
Cross-IDE remote debugging of model management programs
through the Debug Adapter Protocol

Antonio García-Domínguez
a.garcia-dominguez@york.ac.uk

University of York
York, United Kingdom

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

University of York
York, United Kingdom

Abstract
Eclipse Epsilon is an open-source family of model management
languages and tools, which has seen significant use in industry and
academia. Epsilon programs have been used in a variety of scenar-
ios, from being simply run in the Eclipse IDE, to being embedded
in Eclipse plugins, Java programs, web services, Ant workflows,
and Gradle build scripts. When one of these embedded Epsilon
programs showed unexpected behaviour, debugging it required
running it from the Eclipse IDE: reproducing the behaviour was
complicated if it also required recreating a complex environment.
Likewise, users asked for supporting debugging from other IDEs
beside Eclipse, as its market share has dropped in the last years. In
this demo, we will show a new feature in Epsilon 2.6 which allows
for remote debugging of Epsilon programs in a broader range of
scenarios, using the Microsoft Debug Adapter Protocol. We will
also demonstrate how this remote debugging support can be reused
from other IDEs (specifically, Microsoft Visual Studio Code), with
minimal effort compared to re-implementing a dedicated debugger.

CCS Concepts
• Software and its engineering → Integrated and visual de-
velopment environments; Domain specific languages.

Keywords
Remote debugging, Debug Adapter Protocol, Eclipse, Visual Studio
Code, Epsilon, model management languages
ACM Reference Format:
Antonio García-Domínguez and Dimitris Kolovos. 2024. Cross-IDE remote
debugging of model management programs through the Debug Adapter
Protocol. In ACM/IEEE 27th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS Companion ’24), September 22–27,
2024, Linz, Austria. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3652620.3687783

1 Introduction
The Eclipse Epsilon family of model management languages [12]
has seen significant use across industry1 (having been embedded
1https://eclipse.dev/epsilon/users/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687783

inside commercial solutions such as Rolls-Royce’s CaMCoA Stu-
dio [2]) and education2. As its userbase has broadened, demand has
grown for debugging Epsilon programs running in a variety of envi-
ronments and from different integrated development environments
(IDEs).

Epsilon programs are often executed outside of an IDE: they
can be run from Ant and Gradle workflows, and from programs
written in JVM-compatible languages (as a form of scripting for
model management). These embedded Epsilon programs may need
debugging as well. Up to the current stable version of Epsilon (2.5),
debugging support was limited to programs running from Eclipse
launch configurations: this meant that users of embedded Epsilon
programs had to find a way to reproduce their setup from Eclipse,
which was non-trivial in scenarios with significant customisations
to the environment.

Additionally, as core developers of Eclipse Epsilon, we have
seen increased demand for improved support in other IDEs besides
Eclipse. Recent Stack Overflow developer surveys [19] have shown
that Eclipse’s market share has been steadily declining: while 15.87%
of the 82,277 responses used Eclipse in 2021, this dropped to 12.57%
out of 71,010 responses in 2022 and then 9.9% out of 86,544 re-
sponses in 2023. A community member developed a Visual Studio
Code extension [11] (the most popular IDE in the 2023 Stack Over-
flow survey, selected by 73.71% of the responses) to provide syntax
highlighting for Epsilon programs, with an embedded language
server for syntactic validation. While it was possible to reuse the
existing Gradle and Maven support in VS Code to run Epsilon pro-
grams through Epsilon’s Ant tasks, the debugging facilities present
in Eclipse were not available.

We present a new feature that will be incorporated in the upcom-
ing 2.6 release of Eclipse Epsilon: support for remote debugging of
Epsilon programs through the Microsoft Debug Adapter Protocol
(DAP) [16]. This new feature addresses the two problems above: it
allows for debugging Epsilon programs running outside of an IDE,
and reduces the effort involved in supporting debugging from other
IDEs besides Eclipse. Specifically, the demonstration will show how
remote debugging can be performed from the Eclipse and VS Code
IDEs, obtaining consistent user experiences thanks to the use of
the same debugging codebase.

The rest of the paper is structured as follows: Section 2 presents
background knowledge, in the form of an overview of DAP and its
currently available implementations. Section 3 discusses the tool to
be demonstrated: the new DAP-compliant debug adapter in Epsilon.
Section 4 presents related work around remote debugging, with a
specific focus on its support across model management languages.

2https://eclipse.dev/epsilon/users/education/

https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-1724-6563
https://doi.org/10.1145/3652620.3687783
https://doi.org/10.1145/3652620.3687783
https://eclipse.dev/epsilon/users/
https://doi.org/10.1145/3652620.3687783
https://eclipse.dev/epsilon/users/education/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria García-Domínguez et al.

Figure 1: Communication between DAP client, DAP server,
and Epsilon program

Finally, Section 5 offers some general conclusions and an overview
of our plans for further development.

2 Background
This section provides a general overview of the Debug Adapter Pro-
tocol, and discusses the types of DAP-related software to consider.

2.1 The Microsoft Debug Adapter Protocol
Implementing debugging support for a language involves two as-
pects: i) writing the additional code needed to control the execution
flow of its programs (e.g. setting breakpoints and stopping/contin-
uing execution) and inspecting its state (e.g. listing the running
threads, their stack traces, and the available variables in each stack
frame), and ii) creating the appropriate tooling so the user can ac-
cess these facilities. While i) ideally only needs to be developed
once for the language, the traditional approach for ii) was to write
new debugging extensions from scratch for every IDE, requiring
significant duplication of effort.

To avoid this, Microsoft released the Debug Adapter Protocol
(DAP) specification [16], which describes how a development tool
(e.g. an IDE) exchangesmessages back and forthwith a tool-agnostic
debug adapter that translates the specifics of the language’s debug-
ging APIs to a generic set of JSON-based messages. The goal of DAP
is to enable reusing the same generic DAP-compliant debugging UI
for every language that has a DAP debug adapter. This is similar
in spirit to how the Microsoft Language Server Protocol (LSP) [17]
aims to decouple the IDE from the details of editing programs in a
specific language (e.g. syntax checking, code completion). Figure 1
shows how the DAP approach translates to Epsilon: the DAP-based
debuggers in Eclipse and VS Code talk to the Epsilon debug adapter,
which talks to the running Epsilon program.

DAP only requires maintaining two streams of bytes: one from
the DAP client (the IDE) to the DAP server (the debug adapter), and
another in reverse. These streams could come from the two sides
of a TCP connection (typically used when attaching to a running
program), or from the standard I/O of a process (commonly used
when launching a program for debugging). DAP supports request-
response communication from the client to the server (e.g. “set
these breakpoints”), as well as the sending of events from the server
(e.g. “the program has stopped at a breakpoint”).

2.2 DAP implementations
As mentioned above, DAP essentially requires that the development
tool has a compliant debugging UI, and that the language has a
debug adapter. It only specifies the JSON messages and does not
require using a specific set of client or server libraries: either side
can be implemented in the most appropriate technical stack. This
has allowed a broad variety of implementations to appear, some of
which are listed in the official DAP homepage [15]. On the client
side, these include desktop-based IDEs such as Eclipse (via the
LSP4E [8] project) and Visual Studio Code, web-based IDEs such as
Theia, and editors like Neovim. On the server side, there are debug
adapters for most popular languages (e.g. JavaScript, Python, Java,
C#, or C++).

In order to simplify the work involved in supporting the DAP
protocol, a number of Software Development Kits (SDKs) have been
developed by the community. Microsoft’s implementations can be
considered to be the reference (e.g. their TypeScript-based library
for implementing and testing debug adapters). The Eclipse LSP4J [9]
open-source project provides an SDK for writing debug adapters in
Java, which is ideal for Epsilon as it is written in Java.

3 Tool: the Epsilon debug adapter
This section discusses the overall design of the Epsilon debug
adapter, and then illustrates various usage scenarios for it. The
examples are adapted from those in our sample project on GitHub3.

3.1 Overall design
As mentioned above, the new debug adapter in Epsilon 2.6 is writ-
ten on top of LSP4J, which takes care of the low-level details of
message (de)serialisation, connection management, and message
correlation. This allowed us to focus on the core task: to implement
remote debugging for the Epsilon languages4. This is a total of 12
different languages, each with their own specifics for debugging:
thankfully, they are all either based on a common language (the
Epsilon Object Language, or EOL), or are pre-processed into that
common language (templates written in the Eclipse Generation
Language are transformed on-the-fly to EOL). The debug adapter
mostly relies on the commonly available facilities, and delegates
to the languages themselves for language-specific details (e.g. to
verify whether a breakpoint location is valid or not).

Figure 2 shows a UML class diagramwith a high-level view of the
key components in this design. The Program running the Epsilon
program is responsible for creating and configuring the appropriate
IEolModule implementation (e.g. EolModule for EOL or EtlModule
for ETL): since the Epsilon APIs allow for the integration of models
from arbitrary technologies using its Epsilon Model Connectivty
APIs [7], this has been kept away from the responsibilities of the
EpsilonDebugAdapter. The debug adapter is therefore limited to
attaching to a pre-configured Epsilon program.

Having created and set up the IEolModule, the Program then
wraps the module into an instance of EpsilonDebugServer, which
abstracts away the details of setting up the EpsilonDebugAdapter

3https://github.com/eclipse/epsilon/tree/main/examples/org.eclipse.epsilon.
examples.eol.dap/epsilon
4Except for the Epsilon Wizard Language, which is only meaningful within a graphical
modelling tool.

https://github.com/eclipse/epsilon/tree/main/examples/org.eclipse.epsilon.examples.eol.dap/epsilon
https://github.com/eclipse/epsilon/tree/main/examples/org.eclipse.epsilon.examples.eol.dap/epsilon

Cross-IDE remote debugging of model management programs through the Debug Adapter Protocol MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Program

EpsilonDebugServer

+EpsilonDebugServer(module, host, port)
+run()
+getResult(): Future<Object>

EpsilonDebugAdapter

«interface»

IEolModule

+getContext(): IEolContext
+createDebugger(): IEolDebugger

«interface»

IEolContext

+getFrameStack()
+getExecutorFactory()

«interface»

IEolDebugger

+verifyBreakpoint(request)
+step()
+stepOver()
+stepReturn()

ThreadState

«creates»

«creates»

«creates»

module

«creates»«returns»

*

module

debugger

Figure 2: Simplified UML class diagram of debug adapter

and exposing it via a TCP server. The EpsilonDebugAdapter can
track not only the initial module, but also other modules that may
be launched from this initial module (e.g. the EGX template or-
chestration language may launch EGL templates). As shown in the
figure, EpsilonDebugAdapter relies on generic interfaces that are
implemented by all Epsilon languages, allowing it to create the
appropriate IEolDebugger implementation and delegate to it for
language-specific breakpoint verification and execution control,
and to access the IEolContext that exposes the current frame stack
and the execution control facilities of the language.

The debug adapter makes use of the Epsilon Model Connectivity
layer as well. When stopped at a breakpoint, the debug adapter will
delegate to the reflective capabilities of the EMC driver to inspect
the properties of values that correspond to model elements. This
allows it to show model element properties in the same way that
they would be accessible from Epsilon programs.

3.2 Debugging Epsilon programs from Java
Having explained the high-level design, we can show the various

ways inwhich the debug adapter can be used. If the Epsilon program
is being executed from a piece of Java code, it can be changed to use
remote debugging by following the approach in Listing 1. The debug
Boolean flag is just for illustration: the exact way to choose between
regular execution and remote debugging is up to the developer.
When the debug server is run, it will wait for an attach request
from a debugger before starting the Epsilon program. After the
program finishes running and the server shuts down, it will get its
result or throw the exception that crashed the program, as usual.
It is worth noting that the EpsilonDebugServer class includes APIs
to allow developers to map arbitrary module URIs to filesystem
paths, in order to debug Epsilon programs that are loaded from

Listing 1: Running an Epsilon program in remote debugging,
compared to normal execution

1 // ... module creation and setup code ...
2 Object result;
3 if (debug) {
4 var server = new EpsilonDebugServer(module, port);
5 server.run();
6 result = server.getResult().get();
7 } else {
8 result = module.execute();
9 }
10 // ... module disposal code ...

Listing 2: launch.json configuration for remote debugging
via VS Code on port 4040

1 {
2 "type": "epsilon",
3 "request": "attach",
4 "name": "Debug program",
5 "port": 4040
6 }

Figure 3: Configuration for remote debugging an Epsilon
program on port 4040

other locations besides the local filesystem (e.g. packaged in a JAR
file).

Once the debug server is waiting for connections, the devel-
oper can employ any DAP-compliant client (e.g. VS Code and its
DAP-based debugger, or the Eclipse IDE after installing the LSP4E
debugger). In the case of VS Code, the developer would install
the community extension for Epsilon [11] and use the launch con-
figuration in Listing 2. For Eclipse, the developer would use the
new “Remote Epsilon Program” launch configuration type in Fig-
ure 3, which is based on the generic LSP4E launch configuration
for debugging, with some Epsilon-specific customisations such as
hyperlinks in the console for exception stack traces to the relevant
code locations.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria García-Domínguez et al.

Listing 3: Debugging EOL from Gradle
1 task runEOL {
2 dependsOn tasks.setupEpsilonTasks
3 doLast {
4 ant.'epsilon.eol'(src: 'program.eol', debug: true,

debugPort: 4040)
5 }
6 }

3.3 Debugging Epsilon programs from Ant tasks
Epsilon provides Ant tasks for workflow automation, and there
was already functionality for debugging these programs so long
as they were run from the same JVM as the Eclipse IDE. The new
remote debugging capabilities remove this restriction, allowing for
debugging Ant workflows running in a different process. A user
only needs to set the debug option to true in their task:

<epsilon.eol ... debug="true" debugPort="4040"/>

Internally, the Epsilon Ant tasks rely on a Host interface that ab-
stracts away the differences between running inside and outside the
Eclipse IDE. The DefaultHost implementation is used when running
outside Eclipse, and it will use the same approach as in Listing 1,
where the port is specified by the debugPort task option: the user
will need to separately launch a DAP debugger that connects to the
same port. When running inside the Eclipse JVM, the EclipseHost
implementation will be used, which will programmatically create
and launch a “Remote Epsilon Program” launch configuration simi-
lar to that in Figure 3: in this case, debugPort can be omitted to allow
the server to choose any available TCP port from an ephemeral
range, which will be used in the launch configuration.

3.4 Debugging Epsilon programs from Gradle in
VS Code

Given that Gradle can reuse Ant tasks and that VS Code has strong
support for Gradle via an extension, the approach in Section 3.3 can
be adapted to debug Epsilon programs running via Gradle builds5.
Using Gradle over Ant has a number of advantages, namely in its
built-in dependency management, and the greater expressiveness
of Groovy/Kotlin compared to XML.

Starting from a Gradle buildfile such as the one in Epsilon’s
documentation6, the Gradle task to debug an EOL program would
look as in Listing 3. The EOL task is part of a Gradle doLast block,
to ensure that it is only run when explicitly invoked, and not in
the Gradle configure phase used by IDEs to list the available tasks.
Combined with a launch configuration such as Listing 2, debugging
such an Epsilon program would look as in Figure 4.

With just the launch configuration, debugging would require
two interactions: starting the Gradle build, and starting the remote
debugging session. To avoid this issue, VS Code allows for specify-
ing the label of a preLaunchTask inside the launch configuration, to
5Note that Maven can also reuse Ant tasks and is supported by a VS Code extension,
so this is applicable to Maven builds as well. Due to time constraints, we will only
demonstrate Gradle.
6https://eclipse.dev/epsilon/doc/articles/running-epsilon-ant-tasks-from-command-
line/#gradle

Listing 4: VS Code task definition for single-click launching
and debugging of an Epsilon program within a Gradle build

1 {
2 "type": "gradle",
3 "script": "runEOL",
4 "group": "other",
5 "buildFile": "${workspaceFolder}/build.gradle",
6 "workspaceFolder": "${workspaceFolder}",
7 "projectFolder": "${workspaceFolder}",
8 "args": "--info",
9 "problemMatcher": [
10 "$gradle",
11 "$epsilon-debug"
12],
13 "label": "epsilonDebug",
14 "isBackground": true
15 }

be executed before the debug session is started. The task would be
defined in a separate tasks.json file, such as the one in Listing 4. The
Epsilon VS Code extension [11] defines the $epsilon-debug problem
matcher that detects the logging messages from the Epsilon debug
server that indicate that it is waiting for connections, meaning that
the debugging session can be started.

3.5 Unifying local and remote debugging in
Eclipse

After implementing remote debugging, it was noted that it had a
number of advantages over the original debugging codebase which
was tied to Eclipse APIs: its decoupling from UI concerns made it
easier to automatically test, and it used LSP4E-based UIs that would
benefit from contributions from a broader community beyond the
Epsilon userbase. For those reasons, it was decided to use DAP for
the original local debug configurations as well: the launch delegates
were updated to use the approach in Listing 1 and delegate to LSP4E
for debugging.

Given the positive experiencewith DAP and its support across VS
Code and Eclipse, we are considering re-engineering other compo-
nents of the Epsilon tooling to be based on generic implementations
compliant with popular specifications. This would further reduce
the effort of supporting newer IDEs in the future. The VS Code
extension for Epsilon includes an LSP language server which could
be reused for syntax checking and other language support details
in Eclipse and other IDEs, as well as TextMate [14] grammars for
syntax highlighting. TextMate grammars work on many other IDEs,
such as Eclipse (using TM4E [10]), or IntelliJ IDEA.

4 Related work
Remote debugging is a common feature in general-purpose pro-
gramming languages. Some examples include the Java Debug Wire
Protocol (JDWP) [18], the gdbserver for C/C++ [1], or pydevd for
Python [21] (which was originally a debugger for the Python sup-
port in Eclipse, and has been reused since in other IDEs such as
PyCharm and VS Code).

https://eclipse.dev/epsilon/doc/articles/running-epsilon-ant-tasks-from-command-line/#gradle
https://eclipse.dev/epsilon/doc/articles/running-epsilon-ant-tasks-from-command-line/#gradle

Cross-IDE remote debugging of model management programs through the Debug Adapter Protocol MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 4: Screenshot of the VS Code debugger stopped at a breakpoint inside an EOL program

Remote debugging appears to be less common in domain-specific
languages (including those dedicated to model management). There
is a Github project providing DAP support to the Rascal metapro-
gramming language [20]. TheAcceleomodel-to-text languagemoved
to LSP-based editors and DAP-based debugging in version 4, back
in 2020 [13], but we have not found any documentation on using
Acceleo outside the Eclipse IDE. We searched “lsp” through the
QVTo 3.10.8 sources [3] and could not find any mentions of LSP4J
or the DAP protocol. We similarly inspected the sources of Eclipse
OCL 6.21.0 [5], ATL 4.10.0 [4], and VIATRA 2.8.1 [6], and could not
find any mentions of LSP4J or DAP.

5 Conclusions and future work
We have presented the new remote debugging capabilities in the
Eclipse Epsilon languages for its upcoming 2.6 release, describing
the design used to support its languages in a maintainable way, and
the user experience in two IDEs (Eclipse and VS Code) and two
build systems (Ant and Gradle). We plan to continue this line of
work on re-engineering Epsilon on top of common specifications in
order to reduce the work involved in supporting newer IDEs, with
the adoption of the Epsilon LSP language server in the VS Code
extension into the main codebase, and the redesign of the current
Eclipse-based editors on top of the LSP4E and TM4E projects.

Acknowledgments
This research on remote debugging ofmodel management programs
was funded by the SCHEME InnovateUK project (#10065634).

References
[1] Gary Benson. 2015. Remote debugging with GDB. https://developers.redhat.

com/blog/2015/04/28/remote-debugging-with-gdb Last accessed: 2024-07-03.
[2] Justin Cooper, Alfonso De la Vega, Richard Paige, Dimitris Kolovos, Michael

Bennett, Caroline Brown, Beatriz Sanchez Pina, and Horacio Hoyos Rodriguez.
2021. Model-Based Development of Engine Control Systems: Experiences and
Lessons Learnt. In 2021 ACM/IEEE 24th International Conference on Model Driven

Engineering Languages and Systems (MODELS). IEEE, Fukuoka, Japan, 308–319.
https://doi.org/10.1109/MODELS50736.2021.00038

[3] Eclipse Foundation. 2023. Eclipse QVTo 3.10.8 sources. https://git.eclipse.org/c/
mmt/org.eclipse.qvto.git/tag/?h=3.10.8 Last accessed: 2024-07-03.

[4] Eclipse Foundation. 2024. Eclipse ATL 4.10.0 sources. https://github.com/eclipse-
atl/atl/tree/v4.10.0 Last accessed: 2024-07-03.

[5] Eclipse Foundation. 2024. Eclipse OCL 6.21.0 sources. https://git.eclipse.org/c/
ocl/org.eclipse.ocl.git/tag/?h=6.21.0 Last accessed: 2024-07-03.

[6] Eclipse Foundation. 2024. Eclipse VIATRA 2.8.1 sources. https://github.com/
eclipse-viatra/org.eclipse.viatra/tree/2.8.1 Last accessed: 2024-07-03.

[7] Eclipse Foundation. 2024. The Epsilon Model Connectivity Layer (EMC). https:
//eclipse.dev/epsilon/doc/emc/ Last accessed: 2024-07-03.

[8] Eclipse Foundation. 2024. LSP4EGitHub project. https://github.com/eclipse/lsp4e
Last accessed: 2024-07-03.

[9] Eclipse Foundation. 2024. LSP4J GitHub project. https://github.com/eclipse-
lsp4j/lsp4j Last accessed: 2024-07-03.

[10] Eclipse Foundation. 2024. TM4E GitHub project. https://github.com/eclipse/tm4e
Last accessed: 2024-07-03.

[11] Sam Harris. 2024. GitHub project for the Eclipse Epsilon Languages Extension.
https://github.com/Arkaedan/vscode-epsilon/ Last accessed: 2024-07-03.

[12] Dimitrios S. Kolovos, R.F. Paige, and Fiona Polack. 2006. The Epsilon Object
Language (EOL). In Model Driven Architecture - Foundations and Applications,
Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings. Springer Berlin Heidelberg, New York, NY, USA, 128–142. https:
//doi.org/10.1007/11787044_11

[13] Yvan Lussaud. 2020. Acceleo 4 ever. https://www.eclipsecon.org/2020/sessions/
acceleo-4-ever Last accessed: 2024-07-03.

[14] MacroMates Ltd. 2024. TextMate 1.5.1 documentation — Language Grammars.
https://macromates.com/manual/en/language_grammars Last accessed: 2024-07-
03.

[15] Microsoft Corporation. 2023. DAP Implementations. https://microsoft.github.
io/debug-adapter-protocol/implementors/adapters/ Last accessed: 2024-07-03.

[16] Microsoft Corporation. 2024. Debug Adapter Protocol homepage. https://
microsoft.github.io/debug-adapter-protocol/ Last accessed: 2024-07-02.

[17] Microsoft Corporation. 2024. Language Server Protocol homepage. https:
//microsoft.github.io/language-server-protocol/ Last accessed: 2024-07-02.

[18] Oracle Corporation. 2024. Java Debug Wire Protocol. https://docs.oracle.com/
javase/8/docs/technotes/guides/jpda/jdwp-spec.html Last accessed: 2024-07-03.

[19] Stack Overflow. 2023. Annual Developer Surveys. https://survey.stackoverflow.
co/ Last accessed: 2024-07-03.

[20] Jurgen Vinju, Davy Landman, et al. 2024. Rascal Language Servers Github
project. https://github.com/usethesource/rascal-language-servers Last accessed:
2024-07-03.

[21] Fabio Zadrozny. 2024. PyDev.Debugger Github project. https://github.com/
fabioz/PyDev.Debugger Last accessed: 2024-07-03.

https://developers.redhat.com/blog/2015/04/28/remote-debugging-with-gdb
https://developers.redhat.com/blog/2015/04/28/remote-debugging-with-gdb
https://doi.org/10.1109/MODELS50736.2021.00038
https://git.eclipse.org/c/mmt/org.eclipse.qvto.git/tag/?h=3.10.8
https://git.eclipse.org/c/mmt/org.eclipse.qvto.git/tag/?h=3.10.8
https://github.com/eclipse-atl/atl/tree/v4.10.0
https://github.com/eclipse-atl/atl/tree/v4.10.0
https://git.eclipse.org/c/ocl/org.eclipse.ocl.git/tag/?h=6.21.0
https://git.eclipse.org/c/ocl/org.eclipse.ocl.git/tag/?h=6.21.0
https://github.com/eclipse-viatra/org.eclipse.viatra/tree/2.8.1
https://github.com/eclipse-viatra/org.eclipse.viatra/tree/2.8.1
https://eclipse.dev/epsilon/doc/emc/
https://eclipse.dev/epsilon/doc/emc/
https://github.com/eclipse/lsp4e
https://github.com/eclipse-lsp4j/lsp4j
https://github.com/eclipse-lsp4j/lsp4j
https://github.com/eclipse/tm4e
https://github.com/Arkaedan/vscode-epsilon/
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://www.eclipsecon.org/2020/sessions/acceleo-4-ever
https://www.eclipsecon.org/2020/sessions/acceleo-4-ever
https://macromates.com/manual/en/language_grammars
https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/
https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://survey.stackoverflow.co/
https://survey.stackoverflow.co/
https://github.com/usethesource/rascal-language-servers
https://github.com/fabioz/PyDev.Debugger
https://github.com/fabioz/PyDev.Debugger

	Abstract
	1 Introduction
	2 Background
	2.1 The Microsoft Debug Adapter Protocol
	2.2 DAP implementations

	3 Tool: the Epsilon debug adapter
	3.1 Overall design
	3.2 Debugging Epsilon programs from Java
	3.3 Debugging Epsilon programs from Ant tasks
	3.4 Debugging Epsilon programs from Gradle in VS Code
	3.5 Unifying local and remote debugging in Eclipse

	4 Related work
	5 Conclusions and future work
	Acknowledgments
	References

