota, pero no es visible todavia por el estudiante.

4. Una vez el profesor cierre la evaluacién, el examen entra en estado «cerrado»
y el estudiante ya puede ver la nota. Todos los campos quedan de sélo lectura.

El listado 2 muestra la descripcion del proceso mediante el DSL propuesto.
Algunas fechas y campos se han acortado por motivos de espacio. La linea 1
indica que la aplicacion a generar se llama «Examen». Las lineas 2-5 incluyen
varias opciones para el generador dirigido a Django. En concreto, sugieren usar
una determinada plantilla base con la imagen corporativa, alojada en una «app»
Django bajo una cierta direccion. La linea 7 declara los roles «estudiante» y
«profesor» antes mencionados.

El resto del listado de la linea 9 en adelante esta dedicado al proceso «exa-
meny». Una entidad llamada «Respuestas3» es declarada en la linea 11: sus ins-
tancias son las opciones a elegir por los estudiantes en la pregunta 3. Entre las
lineas 13-32, los campos del documento se organizan en tres secciones. La sec-
cibn «preguntas» se divide en dos grupos y un campo: mediante los grupos se
organiza mejor la interfaz y se simplifican las especificaciones de control de ac-
ceso. Los campos opcionales tienen «blank» a True, ya que algunas preguntas
pueden quedarse en blanco.

Los 5 estados estan descritos entre las lineas 34 y 58. El estado «initial» es
un caso especial: representa el estado previo al inicio del proceso como tal, y
sus transiciones describen quién puede iniciar el proceso y cuando. Los otros 4
estados coinciden con los pasos que se describieron anteriormente.

4.2. Implementaciéon

El analizador sintactico y editor para el lenguaje en la secciéon 3 han sido
implementados mediante Xtext [5]. A partir de una gramatica EBNF, Xtext pro-
duce un metamodelo Ecore[16] con la sintaxis abstracta del lenguaje y un editor
avanzado con comprobaciéon automatica y coloreado de sintaxis, autocompleta-
do, vistas de navegacion y refactorizaciones sencillas. La figura 2 muestra una
toma de pantalla del editor generado. El editor ha sido extendido manualmente
para mejorar el autocompletado en la asignacion de permisos.

Listado 2. Proceso de examinacién descrito mediante el DSL propuesto.

site Examen;

options {
django_base_template = "template/base.html";
django_extra_apps = "template = https://.../";

role estudiante; role profesor;
process examen {
entity Respuestas3 { string respuesta; }

section personal ({

fullName nombreEstudiante;

identityDocument (label="Documento identidad:") docid;
email (label="Email") mail;

}

section preguntas {

group partel {
string (blank="True") pl;
choice (values="R1,R2,R3", blank="True") p2;
choice (table="Respuestas3", blank="True") p3;

}

group parte2 {
currency (label="P4 (euros):", blank="True") p4;
integer (label="P5 (entero):", blank="True") pS5;
}

choice (values="Bien,Normal,Mal", blank="True") opinion;

}
section evaluacion { float nota; }

state initial {

transition (decision_by="estudiante", after_date="...", before_date="...") partel;
}

state partel {

permissions profesor { viewable all; }
permissions estudiante { editable personal, preguntas.partel; }
transition(after_date="...") parte2;

}
state parte2 {
permissions profesor { viewable all; }
permissions estudiante {
viewable test.partel;
editable personal, test.parte2, test.opinion;
}
transition(decision_by="estudiante", before_date="...") evaluacion;
transition (after_date="...") evaluacion;
}
state evaluacion {
permissions profesor { viewable all; editable evaluacion; }
permissions estudiante { viewable personal, preguntas; }
transition (decision_by="profesor") cerrado;
}
state cerrado {
permissions profesor { viewable all; }
permissions estudiante { viewable all; }

}

o B N I N

BB R A A W W W W W W W W WWNNNNNNNNNNE R R E R e O
AN~ O©®®TO R WENONRO®©®TIO XA RNRO®©OWN®A K ®N R O

45

= ejemplo.apds| 22 = @ g outline & |<’:;>‘ A = =9
site Examen;

options { SEamen
django_base template = "templates/base.html"; <unnamed>
django extra apps = "templates = https://.../";
- - estudiante
profesor
role estudiante; role profesor;
exam
process exam { i= Respuestas3
entity Respuestas3 { string respuesta; } = personal
section personal { i= preguntas
fullName nombreEstudiante; = evaluacion
identityDocument (label="Documento identidad:") docid; -
email(label="Email") correo; 1= initial
= 1
section preguntas { parte
group partel { I= parte2
string pl; = evaluacion
choice(values="Al,A2,A3", blank="True") p2; B
choice(table="Respuestas3", blank="True") p3; '= cerrado

group parte2 {
currency(label="0Q4 (euros):") p4;
integer(label="05 (entero):", blank="True") p5;
file(blank="True") p6;

choice(blank="True", values="Good,OK,Bad") opinion;

}

Figura 2. Toma de pantalla del editor basado en Xtext

Bienvenido, estudiante (Cerrar sesion).
INICIO

Activos Cerrados Procesos Inhabilitad

Lista de Procesos Disponibles

Show |10 v |entries Search:
Accion 4 Nombre del proceso Iniciable por Tras fecha Antes de fecha
Start Examen Estudiante 2015/04/20-14:00:00 2015/04/25-14:00:00
Showing 1 to 1 of 1 entries Previous 1 Next

Lista de Procesos Incompletos

Show |25 ¥ |entries Search:

Accion Usuario iniciador Estado actual Fecha de creacion Fecha de altima modificacion

Mo data available in table

Showing 0 to 0 of 0 entries Previous Next

Figura 3. Toma de pantalla de la aplicacion web generada: lista de procesos

Bienvenido, estudiante (Cefrar sesion)
INICIO

0s Disponibles Procesos Incompletos Procesos Activos Procesos Cerrados Procesos Inhabilitados

Editar examen
Seccién de datos personales

Nombre: Alumno
Apellidos: Ejemplo
Pasaporte: ¥ XYZZY
Correo electrénico: bar@example.com

Seccién de preguntas
Grupo 1
P1:|E
P2:| Al v
P3:|B v
Grupo 2

P4 (euros): |23,00

PS5 (entero): |30
Pé: Actualmente: Jejemplo-i18n.tar.gz) Limpiar
Modificar:| Seleccionar archivo | Ningun archivo seleccionado
Opinién: | Normal v

Enviar||Grabar| Enviar y cambiar al estado evaluacion)

Figura 4. Toma de pantalla de la aplicacion web generada: formulario del proceso

Se ha implementado un generador por separado que toma una descripcion
en el DSL propuesto y produce una aplicaciéon web para el marco Django, usan-
do una base de datos PostgreSQL. El generador esta escrito en EGL («Epsilon
Generation Language» [7]), que proporciona modularidad y la capacidad de te-
ner «regiones protegidas» que se conservan al reescribir un archivo existente.
Actualmente, el generador tiene 4847 lineas de codigo.

En el caso de la descripcion de la seccion 4.1, la aplicacion generada ocupd
1344 lineas de cédigo Python, 1527 lineas de plantillas HTML y unas 266 lineas
de guiones de soporte y documentacion. Estas lineas cubren todo lo necesario pa-
ra guardar los formularios, validarlos, implementar los estados y los controles de
acceso, poder traducir la interfaz a varios idiomas y guardar formularios parcial-
mente rellenados, entre otros aspectos. Aunque es muy probable que el codigo
generado deba ser personalizado, los desarrolladores no tendran que empezar
desde cero y tendran una base fundamentada en las practicas recomendadas del
marco, pudiendo iterar mas rapido en la definicién del proceso a implementar.

En las figuras 3 y 4 se puede ver el aspecto de la aplicacién generada. El
enfoque de la aplicacion es el de una «oficina virtual»: tal y como se ve en la
figura 3 el usuario dispone de una variedad de procesos «disponiblesy (listos
para iniciar), «activosy (iniciados y no en un estado final), «cerrados» (en un
estado sin transiciones salientes) e «inhabilitados» (han dejado de ser iniciables).

Opcionalmente, los usuarios pueden dejar un formulario a medio rellenar y volver
a él posteriormente: estos procesos son «incompletosy.

Por otro lado, la figura 4 es el formulario que ve el estudiante en el estado
«parte2». Dicho formulario dispone de tres opciones: «Enviary normalmente el
formulario, «Grabar» su estado actual sin enviarlo (dejandolo como un borrador)
o «Enviar y cambiar al estado evaluacion», por el que el alumno entregaria su
examen antes del final del plazo. Este tercer botén esté disponible gracias a la
transicion basada en decisiones que se especificd en la linea 48 del listado 2.

4.3. Limitaciones actuales

El DSL, el editor y el generador presentan actualmente varias limitaciones.
Una limitacion natural es que el codigo generado normalmente requerira algin
tipo de retoque manual, dada la necesidad de incluir alguna logica particular de
presentacién o de negocio, o integrar la aplicacién con algin sistema heredado
imprevisto. Se ha seguido el enfoque aceptado en la literatura existente [10],
en el que se prefiere tener un DSL mas pequeno y centrado en algo particular.
El generador para Django y otros futuros generadores tendrdn que establecer
los mecanismos necesarios para separar los retoques del codigo generado (p.ej.
mediante las regiones protegidas antes mencionadas).

Hasta la fecha, solo se ha evaluado la herramienta a través de casos de estudio
basados en nuestras experiencias manteniendo varias aplicaciones internas de la
Universidad de Cadiz. Una vez la herramienta esté lo suficientemente madura,
se planea realizar experiencias con estudiantes o técnicos de la Universidad de
Cadiz u otras organizaciones, comparando su productividad con y sin el DSL y
analizando sus impresiones y sugerencias de mejora.

El DSL se centra en describir el proceso actual, y de por si no tiene indica-
ciones para migrar procesos actualmente en ejecucién a una nueva versiéon con
estados o campos muy distintos. En esta version inicial del DSL, se ha decidido
delegar la miracion de datos a la herramienta de migraciones que tenga el marco
web: por ejemplo, Django implementa la infraestructura necesaria para realizar
migraciones de la estructura de la base de datos y sus datos desde la version
1.7. La migracion de procesos y su monitorizaciéon quedan también delegados al
entorno que produciria el generador.

La semantica de los procesos implementados s6lo permite que esté activo un
estado a la vez. Aunque esto hace que el DSL sea menos general que un lenguaje
de modelado de procesos de negocio de propoésito general como BPMN [14],
basado en redes de Petri, o WS-BPEL [13], es equivalente a algunas de las
plataformas de «oficina virtual» y aplicaciones heredadas que se encuentran en
la Universidad de Cédiz.

Los estados no incluyen soporte actualmente para precondiciones, invarian-
tes o postcondiciones que no sea la comprobaciéon de los campos obligatorios
oportunos. Se planea anadir soporte para las condiciones méas comunes al DSL
en futuras versiones: en la préctica, los casos mas complejos se delegaran a una
region protegida.

5. Conclusiones y trabajo futuro

Existe un tipo mas sencillo de procesos de negocios (procesos «administrati-
vosy) que son muy comunes. Estos procesos consisten en gestionar un formulario
a lo largo de varios estados y roles dentro de una organizacién. Implementar la
logica basica y la infraestructura para estos procesos una y otra vez malgasta
un tiempo precioso que se podria aprovechar para entender mejor el proceso e
implementar los detalles que son realmente especificos del proceso.

Este trabajo ha propuesto un enfoque para acelerar la implementaciéon de es-
tos procesos, a la vez que se evita quedar encerrado en una tecnologia concreta.
El enfoque consiste en describir el proceso con un lenguaje especifico de dominio
y usar un generador definido por separado para producir una aplicacién web en
el marco preferido por la organizacion. El enfoque se ha ilustrado describiendo
un proceso de examinacion, y ha sido implementado mediante Xtext y EGL. El
generador produce una aplicacién web que puede ser usada inmediatamente, si-
guiendo las précticas recomendadas del marco web Django y dando rapidamente
una base que retocar segin las necesidades del usuario.

Los resultados mostrados tienen varias limitaciones. Es de esperar que el
codigo generado tenga que ser personalizado, ya que un DSL no puede cubrir
todas las posibilidades concebibles. Igualmente, el DSL no trata de reemplazar
a un lenguaje completo de modelado de procesos como BPMN: esté disenado
especificamente para procesos administrativos. Por dltimo, el DSL s6lo se ha
evaluado hasta la fecha con casos de estudio internos.

Existen varias lineas de trabajo futuro. A medida que se desarrollen casos
de estudio mas avanzados, se expandira el DSL con conceptos como limites en
el namero de procesos por usuario, el control de la visibilidad de procesos en-
tre usuarios o las precondiciones y postcondiciones de los estados. Ademés de
mejorar el editor y los generadores, se planea incluir validaciones continuas mas
avanzadas del proceso y visualizaciones graficas. A medio plazo, se desea desa-
rrollar generadores de codigo para otras tecnologias (como Symfony 2 o un motor
BPMN) y realizar estudios empiricos de la utilidad del DSL con estudiantes y
técnicos de dentro y fuera de la Universidad de Cadiz, evaluando su usabilidad
y su productividad. A largo plazo, se esta considerando desarrollar una nota-
cion grafica para el lenguaje, procurando separar los detalles de presentacion del
diagrama del modelo en si (que deberia guardarse en el mismo formato textual
actual).

Agradecimientos

Este trabajo ha sido financiado por el proyecto de investigacion «Mejora de
la calidad de los datos y sistema de inteligencia empresarial para la toma de
decisiones» (2013-031/PV/UCA-G/PR) del Plan Propio de Investigacion de la
Universidad de Cédiz.

Referencias

10.

11.

12.

13.

14.

15.

16.

. Apache Software Foundation: Apache Isis. http://isis.apache.org/ (marzo

2015), fecha de ultima comprobacion: 23 abril 2015.

Becker, J., Pfeiffer, D., Réackers, M.: Domain specific process modelling in public
administrations—the PICTURE-approach. In: Electronic Government, Lecture No-
tes in Computer Science, vol. 4656, pp. 68-79. Springer (2007)

Bonitasoft: Pagina principal del proyecto Bonita BPM. http://www.
bonitasoft.com/ (marzo 2015), fecha de tltima comprobacion: 23 abril 2015.
Django Software Foundation: Pagina principal del marco web Django. https:
//djangoproject.com (marzo 2015), fecha de tltima comprobacién: 23 abril
2015.

Eclipse Foundation: Pagina principal del proyecto Xtext. http://www.eclipse.
org/Xtext/ (septiembre 2014), fecha de ultima comprobacion: 23 abril 2015.
Eclipse Foundation: Pagina principal del proyecto EMF Forms. https://www.
eclipse.org/ecp/emfforms/ (marzo 2015), fecha de tltima comprobacion: 23
abril 2015.

Eclipse Foundation: Pagina principal del proyecto Epsilon. https://eclipse.
org/epsilon/ (2015), fecha de ultima comprobacion: 23 abril 2015.

Eclipse Foundation: Pagina principal del proyecto Xtend. http://www.
eclipse.org/xtend/ (marzo 2015), fecha de ultima comprobacion: 28 junio
2015.

Evans, E.J.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison Wesley, Boston, primera edn. (Aug 2003)

Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, primera edn.
(septiembre 2010)

Intalio, Inc.: Pagina principal del proyecto Intalio|BPMS. http://www.
intalio.com/products/bpms/overview/ (marzo 2015), fecha de ultima com-
probacién: 23 abril 2015.

Klischewski, R., Lenk, K.: Understanding and modelling flexibility in administrati-
ve processes. In: Electronic Government, Lecture Notes in Computer Science, vol.
2456, pp. 129-136. Springer (2002)

OASIS: Web Service Business Process Execution Language (WS-BPEL) 2.0. http:
//docs.oasis—-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html (abril
2007), fecha de ultima comprobacion: 24 abril 2015.

Object Management Group: Business Process Model and Notation 2.0.2. http://
www.omg.org/spec/BPMN/2.0.2/ (enero 2014), fecha de tltima comprobacion:
24 abril 2015.

OpenXava.org: Pagina principal del proyecto. http://www.openxava.org/
web/guest/home (marzo 2015), fecha de ultima comprobacion: 23 abril 2015.
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, segunda edn. (diciembre 2008)

