
EMPIRICAL STUDY

Experiences with Test-Driven Elaborated Feedback for Teaching
Introductory Programming

Antonio Garcia-Domingueza and Tony Beaumontb

aDepartment of Computer Science, University of York, Heslington, York, UK;
bCollege of Engineering and Physical Sciences, Aston University, Birmingham, UK

ARTICLE HISTORY
Compiled September 15, 2025

ABSTRACT
Background and Context: Computer Science students learning how to code need
timely and effective feedback. Delivering such feedback can be challenging in large
cohorts with diverse starting points and personal circumstances, given the available
resources.

Objective: automated test-driven feedback specific to each assignment can pro-
vide rapid feedback on common mistakes, leaving more time for instructors to pro-
vide individualized assistance.

Method: we developed AutoFeedback, an open-source system combining
instructor-designed test suites and feedback templates to deliver immediate and
task-specific elaborated feedback on interim work during practical laboratories. Au-
toFeedback was used in two editions of the first-year programming module at Aston
University. Data on student engagement, performance, and reception was collected
and analysed through descriptive statistics, Mann-Whitney / Kendall tests, and
bottom-up thematic analysis.

Findings: students engaged more consistently, liked receiving immediate feed-
back and a clear indication of progress, and requested its integration in other mod-
ules. Statistical tests showed that interim work improved with further submission
attempts in response to feedback. Some students did not know how to respond to oc-
casional terse feedback, or had tests fail due to irrelevant differences, or pass despite
of mistakes.

Implications: Automated test suites can provide interim feedback, in addition
to grading, by driving test results and program outputs through feedback templates
tailored by instructors. To be effective, instructors must monitor the student experi-
ence, refining tests and feedback templates to address common mistakes and clarify
explanations. These refinements must be communicated to students, so they feel
supported.

KEYWORDS
Unit testing; test-driven development; containerization; static analysis; testing
education

1. Introduction

The increasing demand for software developers makes computing courses increasingly
attractive to prospective students: only in the UK, HESA reported 153,825 enrolments
in computing-related courses in the 2020–21 academic year, a 16.55% increase over the
131,985 enrolments in 2019–20 (Higher Education Statistics Agency, 2022). Although

CONTACT Antonio Garcia-Dominguez. Email: a.garcia-dominguez@york.ac.uk

this is a positive trend in general, it has resulted in larger cohorts, identified by Kara,
Tonin, and Vlassopoulos (2021) to be correlated with lower grades, especially in STEM
subjects where teaching and learning are more faculty-driven (compared to the more
student-driven activities in non-STEM subjects). One cause of this drop may be the
challenge of providing effective feedback with the available resources: Poulos and Ma-
hony (2008) identified that students preferred consistent and transparent assessment
according to clear criteria with early feedback, and that the feedback contributed to
a successful transition to university for students in their first year. Delivering timely
feedback to large cohorts can be difficult, and first-year students will need more de-
tailed feedback to build a solid foundation and understand what it is like to study at
university.

In the case of a Computer Science course, the first hurdle students need to cross
is learning how to “think in code” to write programs. In the first-year CS1OOP pro-
gramming module at Aston University, students achieve this by completing weekly
programming labs to practice what they have learned from lectures and seminars. The
students spend most of the first term with an introductory Java-based programming
tool (Processing, Reas & Fry, 2006), before moving on term 2 to a full-fledged inte-
grated Java development environment (the Eclipse IDE1). This regular programming
practice is consistent with the proposal by Kolb (1984) that learning is experiential:
learners should actively do something to form ideas which are then modified through
their experiences. The process only works with timely feedback, and given the large
number of students, the process had to be automated. Given the challenge of delivering
timely and detailed feedback, in the summer of 2020 it was decided to revamp term 2 to
use test-driven development (TDD) as an additional source of feedback that students
could obtain at any time.

The CS1OOP teaching staff reviewed the tools available at the time to provide
test-driven automated feedback for students, finding them difficult to use for first-year
students without prior knowledge of Git and continuous integration, and lacking the
ability to provide customised feedback to students. Faced with this gap, we developed
AutoFeedback (AF), a system that reuses existing open source testing frameworks and
build tools, and uses containerisation to isolate student submissions. AF is available as
open source under the Apache Public License from its GitLab repository2.

This paper contributes the first description of the design of the AutoFeedback sys-
tem, as well as the requirements that motivated it, and a report of the experiences
and student feedback obtained during its use with large cohorts (with over 300 stu-
dents) in the 2020–21 and 2021–22 academic years. The discussion covers the design
and refinement of the course materials for automated test-driven feedback, and the stu-
dent engagement and performance over the experience. Thematic analyses have been
conducted on two surveys during the 2020–21 academic year, and one survey during
2021–22: both report positive results, with respectively 88.9% and 87.5% of the re-
sponses agreeing that AF helped them identify issues. At the same time, the survey
points to improvement areas for AF and the general practice of automated test-driven
feedback.

The rest of this paper is structured as follows. Section 2 presents the key pedagogic
concepts behind AutoFeedback and the provision of automated feedback for program-
ming tasks. Section 3 covers the design of AutoFeedback in more detail. Section 4
describes how AF was piloted in 2020–21 and 2021–22. Section 5 details the research

1https://www.eclipse.org/ide/
2https://gitlab.com/autofeedback

2

methods used to judge the effectiveness of AutoFeedback, and Section 6 presents our
results. Section 7 discusses the meaning of these results and the threats to their validity.
Section 8 places the results in context of related work. Section 9 offers our conclusions
and outlines several areas for further research and development.

2. Background

The nature and adequate provision of feedback has been a focus of significant research
over history: in this paper, we specifically focus on formative feedback, defined by Shute
(2008) as “information communicated to the learner that is intended to modify his or her
thinking or behavior for the purpose of improving learning”. Concluding their review,
Shute noted that useful feedback depended on three things: the student needing that
feedback, the student receiving the feedback in time to use it, and the student being
able and willing to use that feedback. While Shute found several meta-analyses that
found feedback to improve learning between .4 and .8 standard deviations (compared to
control conditions), they also observed that further research was needed on interactions
between task and student characteristics, and instructional contexts.

Wong and Beaumont (2012) surveyed students across several Computer Science-
related courses on their perception of the quality of the feedback they obtained about
their work, and noted that high-scoring tutors produced feedback in a feed-forward
style, stating what was done inappropriately, its consequence, and how to improve it.
They noted a number of helpful and unhelpful styles of feedback. Helpful feedback was
clear, easy to understand, used simple language and a friendly tone, and gave praise
where it was due3. Formative feedback which simply stated how to fix an error in the
submitted work was considered unhelpful to students.

The rest of this section describes key works that further investigate how to produce
and provide feedback, and how to close the loop to see if that feedback was effective.
We discuss the integrated model of the feedback process by Narciss (2013), and then
outline the findings from Keuning, Jeuring, and Heeren (2018) on automated feedback
generation for programming, which build upon Narciss’ earlier works.

2.1. Pedagogical foundations: the Interactive Tutoring Feedback model

The Interactive Tutoring Feedback (ITF) model by Narciss (2013) synthesizes various
theoretical and empirical insights of feedback frameworks and research. ITF considers
that feedback helps regulate a learning process so that the learners acquire the knowl-
edge and competencies needed to master learning tasks. In this paper, the knowledge
and competencies would be understanding a specific programming language and de-
veloping programming skills, and the learning tasks would be the programming assign-
ments.

The main components of the ITF model are outlined in Figure 1, which revolve
around two feedback loops: an internal feedback loop for the learner, and external
feedback loop involving the external source of feedback. The controlled process is the
acquisition of the competences in order to master the learning task at hand. The
feedback processes require reference levels: the internal reference level is the learner’s
own understanding of what is required of them, and the external reference level is what
the teacher and instructional medium specify as the requirements of the task.

3Note that the use of praise is considered unhelpful in some of the studies reviewed by Shute (2008).

3

Controlled process
Acquiring competencies for mastering learning task requirements

Learner factors: goals,
prior competencies, prior motivation

Learner's representation of standards,
competencies, and task requirements

Internal reference value - level of
standards, desired level of competencies

Internal controller: information processing

Instructional factors: goals, objectives,
standards, instructional approach

External representation of standards,
competencies, and task requirements

External reference value - level of
standards, desired level of competencies

External controller: information processing

Control
actuator

Control levels and variables:
- cognitive
- meta-cognitive
- motivational

Internal
assessment

External
assessment

Feedback source - teacher, peer, instructional mediumLearner - feedback receiver

in
te

rn
a
l
co

n
tr

o
l
a
ct

io
n

in
te

rn
a
l

a
d

ju
st

m
e
n
t

External feedback message
- evaluative information
- tutoring information

e
x
te

rn
a
l

a
d

ju
stm

e
n
t

Internal feedback
Current state of competency

External feedback
Current state of mastery

Figure 1. Components of the Interactive Tutoring Feedback model by Narciss: adapted and simplified
from (Narciss, 2013)

In the internal feedback loop, the learner uses their control actuator to attempt the
task, as regulated by a number of cognitive, meta-cognitive, and motivational variables.
These respectively cover their knowledge, their strategy to approach the task, and their
level of engagement. Their attempt at the task is then assessed, both internally (by
the learner themselves) and by the external feedback source (a teacher, a peer, or an
instructional medium such as the system proposed in Section 3). These assessments
result in both internal and external feedback, which are fed back to the learner’s internal
controller to decide on a control action to improve their performance at the task, until
they reach their reference value.

In the case of a programming assignment, the learner may have their own under-
standing of whether their code meets the requirements set out in the programming
assignment (their internal assessment). This internal assessment may not be entirely
accurate, e.g. if the learner misunderstood or missed a requirement, or misunderstood
one of the concepts in the language. The external feedback should aim to provide a
clear picture to the learner, so they can adjust their approach to the task.

Narciss considered feedback content to be divided into simple and elaborated com-
ponents. The simple components only inform the student about their performance or
outright tell them the solution, and are categorised into knowledge of performance (KP,
e.g. “15 of 20 correct”), knowledge of result/response (KR, e.g. “correct/incorrect”), and
knowledge of the correct results (KCR, e.g. a description of a correct solution). In con-
trast, elaborated feedback (EF) components intend to inform the learner so they can
improve their own work (which matches the above definition from Shute of forma-
tive feedback). Narciss identified five EF categories: knowledge about task constraints
(KTC), about concepts (KC), about mistakes (KM), about how to proceed with the
task (KH), and about meta-cognition (KMC). This elaborated feedback is based on
the teacher’s cognitive task analyses (i.e. knowing where learners typically struggle).

The external loop has its own adjustment process, where the external representations
of task requirements, standards, and desired levels of competency may change. The
feedback generation of an automated system will need adjusting as the teachers identify
typical mistakes and misconceptions from students. Likewise, the task requirements
may need clarification if they are found to be ambiguous or incomplete. In summary, it
is not only the learners that need to operate in a feedback loop, but also the teachers

4

Component Hint subtype

Task Constraints (KTC) Task Requirements (TR)
Task-processing rules (TPR)

Concepts (KC) Explanations on subject matter (EXP)
Examples illustrating concepts (EXA)

Mistakes (KM) Test failures (TF)
Compiler errors (CE)
Solution errors (SE)
Style issues (SI)
Performance issues (PI)

How to Proceed (KH) Error correction (EC)
Task-processing steps (TPS)
Improvements (IM)

Meta-cognition (KMC) (no subtypes)
Table 1. Programming-focused subtypes for each of the Narciss (2013) elaborated feedback (“Knowledge
About...”) components, according to Keuning et al. (2018)

and the way in which they configure and use the automated feedback system.

2.2. Automated feedback generation for programming tasks

Keuning et al. (2018) reviewed 101 tools that automatically generated feedback from
programming exercises. To label the feedback produced by the tools, the above cat-
egories of elaborated feedback from Narciss (2013) were specialised for this domain,
adding further subtypes: these are listed in Table 1. It is worth noting how there is
a specific subtype for compiler errors: these are known to be problematic to students,
due to their lack of readability for novice developers (Becker et al., 2019).

The review found that 96% of the tools provided knowledge of mistakes: the most
common subtypes were test failures, solution errors, and compiler errors. There were
also many tools that provided hints on how to proceed (44.6%). However, few tools pro-
vided knowledge on task constraints (14.9%) or concepts (16.8%), and meta-cognition
was only addressed by one tool.

Keuning et al. also took into account the educational problem classification from
Le, Loll, and Pinkwart (2013), who considered five classes of problems based on the
range of possible solution strategies and their automated verifiability. They focused on
tools that supported problems of Class 2 (one solution strategy with multiple imple-
mentation variants, such as filling in a code template), and of Class 3 (multiple known
solution strategies that can be anticipated in advance). They found that 76.2% of the
tools supported Class 3 exercises, and 23.8% only supported Class 2 exercises. It was
observed that Class 2 tools gave more feedback on fixing mistakes and taking the next
step, at the cost of not recognising alternative strategies.

In terms of techniques, the review noted that Class 3 tools were heavily reliant on

5

automated testing (67.5%), program transformations (39%), and basic static analysis
(39%). Class 2 tools were less reliant on automated testing (only being used in 29.2%
of them), and used model tracing far more often (25%) to provide concrete hints on
how to proceed based on the known solution strategy.

The authors also considered the types of inputs normally used by the tools. Class 3
tools were more reliant on model solutions than Class 2 tools (55.8% vs 33.3%), and also
needed more test data (57.1% vs 16.7%). They noted that sophisticated techniques such
as model tracing and intention-based diagnosis made it harder to add new exercises and
adjust the tool. They also found that very few papers addressed the role the teacher
could take in making these adjustments. They concluded that except for test-based
automated systems, teachers could not easily adapt tools to their own needs.

3. The AutoFeedback system

Before developing AutoFeedback in the summer of 2020, a number of existing op-
tions were considered. There are mature solutions for continuous integration which
can automatically run tests when a new version of a project is committed to its source
control system, such as GitHub Actions (GitHub Inc., 2022) or GitLab (GitLab Inc.,
2022). These are the ideal solutions for teams familiar with version control systems
and automated build systems, and in fact they are commonly used by second-year and
final-year students at Aston University. On the other hand, first-year students going
through their first programming experiences can significantly struggle with their com-
plexity: our aim was not to compete with these mature solutions, but rather lower the
barriers to entry for automated feedback as much as possible.

On the other side of the spectrum, there were web-based platforms that provide
code challenges with small predesigned test suites, such as Codewars (Qualified, 2022)
or HackerRank (HackerRank, 2022). These incorporate significant gamification com-
ponents to keep participants motivated, and are very accessible to students. Unfortu-
nately, they focus on small single-file programs, rather than multi-file projects, with
tests only on inputs and outputs. We wanted automated feedback over programs that
spanned multiple files, involved external libraries, and included checks on the design
of the program and the quality of its code.

We considered two academic proposals as well: specifically, Gradeer and PABS. We
discuss these options, as well as other options which we found after developing Auto-
Feedback, in Section 8 (related work). The proposals we found at the time did not find
an option meeting these requirements:

• Be usable by first-year students without knowledge about version control systems,
build systems, or continuous integration platforms.

• Integrate with traditional IDEs (e.g. Eclipse or IntelliJ), with only a few clicks
needed to make a well-formed submission.

• Provide elaborated feedback for every failed test, hinting at common misconcep-
tions and mistakes to assist the internal adjustment of the ITF model.

• Report on individual and cohort-wide student performance, to help identify dif-
ficult/brittle tests and refine them and their feedback, enabling the external ad-
justment of the ITF model.

• Allow for adapting the production and provision of feedback for a wide range of
Class 2/3 problems, without requiring any changes to the tool.

For this reason, we decided to develop AutoFeedback (AF from now on), a web-based

6

Student PC

IDE (Eclipse / IntelliJ)

Maven build

Maven plugin

Web browser

1. launches

2. runs

4. launches

Server

Webapp

MariaDB

Redis queue

Java worker(s)Non-Java worker(s)

Laravel Echo queue

3. submits ZIP to

8. requests feedback report from

stores data in

6. pushes jobs to

subscribe tosubscribe to

5. subscribes to 7. pushes events to

Figure 2. Overall architecture of AutoFeedback, and major steps in assessing a submission. Nodes are com-
ponents, numbered edges describe assessment steps, and non-numbered edges describe persistent relationships
between components.

platform for automated feedback. This subsection will discuss its overall architecture,
the underlying data model, how assessments are designed, how students use the plat-
form, and how teachers can inspect individual and cohort-wide student performance.

3.1. Architecture

Figure 2 describes the high-level architecture of AutoFeedback, and the major steps
involved in the submission and assessment of code from a student.

AutoFeedback required a way of controlling the process of building and analyzing
student code, so we provide students with Maven-based template projects. Maven was
chosen because it is a mature system to automate a project’s build, reporting, and
documentation, which can be customized via plugins. We have built a Maven plugin
for AF to control the process of providing feedback on student code.

A student wanting feedback on their progress will initiate a Maven build via a
.launch file which runs the AF Maven plugin. The student’s project is packaged into
a ZIP file and submitted to the AF server. The student’s web browser will then be
automatically directed to a page that will display their feedback when it is ready.

On the server side, submissions are queued to allow AF to handle large numbers of
submissions. When a submission reaches the front of the queue, AF builds the project
and runs the tests, collecting all test output. The test output is analyzed using tutor-
designed templates that generate the feedback to students. That feedback is sent to
the waiting web page and displayed to the student.

In order to protect against poorly written code from students, the Java workers run
under a number of security, time, and resource constraints, using Docker container-
ization. Java worker containers are single-use, being recreated from a clean image on
every build. The process ensures both ease of use for students and security that limits
the effect of incorrect or malicious code running in the server.

3.2. Data model

The AutoFeedback data model follows a typical Virtual Learning Environment (VLE)
structure, where administrators can set up a number of modules containing assess-
ments organized in a folder hierarchy. Teachers can control the availability period of

7

an assessment, set an indicative submission date, and provide a Markdown-based rich
description to display to students (with support for syntax highlighting).

Teachers populate assessments by uploading a ZIP with the model solution to the
webapp: currently, this must contain a Maven project. The uploaded ZIP is run in
a Java worker (Figure 2): the standard error, standard output, and test results (e.g.
JUnit-style XML files) are stored as build results. The XML files list every test class
and test method in the tests accompanying the model solution. These test identifiers
are used to populate the feedback template. Teachers can set via the webapp how many
marks each test is worth when run against student-submitted code.

Teachers can define a Markdown feedback template for each test, with specific rules
on what to show depending on whether the test passed, failed, or produced output
matching certain conditions (more details in Section 3.3). Tests can be optionally
grouped by assigning them to “tasks” (e.g. “Section 1” of the worksheet), rather than
by test class.

Students are given starting code based on the model solution, also based on Maven
but with a reduced test suite, as some tests may reveal details about the task to be
performed. Teachers will create file overrides for the files that should be extracted from
the model solution, overwriting any student-submitted files at the same relative path.
Anything related to the project configuration and any code that the students should
not modify is usually overridden. A student submission will be run against the full
set of tests: both those submitted by the student, and those extracted from the model
solution via file overrides.

Model solutions can be updated by instructors while the assessment is available,
e.g. to make tests less brittle, offer assertions with better feedback, or add new tests
that highlight common mistakes from students. This enables the external adjustment
of the ITF model. All versions are stored and identified with a sequential counter, and
student submissions track the model solution version they were evaluated against, to
ensure reproducible results.

3.3. Feedback templates

The generation of feedback needs to model the process a tutor might follow in analysing
which parts of a student’s code is correct, and which are not. This process will look at
the following components from Table 1:

• KTC: put the feedback within the context of the assignment constraints, and
informing the student about which part of the task is being tested.

• KC: relate the feedback to the concepts taught in the course.
• KM: provide an easier-to-understand version of typical error messages that can

be produced during this task, possibly with examples of what causes them.
• KH: give the student hints on how to proceed.
• KMC: provide strategies for learning, thinking, and problem-solving within the

context of the task.

Simply drafting some text to be output when a given test fails will not be sufficient
to address all of the above, or to do it in a way that will be helpful to the student.

The approach in AutoFeedback is to consider that for Class 2/3 problems, the avail-
able strategies are known in advance, and therefore common mistakes and problems
can also be known in advance. This means that if the tests are appropriately designed
to detect these situations, the test outputs (including failure messages, such as com-

8

‘‘‘af_when_passed
Good job!
‘‘‘
‘‘‘‘‘af_when_failed
‘‘‘‘af_when_substring NullPointerException
You ran into a case of a null pointer exception.
This happens when accessing a property in an
object variable set to null, as in this example:
‘‘‘java
Object o = null;
o.toString(); // will cause exception
‘‘‘
‘‘‘‘
‘‘‘‘‘

Listing 1 Example of AutoFeedback conditional Markdown blocks for feedback templates

pilation/execution errors and identifiers for failed assertions) can be used as inputs to
a feedback template that goes beyond basic KM information: as it is specific to one
aspect of one task, it can cover KTC/KC/KH/KMC aspects as well.

In AF, feedback templates can be attached to each test case in the JUnit XML
output of the Maven build of the model solution. This feedback template is written
in Markdown, which provides its own formatting facilities (bold/italics font, syntax
highlighting, hyperlinks, images, videos, etc.). In order to cover the many possible
mistakes we can anticipate in a Class 3 problem without overwhelming the student,
AF extends Markdown with fenced blocks that selectively display feedback based on
whether the test passed, failed, or contained a line matching a specific substring or
regular expression. Listing 1 shows a simple example where some encouragement will
be given to the student if the test is passed, and if the test is failed, AF will check
if NullPointerException appeared in the output: if it did, it will then explain how
these exceptions can happen.

Markdown was chosen as a base notation to address the issue identified by Keuning
et al. (2018) around the lack of adaptability of existing tools, and how they did not
involve the teacher. The teacher can refine these templates at any time from the AF
web interface, clarifying the feedback provided around a typical mistake across an entire
cohort with minimal effort. Many teachers in Computer Science are already familiar
with Markdown, and it is well supported by existing tooling.

3.4. Student feedback reports

After a submission, the AF Maven plugin uses the system’s default browser to open the
initially “pending” feedback report, which automatically reloads once the build com-
pletes, showing a report like the one in Figure 3. Students can retrieve their uploaded
file, view previous attempts, and know the model solution version that their code was
tested against.

Regarding the simple feedback components from Narciss (Section 2.1), KR is pro-
vided through the “Status” field (Completed/Failed), and KP is provided in two ways:
as an “Overall mark” (where each test can be worth a certain amount of marks), and
as separate counts of tests that passed, failed, crashed, were skipped, or were miss-
ing from the JUnit XML (usually due to tests not compiling as the student missed
some of the lab requirements). KCR is not provided by AutoFeedback: it is up to the

9

Figure 3. Screenshot of a test report, with both test suites collapsed

10

Figure 4. Screenshot of an AutoFeedback submissions table, with attempt and test result counts. User names
have been distorted for privacy.

teacher to provide a model solution through other means (e.g. via their virtual learning
environment), if they desire.

The rest of the report is dedicated to elaborated feedback. Looking at Table 1, the
relevant components are distributed as follows:

• KTC can be provided in two ways: by associating tests to specific tasks in the
worksheet (in which case the test will be in a collapsible drawer named after the
task, instead of being organised by test class), and by reminding students of what
the test requires them to do in the feedback template.

• KC is provided through the feedback template, by including examples of relevant
code (as in the simple example of Listing 1), or links to the appropriate course
material (e.g. when reminding students of how to compare strings in Java).

• KM is provided at a basic level by AutoFeedback itself, which indicates which
tests passed and failed (KM-TF), and includes test outputs including error mes-
sages (KM-SE, KM-PI). KM-CE (compiler errors) can be collected per-test if
the Maven build is set up to use the Eclipse Java compiler (c.f. Section 4.2).
The teacher can use the conditional fenced blocks in the feedback templates to
expand upon this basic level of KM (e.g. explain a specific failed assertion in
more detail, perhaps with a supporting diagram).

• KH is entirely reliant on the conditional fenced blocks in the feedback templates.
The teacher may show a typical mistake that causes a given test assertion to fail,
and a strategy to correct that mistake. The teacher may also structure a test
to have multiple assertions that represent the various steps of a task, and use a
conditional fenced block to clarify what the next task should be after passing the
first few assertions.

• KMC is also reliant on the feedback templates. In this case, the teacher can
suggest a particular way to think about the problem if a test which is observed
to be challenging to pass, or potential sources of information.

3.5. Teacher reports

Collecting the individual test successes and failures of every student allows instruc-
tors to identify common mistakes and challenging tasks, and conduct the external

11

Figure 5. Screenshot of AutoFeedback progress treemap, with ratios of passed (green tick) / failed (red cross)
/ errored (yellow exclamation) / missing (black question mark) runs per test (using only latest attempts).

adjustment of the external feedback loop in the ITF model. AF provides a table of
submissions with attempt and test result counts (Figure 4), and a dashboard with
the relative ratios of passed, failed, errored, and missing results across all test cases
(Figure 5). Instructors can check this information periodically to refine test suites and
feedback templates based on the student experience.

The submissions table allows all columns to be sorted in ascending and descending
order, allowing for quickly finding the latest feedback report for a particular student
(e.g. when clarifying feedback to that student), students failing tests despite many
attempts, or students passing all tests except for one (which may be brittle, or where
the worksheet may be unclear). Sorting by time gives an idea of student progress over
the week. It is possible to only show the latest attempt from each student, and the
table can be exported to a CSV file for ad hoc analysis.

The progress dashboard gives a general idea about which tests are being particu-
larly difficult to pass for the cohort, using green for passing executions, red for failed,
yellow for errored, and black for missing ones. Each color has a matching icon, to help
users with color perception disabilities. Instructors can click an area to list its submis-
sions. In Figure 5, the large proportion of failed and errored runs suggests that the
makeAppointmentsOverlap test in the ExtraDayTest test suite was particularly
difficult, and could benefit from further clarification. The sizable ratio of “missing”
tests in black was due to AF being optional in its pilot year, with a number of students
deciding not to use it.

4. Piloting AutoFeedback

AF was piloted in term 2 of the first-year object-oriented programming module of the
Aston University Computer Science course during the 2020–21 academic year. After
positive reception by students and staff, it was made compulsory for 2021–22. This
section describes the module in detail, and the integration of AF into it.

12

4.1. Module description and evolution

The CS1OOP module at Aston University spans the whole academic year, and is
designed to introduce students to object-oriented programming, without expecting
any prior programming experience. Most of the material for the module (lecture notes,
slides, quizzes, and lab instructions) is hosted in the University’s centrally-managed
virtual learning environment (VLE), Blackboard.

In 2020–21, the students were assessed through a final exam and a set of multiple-
choice quizzes: quiz marks only counted with a valid attempt at the corresponding lab
in their portfolio. In term 1 (October to December), students learn basic programming
by using the Processing software sketchbook system (Reas & Fry, 2006). In term 2
(February to April), students migrate to the Java programming language, and use
a dedicated Java IDE (Eclipse) to write code. Term 2 covers inheritance, interfaces,
UML, object-oriented design patterns, the Java Collections Framework, the JavaFX
graphical user interface toolkit, exceptions, and file input/output.

During the 2020–21 year, the module was changed to introduce the Eclipse IDE
before the term 1 holidays (allowing more time for transitioning from the beginner-
friendly Processing environment to a full IDE), and use week 1 of term 2 to introduce
automated unit testing and test-driven development. Lab 1 of term 2 demonstrated
these concepts through JUnit and AutoFeedback, with step-by-step guidance on sub-
mitting code and interpreting feedback. Being a pilot year for AF, it was made optional
in case student reception was poor, or there were performance/stability issues. Students
were encouraged to use AF to obtain rapid feedback before doing their final submission
to Blackboard (which would be their official submission to the assessment), and were
told that submissions that passed all the AF checks would be considered valid in regard
to quiz marks (without requiring manual review).

In 2021–22, given the initial success of AF, term 2 quizzes were replaced by using
AF to compute weekly portfolio scores, perceived by students as a more transparent
approach. This made AF compulsory during term 2, although students still had to
separately do their official submission to Blackboard (due to organisational constraints,
it was not possible to have AF directly interface with Blackboard).

Due to the COVID-19 pandemic, students completed laboratories from home dur-
ing 2020–21: students joined a timetabled online session where lab tutors explained
the task, and students could ask questions and receive one-to-one support. Given the
increased friction in obtaining help from teaching staff in an online setting (requiring
resolving connectivity, screensharing, and audio/video issues before a simple question
could be asked), AF provided a convenient way to get rapid feedback at any time.
From 2021–22 onwards, laboratories were conducted on campus again.

4.2. Designing and refining materials for AutoFeedback

Each lab was redesigned in 2020–21 around AF, turning it into a pair of Maven projects:
a model solution with all tests to be run, and a stripped-down version to be used as a
starting point by students. Over 2020–21 and 2021–22, model solutions were refined in
several ways to deal with issues found by students or through the reporting facilities
in Section 3.5. The labs are listed in Table 2, along with an overview of their changes
over the years: further detail is provided below on the most impactful changes.

Feedback in the presence of test compilation errors. The first lab worksheet
had students use a test-driven approach to develop a calendar appointment booking

13

Name Changes during 2020–21 Changes during 2021–22

Lab 1: test-driven development Use ECJ for per-test compi-
lation error feedback.

Separate tests by worksheet
step, and refine tests for au-
tograding.

Lab 2: inheritance Use JavaParser to check
Javadoc quality.

Use ECJ as well, refine tests.

Lab 3: interfaces 1 Refine model solution to be
more flexible.

Separate tests by worksheet
step, use ECJ, refine tests.

Lab 4: interfaces 2 Clarify worksheet based on
student feedback.

Same as above.

Lab 5: UML PlantUML-specific assertion
library to specify expected
classes.

Same as above.

Lab 6: design patterns Use Mockito for interaction-
based testing.

Refine tests to require full
functionality for marks.

Lab 7: collections Use JavaParser to ensure
JMH is correctly used for
micro-benchmarking.

Add new test and make
other tests less brittle
against irrelevant case
differences.

Lab 8: JavaFX preparation Use of TestFX for flexible
auto-grading of GUIs.

Use ECJ, add support for
JavaFX 17.

Lab 9: JavaFX assessment Same as above. Same as above.
Lab 10: I/O and exceptions Use JavaParser to flag com-

mon mistakes.
Refine tests and worksheet.

Table 2. Laboratory session plan for CS1OOP, with changes over 2020–21 (the migration to AF), and 2021–22
(iterative refinement).

routine. Students created their own tests (in addition to those in the model solution),
and AF ran both solution and student tests.

This initial lab showed a weakness in the approach at the time: Maven builds are
usually designed to “fail fast”, e.g. as soon as any line of code fails to compile. This is
problematic when running tests on student code that may not follow all the indications
in the worksheet (e.g. exact function names), meaning that some of the instructor-
provided tests may not compile. Without test results, AF would only present the raw
build errors, without any generated feedback. The model solutions were refined to use
the Eclipse Java compiler4, which can run Java code even with some compilation errors:
upon reaching a line that failed to compile, an exception is thrown and shown to the
student as the cause of failing that test.

Looking inside the code. When discussing object-oriented design, code documenta-
tion, or the use of certain APIs, it is necessary to inspect the code rather than simply
run it and compare the results with an expected output. As an example, Mockito5
was used to test that students implemented object interactions appropriately when
applying object-oriented design patterns. JavaParser was used to evaluate the quality
of their Javadoc comments, and to find known common mistakes (e.g. the incorrect
use of == instead of Object.equals()), by writing visitors which performed custom
lab-specific static analysis on the students’ code. These uses of JavaParser served to
conditionally display elaborated feedback around knowledge of mistakes, detecting com-

4https://www.eclipse.org/jdt/core/
5https://site.mockito.org/

14

mon anti-patterns in student submissions and explaining why they were problematic
to the students.

Evaluating UML diagrams. The UML lab used AF to check that students are cre-
ating valid UML class diagrams for a problem domain, using the PlantUML textual
notation6. The AF model solution lab used the PlantUML export to the XMI format
(based on XML), and the tests checked that the expected elements were present in
the XML document through an in-house assertion library for UML class diagrams.
The assertions automatically generate human-readable test failure messages if the stu-
dent’s diagram does not meet the expectations (e.g. a certain type was not found, a
given association end does not have the expected type of aggregation, or an operation
parameter is missing or has the wrong type).

Compared to the approaches mentioned in Section 8.2, the assertion library is only
intended for a subset of Class 2 problems (according to Le et al.’s classification), as
it only works with a specific model solution (but allows some variability in naming).
This is a good match with the purpose of this first-year UML lab, which was only
to familiarise students with the UML notation as a blueprint for writing code, and
how to use PlantUML to draw those diagrams: performing object-oriented design from
natural language requirements is taught in the second year. Improving the assertions
to allow more variability (e.g. by using semantic similarity and/or by allowing multiple
solutions) to allow a broader range of Class 2/3 problems is part of our future work.

Evaluating JavaFX GUIs. The module teaches the JavaFX graphical user interface
toolkit, using an approach where the GUI is designed visually and saved as an XML-
based document, which is then integrated with a Java “controller” class following certain
conventions. JavaFX is taught over two labs: a preparatory one, and an assessed one
worth 40% of the lab marks for term 2 of CS1OOP.

The AF model solutions for both labs included two types of tests: some checked the
XML document (e.g. presence of expected GUI components), and others ran the GUI
and interacted with it automatically by using TestFX7. The TestFX-based tests are
robust to minor differences between submissions, by following high-level instructions
such as “click on the Create button, ignoring case”.

5. Methods

Having redesigned the CS1OOP module to use AutoFeedback, several research ques-
tions were raised about its impact on the students:

• (RQ1) How did AutoFeedback impact their engagement with the course, and
how much did students engage with AutoFeedback across both years?

• (RQ2) How well did students perform when supported by AutoFeedback?
◦ (RQ2a) How did using AutoFeedback and the change in course policies affect

student results?
◦ (RQ2b) How did their marks improve through resubmissions?

• (RQ3) How did students perceive the provision of automated elaborated feedback
by AutoFeedback? Was it perceived negatively, neutrally, or positively?

6https://plantuml.com/
7http://testfx.github.io/TestFX/

15

Feature 2019–20 2020–21 2021–22

Delivery style On-campus Online On-campus
Students enrolled 257 321 341
w/Blackboard submissions 192 245 262
w/AF submissions N/A 240 269

Use of AF N/A Optional

Mandatory
(encouraged

interim
submissions for
early feedback)

Recorded submissions N/A Last one
Last 30 + best
before deadline
+ best overall

AF submissions N/A 18,900 39,100

Use of quizzes
Practice W1,
then W3, W4,
W6, W10, W14

Every week None

Marks source for labs Quizzes Quizzes (if
tests passed) Tests

Table 3. Comparison table of CS1OOP editions under study

The following subsections will discuss the methods used to answer each of these
research questions. The anonymized and aggregated data used for these analyses, as
well as the supporting scripts and tooling, is available from the Aston University in-
stitutional data repository (Garcia-Dominguez, 2022).

5.1. RQ1: student engagement

For RQ1, which dealt with the level of engagement of the students, we used the auto-
mated data collection and reporting of the enrolment systems, Blackboard and Auto-
Feedback. We focused on three editions of the module (summarised in Table 3):

• 2019–20 was the last edition before AutoFeedback was introduced. There were
257 students enrolled (88.6% male, 11.4% female). The average age was 19, with
64.9% aged under 20, 32.1% aged 20–24, and 3.0% aged 25+.

• 2020–21 was the year AF was piloted, with 321 students enrolled on CS1OOP
(85.7% male, 14.3% female). The average age was 19, with 79.0% aged under 20,
18.6% aged 20–24, and 2.4% aged 25+.

• 2021–22 was the year AF was made compulsory, with 341 students enrolled
(87.4% male, 12.6% female). The average age was 19, with 77.5% aged under
20, 21.7% aged 20–24, and 0.8% aged 25+.

We collected the number of students that made submissions to each of the submission
points in Blackboard across the three years. In 2019–20, students went through a
practice quiz in week 1, took 5 quizzes in weeks 3/4/6/10/14 (week 14 being right

16

after the Easter holidays), and took the JavaFX assessed lab in week 9. 2020–21 used
10 weekly labs and quizzes (to be done after completing the lab), and 2021–22 only
used 10 weekly labs. We excluded the optional preparatory lab for JavaFX on week
8: it did not have a submission point in 2019–20 and 2020–21, and its optional nature
means that many students may not have used it in 2021–22.

To compare the engagement profiles across the three years, we computed the pro-
portion of students that made submissions over the various weeks of the course, both
against the total number of students enrolled (listed above), and against the maximum
weekly engagement seen that year. In 2019–20, the maximum weekly engagement (mea-
sured in number of students that submitted to a Blackboard submission point in one of
its weeks) was of 192 students. This was 245 students in 2020–21, and 262 in 2021–22.

From AutoFeedback, we obtained the number of attempts that each student had
made for each lab, spanning around 18,900 submissions for 2020–21, and 39,100 for
2021–22. The significantly higher number of submissions in 2021–22 is likely due to
several factors: the larger cohort, the fact AF was compulsory, and the refinement
of the worksheets to encourage students to submit at certain points to detect issues
earlier. Students could submit as many attempts as desired, as we did not want to
create undue stress on students around running out of attempts, and the queue-based
approach ensured every submission would be evaluated at some point. In total, AF
was used by 240 students in 2020–21, and 269 students in 2021–228.

To evaluate the impact of these changes in the use of AF on the number of attempts
made for each lab, we used a Mann-Whitney U test with the null hypothesis that the
students had made similar numbers of attempts in 2020–21 and 2021–22, and computed
A effect sizes (Vargha & Delaney, 2000) to evaluate the intensity of the change. Given
the definition of the Vargha and Delaney A effect size as A12 = P (X1 > X2)+.5P (X1 =
X2), where X1 would be 2020–21 attempt counts, and X2 the 2021–22 ones. A value
of 0.5 would mean X1 and X2 were stochastically equal, whereas 0.2 would mean that
the values of X1 were consistently smaller than those of X2.

5.2. RQ2: student performance

For RQ2, which addresses how well students did at the various labs in the presence
of AutoFeedback, we took into account the changes in the labs and the use of AF
from 2020–21 to 2021–22. In 2020–21, a student needed to obtain full marks in AF to
have their quiz mark count9, whereas in 2021–22 the quizzes were dropped and the lab
marks were directly obtained from AF.

This change in policy means that the question can be further subdivided into two: i)
whether the change in policy resulted in different distributions of marks across years,
and ii) whether the students improved their results in later submission attempts. Each
subquestion is discussed separately below.

5.2.1. RQ2a: effects of AF and change in policy

To compare the results across both years, we used the proportion of achievable marks
that were obtained, as a number between 0 and 1. We conducted Mann-Whitney U

8The fact that there were more students submitting to AF than to Blackboard in 2021–22 can be attributed
to some students dropping out of the course early on, without submitting to Blackboard: there were at most
260 unique AF users from Lab 4 onwards.
9Since AutoFeedback was optional in 2020–21, if a student did not use AF, the module staff put the student’s

code from the virtual learning environment through the same tests as in the AF model solution.

17

tests across the 2020–21 and 2021–22 results of each lab with the null hypothesis that
the results had been similar, and computed A effect sizes.

It is important to note that there are some other factors besides this change in
policy, which may interfere with the comparison. First, since marks were going to be
computed directly from AF from 2021–22 onwards, the automated tests had to be
refined together with their mark values to ensure some basic rules were adhered to:
i) submitting from the initial code should not grant any marks, and ii) marks should
increase gradually as the student completes sections of the worksheet. Secondly, the
situation around the ongoing pandemic changed how labs were delivered (remote in
2020–21, and back to being on-campus in 2021–22).

5.2.2. RQ2b: improvement over resubmissions

We were only able to study the evolution of the students’ results over successive at-
tempts for 2021–22, as AF only stored the latest attempt of each student in 2020–21.
We considered the last 30 attempts made by each student, which always included their
highest-scoring attempt ever, and their highest-scoring attempt before the assessment
deadline. We had to set this limit due to disk space constraints: the value was computed
based on the median number of attempts in 2020–21.

To check if students improved their marks over successive attempts, Kendall asso-
ciation tests were run between the attempt numbers and the obtained mark ratios (as
numbers from 0 to 1) over all submissions stored for each lab in 2021–22. Kendall tests
were chosen as they were non-parametric, dealing better with potential skews in the
achieved marks which would not meet the assumptions of Pearson correlation tests.
In light of how Kendall’s τ measures the concordance of rankings, labs with higher
τ values would have marks improve more consistently on successive attempts across
students.

We complemented this Kendall test with a visual analysis of the distribution of the
relative changes in the ratio of achieved marks, using box plots: intuitively, if students
were improving over attempts, we should see the boxes centered around positive values.

5.3. RQ3: student reception

For RQ3, dedicated to studying how students received the new AF system, we used
the existing surveying facilities in Blackboard to obtain feedback from the students in
2020–21 and 2021–22. This was done by sending announcements to the entire class,
inviting them to voluntarily take part in the survey. Two such anonymous surveys were
conducted in 2020–21, and one in 2021–22:

• The first survey was on week 4 of term 2 of 2020–21, shortly after AutoFeedback
had been introduced. It covered the whole module, only asking students two
questions: what they liked so far, and what could be improved. Most responses
focused on the content and method of delivery, but some mentioned AF directly.

• The second survey was on week 10 of term 2, near the end of the term. This was
specific to AutoFeedback, containing the following questions:
(1) What did you like about AutoFeedback?
(2) Did you have any issues using AutoFeedback?
(3) How much do you agree with this statement? “AutoFeedback helped identify

the issues in my lab code.”
(4) If you disagreed, could you tell us why?

18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
week

ra
tio

O
fE

nr
ol

le
d year

2019−20: pre−system

2020−21

2021−22

Figure 6. Participation ratios over the weeks for 2019–20 (before AF was introduced), 2020–21 (pilot with
optional use of AF), and 2021–22 (mandatory use of AF). Measured as ratio of students who made a submission
to Blackboard over the 10 weeks, over those enrolled in the course.

(5) How much do you agree with this statement? “The feedback from Auto-
Feedback was easy to understand.”

(6) If you disagreed, could you tell us why?
(7) What is your preference regarding adding short videos to the AutoFeedback

feedback? (No strong preference / I would like both / I prefer only text / I
prefer only videos)

(8) Would you like to see AF used in other modules?
(9) Would you prefer the feedback to be organised in some other way?
(10) Where else do you think AF (or our use of AF) could be improved?

• The final survey was done on week 5 of term 2 of 2021–22, using the same
questions as in the above survey to compare reception of AF after implementing
most of the improvements requested in 2020–21.

The surveys contained a mix of free-form and multiple-choice questions (MCQs). For
the free-form questions, in order to obtain a unified set of findings across all responses,
thematic analysis was conducted according to the recommendations of Braun and
Clarke (2006), using a data-driven approach to generate the initial codes, grouped
later into themes. A single coder (the first author of this paper): after a pass, all
responses were revisited in case they met one or more of the codes discovered in this
round. This process was repeated until no more changes were required for the encoding.
The second author compared the encodings against the responses, validating that they
were accurate and correct.

6. Results

This section presents the results of the research questions in Section 5, based on the
methods described for each research question.

6.1. RQ1: student engagement

6.1.1. Participation ratios

Figure 6 shows the student participation ratios for all three years. Comparing the
shapes of the various lines, it can be seen that before AF was introduced, the maxi-
mum engagement happened in week 3 (the week of the first quiz worth marks), being

19

Lab 10: I/O and exceptions

Lab 9: JavaFX assessed

Lab 8: JavaFX prep

Lab 7: collections

Lab 6: design patterns

Lab 5: UML

Lab 4: interfaces 2

Lab 3: interfaces 1

Lab 2: inheritance

Lab 1: TDD

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of attempts

Year 2020−−21 2021−−22

Figure 7. Box plots for submission attempt counts, by lab and year: outlier dots represent data points over
1.5 times outside the interquartile range.

similar to the maximum engagement with AF. Engagement was significantly lower in
week 9 (the week of the assessed JavaFX lab) before AF was introduced, with only
62.5% of those students making submissions. In comparison, in 2020–21 the maximum
engagement takes place in the assessed JavaFX lab week, remaining steady except for
the last week. In 2021–22, the maximum engagement takes place in week 2, and then
remains steady for the most part, with 96.2% of those students taking on the assessed
JavaFX lab.

It can be seen that in general, the student engagement has been higher in 2021–22
than in 2020–21 and before AF was introduced. Comparing 2019–20 and 2020–21, it
appears that while engagement was higher in weeks 1/4/9/10, there were still some
points where it was slightly lower (weeks 3 and 6). One likely reason is that students
were able to freely take the quizzes in 2019–20 without having to submit code, whereas
doing the 2020–21 quizzes required writing code which would pass the AF tests. This
means that some students who were not otherwise engaging could simply try their luck
in the 2019–20 quizzes, whereas this was not possible from 2020–21 onwards.

6.1.2. Attempt statistics

Figure 7 shows the distributions of the numbers of attempts per lab and year. Attempts
increased noticeably in 2021–22, with all box plots showing right-shifted quartiles and
medians in comparison to 2020–21. The Mann-Whitney U tests rejected for each lab
the null hypotheses that the populations of 2020–21 and 2021–22 had identical distri-
butions, with all p-values less than 0.001, supporting the alternative hypotheses that
they followed different distributions. A effect sizes are large for Lab 2 (0.20) and Lab
3 (0.22), small for Labs 4/10 (0.34 and 0.36), and medium for the other labs (ranging
between 0.27 and 0.33). The third quartile was around 15 attempts in 2020–21, whereas
it was over 20 in 2021–22. This confirms that the students did take into account the
encouragement from 2021–22 of using interim submissions for early feedback, and that

20

Lab 10: I/O and exceptions

Lab 9: JavaFX assessed

Lab 8: JavaFX prep

Lab 7: collections

Lab 6: design patterns

Lab 5: UML

Lab 4: interfaces 2

Lab 3: interfaces 1

Lab 2: inheritance

Lab 1: TDD

0.00 0.25 0.50 0.75 1.00
Achieved mark ratio

Year 2020−−21 2021−−22

Figure 8. Box plots for achieved AutoFeedback mark ratios, by lab and year: outlier dots represent data points
over 1.5 times outside the interquartile range. Medians are connected with a line across each year. According
to the Mann-Whitney U tests on Table 4, only Labs 1/8/9 showed statistically significant differences between
2020–21 and 2021–22.

they continued to do so across the course.
There are noticeable outliers: for example, Lab 4 showed students with 107, 120, and

150 attempts in 2021–22. The number of outliers10 per lab varied between 10 and 15 in
2020–21, and between 5 and 18 in 2021–22. A Wilcoxon signed rank test between the
ratio of outliers per lab in 2020–21 (among its 321 enrolled students) and in 2021–22
(among its 341 enrolled students) could not reject the null hypothesis that they followed
identical distributions (p-value = 0.13): there was no statistically significant difference
between the two years in this regard. These outliers may point to students acting on
an unproductive trial-and-error approach that would require additional support, and
suggest that the teacher reports from Section 3.5 should be consulted periodically to
detect these cases and intervene.

6.2. RQ2a: effects of AF and change in policy

Figure 8 shows box plots of the ratios of achieved AutoFeedback marks for each lab in
2020–21 and 2021–22, where a ratio of 1 means that full marks were achieved. 2021–
22 shows a broader range of marks, although many of these differences turned out
not to be statistically significant: Table 4 shows that only the Lab 1/8/9 results were
significantly different across 2020–21 and 2021–22 according to Mann-Whitney U tests
(with p-values below 0.05), and even for those, the A effect sizes are negligible as they
are very close to 0.5.

The Lab 1 differences may be due to the tests being refined to be stricter in several
locations, as the marks would be computed directly from AF rather than from the quiz:
these may also explain the lower Q2 marks in other labs (e.g. Labs 4, 5, 6, 7, and 10),

10We consider a student to be an outlier if their number of attempts exceeded the third quartile plus 1.5 times
the interquartile range.

21

Table 4. Mann-Whitney U tests with “achieved Au-
toFeedback mark ratios follow the same distribution in
2020–21 and 2021–22” as null hypotheses for each lab:
rows with p-value < 0.05 reject these null hypotheses. A
effect sizes close to 0.5 are negligible.

Lab p-value A effect size

Lab 1: TDD 0.02 0.55
Lab 2: inheritance 0.69 0.51
Lab 3: interfaces 1 0.71 0.51
Lab 4: interfaces 2 0.38 0.52
Lab 5: UML 0.87 0.50
Lab 6: design patterns 0.67 0.51
Lab 7: collections 0.68 0.51
Lab 8: JavaFX prep 0.04 0.56
Lab 9: JavaFX assessed 0.02 0.55
Lab 10: I/O and exceptions 0.26 0.53

Table 5. Kendall rank-based association test results
between attempt number and overall mark, over the
submissions stored in AutoFeedback for 2021–22, by lab.

Lab p-value Kendall τ

Lab 1: TDD <0.01 0.30
Lab 2: inheritance <0.01 0.44
Lab 3: interfaces 1 <0.01 0.41
Lab 4: interfaces 2 <0.01 0.42
Lab 5: UML <0.01 0.55
Lab 6: design patterns <0.01 0.38
Lab 7: collections <0.01 0.34
Lab 8: JavaFX prep <0.01 0.45
Lab 9: JavaFX assessed <0.01 0.34
Lab 10: I/O and exceptions <0.01 0.40

although as noted above, these differences were not statistically significant. The Lab 8
JavaFX preparatory materials were the same in 2021–22, so these differences may be
due to the student cohorts themselves, or the change in the staff that supervised the
laboratories in 2020–21 and 2021–22. Lab 9 had the same starting code in both years,
but expanded upon it in a different way each year.

The median was 1 for all labs on both years: this can be seen in Figure 8 as medians
are connected with lines, and the lines for each year are a straight vertical line across
the 1.0 mark ratio. This means that at least half of the students achieved full marks,
managing to pass all tests. The first quartile (Q1) differs between labs: for 2021–22,
while Q1 was over 0.9 in Labs 2/3/5/7, it was only around 0.6 in Labs 1/4/8/9. Lab
1 is a test-driven development lab, requiring students to design their own tests for
the first time in their careers, making it more challenging. Q1 for Lab 4 confirms the
impressions from Section 6.1 that its use of many OO concepts (abstract classes and
interfaces) makes it more difficult. Some students may not have engaged as much with
Lab 8 (being optional), and Lab 9 (the assessed JavaFX lab) is done in exam-like
conditions, where support is limited to technical issues with the lab computers.

6.3. RQ2b: improvement over resubmissions

The Kendall association test results are shown on Table 5: all p-values are below 0.01,
rejecting the null hypothesis that the two variables are independent, and supporting

22

Lab 9: JavaFX assessed

Lab 8: JavaFX prep

Lab 7: collections

Lab 6: design patterns

Lab 5: UML

Lab 4: interfaces 2

Lab 3: interfaces 1

Lab 2: inheritance

Lab 10: I/O and exceptions

Lab 1: TDD

−1.0 −0.5 0.0 0.5 1.0
Difference in achieved mark ratio between successive attempts

Figure 9. Box plots for differences in ratio of achieved/achievable marks across successive submissions from
the same student for each lab in 2021–22, using the attempts stored by AF: the last 30 attempts, the best
attempt before the deadline, and the best overall attempt. Outlier dots represent data points over 1.5 times
outside the interquartile range.

the alternative hypothesis that a positive association existed between attempt numbers
and obtained marks.

The actual τ values differ by lab, however. Lab 5 has the highest Kendall τ , being
mostly centered on teaching basic UML modeling via the PlantUML textual notation,
and therefore not requiring a large amount of problem solving: students will typically
improve their marks at a consistent rate across attempts. On the other hand, Lab 9
(the assessed JavaFX lab) has one of the lowest τ values, likely because it only specifies
the requirements of the new GUI to be developed and does not provide step-by-step
instructions: some students will pass most tests on their first few attempts, while others
will require more attempts before they reach their final mark.

Figure 9 shows box plots of the relative changes in the ratio of achieved marks
across successive attempts for each lab in 2021–22. In all labs, the first quartile is zero,
meaning that for 75% of successive attempts, marks do not decrease. In Labs 3/5/6/8,
the median is higher than zero: most successive attempts result in an improvement in
the score. Lab 9 is one of the more difficult labs, with a zero median. There is a number
of outliers, spanning from -1.0 to +1.0. A -1.0 delta usually indicates that the student
went from a fully-working solution to one that failed all tests (e.g. due to a refactoring
or submitting the wrong Eclipse project): these were rare, however, with only 27 cases
out of 33094 data points. Conversely, many of the 50 instances of a +1.0 delta will be
from the students restoring their old submission.

6.4. RQ3: student reception

Tables 6–8 summarise the results of the surveys in Section 5.3, which will be discussed
below. MCQs were analysed in a quantitative manner, by comparing the number of
responses for the various options: Figure 10 shows the results.

6.4.1. 2020–21 — Week 4 survey

Table 6 shows 5 out of 20 participants mentioned AF. P11 (participant 11) and P20
were entirely positive, only mentioning how AF had helped point out issues in their
code. P4 acknowledged its usefulness, but mentioned that the feedback could be unclear
at times and that it needed to be revised to provide more clear guidance. P12 also
considered AF useful, but mentioned a number of problems with the tests: they could

23

Table 6. AutoFeedback-related themes mentioned by participants in the 2020–21 term 2 week 4 module
survey

Theme P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

C
ou

nt

AutoFeedback
Feedback is unclear at times • 1
Useful to detect issues • • • • 4
Tests can fail even if the code is working • 1
Does not allow for all approaches to solve a problem • • 2
Passing all tests should not be mandatory to gain quiz

marks
• 1

be brittle (failing even if the code met the requirements) or inflexible (requiring a
specific approach/naming convention in order to pass). P12 considered that asking for
all tests to pass before the quiz marks would count was too harsh, and that a more
gradual approach was needed which allowed for some tests to fail (at the expense of
some marks). Finally, P15 did not take well to AF, considering AF an impediment to
their creativity in tackling problems however they wanted.

This initial response motivated a number of changes in strategy for 2020–21. Student
submissions were regularly monitored to look for tests that proved to be particularly
challenging: feedback templates were revised accordingly to guide students on the most
common issues, brittle tests were improved to allow for a greater variety of solutions,
and lab worksheets received clarifications in their steps. Several times, additional “code
smell” tests would be introduced in the middle of the week, which used static analysis
to explicitly detect and highlight recurring difficult-to-debug mistakes students were
making (e.g. using == to compare strings in Java). Students were kept informed of
these refinements and any other improvements in AF through regular announcements,
to let them know that the staff was monitoring and improving the experience.

The above response also partly motivated the removal in 2021–22 of the “harsh”
requirement to require all tests to pass to take the quiz: instead, the AF mark would be
used as-is, meaning that students would still be granted partial marks if they managed
to pass some but not all the tests. It was also one of the reasons for introducing in
2021–22 the conditional feeedback blocks of Section 3.3.

It is worth noting that there was some self-organisation from the students: a few
weeks after this survey, a study group decided to tackle the labs as soon as they were
released, and send feedback to instructors on the clarity of the worksheets and the
brittleness of the tests, so the rest of the cohort would benefit. For instance, they
identified a few cases where string comparisons were too strict in a number of cases in
Lab 7 (dedicated to Java collections).

6.4.2. 2020–21 — Week 10 survey

Table 7 shows the themes identified across the 18 responses. Every participant had
something positive to say, and 16 out of 18 participants stated that AF had helped
point out issues in their code. 4 participants were happy that they did not have to wait
for teaching staff to receive feedback. P17 praised the ease of use of AF, and P2 liked
the concise feedback in the form of passed/failed tests. P17 recognised the efforts of
the teaching staff in making tests more flexible in response to student feedback.

Students mentioned several issues in their negative feedback. 7 participants men-
tioned that tests would sometimes fail without providing a clear reason. In the first

24

Table 7. Themes mentioned by participants in the 2020–21 term 2 week 10 survey on AutoFeedback

Theme P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

C
ou

nt

Feature requests
Allow for providing feedback on the feedback • 1
Collapsible drawers for test classes • 1
Dark mode • • 2
Help locate the faulty lines of code • • 2
Only show the tests that failed • • 2
Reference worksheet step from feedback • 1

Negative feedback
AF can have spikes in load • • • • 4
AF did not work for the student some weeks • • 2
Sometimes the student does not know what to do in re-

sponse to the feedback
• • • • • 5

Sometimes the student needed to reload the page manually • • 2
Teachers should not entirely rely on AF for assessment • 1
Tests need to be more flexible • • • • • • 6
Tests sometimes fail without providing a clear reason • • • • • • • 7
Waiting times for feedback can be long sometimes • • • • • • 6

Positive feedback
AF helped point out issues • • • • • • • • • • • • • • • • 16
AF was easy to use • 1
Minimal and concise feedback is good • 1
Tests were made more flexible in response to student feed-

back
• 1

Not having to wait for teaching staff • • • • 4

weeks of AF, this could happen when the test failed to compile. P6 also mentioned the
case of several “failsafe” tests in Lab 4 (an object-oriented simulation) which were only
testing that the student had not inadvertently introduced a regression in the starting
code, and simply told students in the feedback template that they should be passing
the test from the start of the lab, unless they had made a mistake in a previous step:
the feedback templates for these failsafe tests did not mention what behaviour they
were expecting, which did not help students figure out what they had broken.

The next most prevalent issue was still the brittleness of the tests: 6 participants
mentioned how tests needed to be more flexible, as they could fail because of minor
spelling mistakes, slightly different text strings being produced by their programs (e.g.
case or whitespace differences), or differences in method/variable names.

Six participants mentioned long waiting times, and four mentioned how AF could
have spikes in workload (especially on weekends, as the submission deadline drew near).
This can sometimes result in build queues that are longer than desirable. In 2020–21,
AF had 2 build nodes allocated to it: this was raised to 4 build nodes in 2021–22.

Five participants touched on how sometimes they did not know what to do in re-
sponse to the feedback. They considered that in some cases, the wording of the feedback
was very vague or was worded in terms they found hard to understand as first-year
students. They asked for the feedback to be made a bit more specific, without entirely
giving out the answer. Students often emailed module staff to ask for clarification on
the feedback, which resulted in refinements of the feedback templates, but the friction
involved in writing an email may have discouraged some students.

The next two items of negative feedback discussed more rare issues with AF, with two
students mentioning how it did not work for them in some weeks, or that they needed
to reload the feedback page manually if their connection was unstable. Regarding the

25

first issue, all reported problems prior to this survey had been resolved: these may have
been issues that went unreported to the teaching staff until this survey. The second
issue was related to issues in a library.

Finally, one student commented that teachers should not rely entirely on AF for
assessment, with a specific focus on the assessed GUI lab. To mitigate the risk of the
automated tests producing unfair marks on the GUI lab, the teaching staff sampled the
submissions that had not achieved full marks, and moderated the AF-produced mark
by inspecting the submitted code manually. Any issues detected on the automated
tests were resolved, and the automated marking was rerun on all submissions that had
not achieved full marks: students were given the highest grade across their attempts.

The third and last theme consisted of feature requests. Several were implemented
in the summer between the 2020–21 and 2021–22 academic years, including: i) a “dark
mode” easier on the eyes if working late at night (requested by two students), ii)
collapsible drawers for test class results (requested by one student), and iii) a way to
reference the worksheet step from the feedback template (requested by one student).
One student asked for the ability to reply to a specific item of feedback from AF (rather
than having to write an email): this is part of our future work, as it may help aggregate
information on which feedback templates need the most refinement. Two students asked
for a view where only failed tests were shown: this has been partially implemented,
by automatically showing test classes that have passed all tests in “collapsed” form.
Finally, two students asked for assistance on locating the problematic lines of code
that caused a test to fail: this can be very challenging to achieve generally in an
automated manner, but there are promising results in the area of mutation-based fault
localization that could be reused, such as the work of Papadakis and Le Traon (2015) in
their Metallaxis tool. Automated fault localisation could reduce the need for manually
crafted conditional feedback blocks in response to typical error messages (which can
take significant amounts of effort).

The answers to Questions 3, 5, 7 and 8 have been summarised in Figure 10a. In
general, most students agree or strongly agree that AutoFeedback helped identify issues
(16 out of 18) and that the feedback was understandable (15). Students generally would
prefer to have both videos and summary text for their feedback in future editions of
the module (13), and no students said that they would want only videos. Most students
(16) wanted to see AutoFeedback used in other modules.

6.4.3. 2021–22 — Week 5 survey

Table 8 summarises the themes identified in the 16 responses. To allow for easier
comparison, the thematic analysis started from the themes identified in the 2020–21
week 10 survey, and new themes have been annotated with “(new)”.

In regard to positive feedback, 12 participants mentioned how AF helped them point
out issues in their code, 24 liked not having to wait for teaching staff to receive feedback
on their code, and 2 considered AF was easy to use. Three participants liked how tests
were clearly linked to worksheet sections, which is a new feature introduced in 2021–22:
this is the grouping by “tasks” mentioned in Section 3.2. Two participants mentioned
how passing the tests felt rewarding, and that AF was giving them a push in the right
direction while completing the exercises.

Several of the negative feedback themes from the previous survey are not mentioned
anymore, such as the workload spikes, or seeing tests fail for no apparent reason.
The most frequent negative theme is still not knowing what to do in response to
the feedback, as some feedback templates are still considered to be worded in overly

26

1 81 8

122 1 3Q5: feedback was understandable

Q3: helped identify issues Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

Strongly Disagree

4131Q6: videos for feedback

I do not have any strong preference

I would like to have both videos and summary text

I would prefer having only text

2 16Q8: use for other modules

0 5 10 15

True

False

(a) 2020–21 week 10 survey

51 1 9

64 6Q5: feedback was understandable

Q3: helped identify issues Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

31021Q6: videos for feedback

I do not have any strong preference

I would like to have both videos and summary text

I would prefer having only text

I would prefer having only videos

16Q8: use for other modules

0 5 10 15

True

(b) 2021–22 week 5 survey

Figure 10. Responses to multiple-choice questions in the 2020–21 and 2021–22 student surveys

27

Table 8. Themes mentioned by participants in the 2021–22 term 2 week 5 survey on AutoFeedback

Theme P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

C
ou

nt

Feature requests
Help locate the faulty lines of code • 1
Option for only showing failed tests • 1
(new) Improve color scheme for readability • • 2
(new) Link from Blackboard to AutoFeedback • 1
(new) Student-facing performance dashboard • 1
(new) Web development module should use AF too • 1

Negative feedback
Sometimes the student does not know what to do in re-

sponse to the feedback
• • • • • • 6

Sometimes the student needed to reload the page manually • 1
Tests need to be more flexible • • 2
(new) Sometimes tests do not notice intentionally intro-

duced faults
• 1

Positive feedback
AF helped point out issues • • • • • • • • • • • • 12
AF was easy to use • • 2
Not having to wait for teaching staff to obtain feedback • • • • 4
(new) Passing tests feels rewarding • • 2
(new) Tests are clearly linked to worksheet sections • • • 3

technical or vague ways, or lack concrete guidance on what needs to be done. This
reinforces the need for students being able to reply to feedback and raise the instructors’
attention to the feedback templates needing improvement. Being novice programmers,
there is also the chance that they did not understand the new topic that the test
depends upon: providing links to learning resources to address this gap in knowledge
may be more productive than directly helping them with the task. A student may also
try to skip a test and make later tests pass, which may lead to confusion over the
feedback on later failing tests might not be helpful until the earlier test passes.

There was only one student asking for tests to be more flexible, which suggests year-
to-year improvements were effective, but that further refinement is still needed. The
specific cases given by the students were related to tests needing to be designed to
fail independently of each other, or tests that suffered from JavaParser syntax trees
drastically changing in the presence of minor textual variations (e.g. an empty line
between a method and its Javadoc comment). Another example was a string com-
parison which was unnecessarily sensitive to whitespace. It is interesting to note that
one student mentioned experimenting with AF by intentionally introducing faults and
seeing if this resulted in AF failing a test, which did not always happen: this suggests
that mutation analysis (recently surveyed by Papadakis et al. (2019)) could be used to
refine the instructor-written AF tests to improve their sensitivity.

Only two feature requests from 2020–21 are still outstanding: automated assistance
to locate the faulty code (a research topic of its own), and an option for only showing
failed tests. Students have made a number of additional feature requests: i) improving
the color scheme (better contrast in dark mode, and more accessible colours for users
with color perception impairments), ii) providing a link from Blackboard to AF (which
was quickly implemented), iii) providing students with a dashboard of the Java topics
they need to reinforce based on their performance, and iv) having the first-year web
development module use AF as well.

The MCQ responses are shown in Figure 10b. 14 students agreed or strongly agreed

28

that AF helped identify issues, and 12 students said that feedback was understandable
(with the remaining 4 being neutral). Students still majorly preferred to have a mix of
both videos and text for feedback (10 out of 16). Most importantly, all responses said
they would like to see AF used in other modules.

7. Discussion

After describing the results in Section 4, this section will outline the lessons learned
during these first two years of developing and using AF, and identify the threats to
the validity of these observations.

7.1. Automated test-driven feedback for programming labs

In general, student reception of automated test-driven feedback was positive, with some
initial pushback due to the perception that it would severely constrain their freedom
to solve assignments as desired. In this regard, it was important to ensure the students
felt they were listened to when they raised an issue with the tests or the feedback tem-
plates. Modules incorporating automated test-driven feedback should ensure staff have
the time needed to monitor student performance and feedback, and revise tests and
feedback templates accordingly. Various forms of learner analytics should be provided
to enable such monitoring, both at the individual level (e.g. comparing tests passed
across attempts for a student) and at the cohort level (e.g. visualizing which tests are
proving to be the most difficult). Ideally, there should be ways for students to initiate
discussions with instructors on the feedback via the platform, avoiding the friction of
having to start a separate email conversation.

First-year students are often getting to grips with producing syntactically valid code,
and will react negatively to receiving no feedback at all if their submission is simply
rejected with no output. If the automated feedback is test-driven, and not all tests are
shared with the students (to prevent giving away parts of the solution), it should at
least include the syntactic errors relevant to each test. Ideally, it should also attempt
to run as many tests as possible, even if some other tests do not compile: the core
principle is to give as much feedback as possible even if the submission is of low quality
at the moment.

The proposed approach requires writing effective tests and feedback templates. Tests
should be flexible enough to allow all reasonable solution approaches, while being
clearly isolated from other tests (i.e. not failing because another test failed to run or
compile), and setting out time limits for completion within a certain order of magnitude
(the test designer will be usually able to set a more accurate limit than a platform’s de-
fault timeout: sorting 10 list elements should take much less than the 10 minutes given
by AF to submissions by default). Test designers should consider a variety of methods
to check their expectations, such as comparing initial and final program states, veri-
fying that the expected object interactions have happened, or performing test-specific
inspections on the students’ code (e.g. to detect common mistakes). Test designers
may also benefit from automated approaches to assess the robustness of a test suite
against common mistakes, e.g. by adopting approaches such asmutation analysis which
measure how well the test suite detects small code variations or mutations.

As for the feedback templates, students preferred explanations in lay language, with
reminders of the new terminology introduced in the module. Some of the raised issues
were about the overly terse explanations limited to a short summary of the assertions

29

checked by the test in question. If a specialist testing framework is being used, the
feedback templates may need to help students interpret the error message: this was
often the case with failing Mockito tests, where students need to understand how their
code did not result in the intended interactions. On the other hand, the amount of feed-
back being given must be kept within reasonable limits: to this effect, the conditional
Markdown blocks helped show only the feedback that was relevant to the student.

7.2. Impact on student engagement and performance

The participation ratios in 2020–21 and 2021–22 (after AF was introduced) were shown
to be more consistent than in 2019–20, even across the policy change between 2020–21
and 2021–22. This suggests that automated test-driven feedback can motivate students
to engage with the programming tasks more consistently than assuming they will per-
form any such tasks before a typical multiple-choice question quiz. Students mentioned
multiple times liking how they could obtain feedback at any time.

The Kendall rank-based association tests showed that marks generally improved
from attempt to attempt, though some labs proved more difficult. Most students were
able to achieve more than 50% of the lab marks (Figure 8), and according to Figure 9
the median change in marks was never lower than 0, and was often greater than 0.

7.3. Design of the platform

Students generally considered AF easy to use: there were no major issues raised during
2020–21 and 2021–22 beyond Lab 1. AF only used the existing facilities in their pre-
installed development environments and browsers, did not require learning a version
control system, and used the same credentials as Blackboard. This allowed students to
focus on learning coding, leaving learning Git to the second year team project.

During 2020–21, the students complained about a lack of processing power during
peak times, which was remediated for 2021–22. The worker-based design of AF would
make it simple to add further processing power as needed should cohorts grow further,
but due to its reliance on a simpler deployment technology (Docker Compose), it would
not automatically scale up and down to the same extent as a cluster-oriented container
orchestration platform like Kubernetes.

Students wanted to manage the amount of information shown at once (grouping
tests by task and viewing only test failures), and tweak the colour scheme to suit their
preferences (dark mode). A number of features will require further research, including
support for automated fault localisation, creating links between the failed tests and
the underlying theory to review, or using the feedback for exam revision.

7.4. Threats to validity

The above findings are subject to several threats to validity, following the classification
from Wohlin et al. (2012).

7.4.1. Conclusion validity

This type of threat is related to whether the insights gained follow from the obtained
results (e.g. the observed results are statistically significant). A large part of the analysis
has been based on descriptive statistics, especially quartiles and medians (due to their

30

robustness against outliers), although a number of statistical tests have been conducted.
The comparison of the consistency of the participation ratios across 2019–20, 2020–21
and 2021–22 was visual in nature. For student performance, the initial comparison
based on boxplots between the two years was supplemented with a Mann-Whitney U
test to check if the differences were statistically significant, A effect sizes to check if
the differences were large enough, and a Kendall rank-based statistical test to validate
if marks improved on later attempts.

To compare the achieved mark ratios between the two years, a Mann-Whitney U test
highlighted the labs with significant differences (although A effect sizes were negligible
in those cases), and visual inspection of boxplots was used to identify trends. It is worth
noting that many of the data points in Figure 8 are at the 1.00 maximum (students
achieved all marks), which may impact the reliability of the Mann-Whitney U test and
result in an underestimation of the A effect size: there is a possibility that the effect
was larger than measured by A. We originally expected to see larger differences from
a change in policy, given that the purpose of the AF marks changed (from unlocking
a quiz to becoming their performance indicators), and also how some of them were
computed (tests were refined for this new purpose, as discussed in Section 5.2).

The analysis of the distribution of attempts needed to reach various mark thresholds
was not considered to require statistical tests, as the analysis was on a lab-by-lab basis
and no year-to-year comparisons were needed.

In regard to the student feedback surveys, the conclusions are largely dependent
on how the responses to the students were coded, which may vary from researcher to
researcher: this is a known issue with thematic analysis. Specifically, in this case the
first author did the coding, and the second author validated it.

7.4.2. Internal validity

Internal validity considers the causal relationship between the treatment (e.g. the use
and refinement of AutoFeedback and its materials) and the results (e.g. more con-
sistent engagement, mark ratios, higher attempt counts in 2021–22). There may be
unknown differences in the composition of the three student cohorts (2019–20, 2020–
21, and 2021–22) that may have caused some of the differences across years: while
entry requirements to the CS course have been essentially the same, the number of
students has grown from year to year. In this regard, some consistency from year to
year has been observed, e.g. the participation ratios were very similar between 2020–21
and 2021–22. Another possible internal threat is that the test suites could have defects
that negatively or positively impacted the marks achieved by the students: to manage
this threat, all issues reported by students on the test suites were promptly fixed, and
the fix was confirmed with the students. Additionally, AutoFeedback includes an exten-
sive automated test suite of its own to ensure that the results are correctly computed,
recorded and reported.

In relation to the student feedback surveys, the main limitation is that due to par-
ticipation being voluntary, response rates were lower than desirable. In 2020–21, out of
240 unique AutoFeedback users, the mid-module survey received 20 responses and the
end-of-module responses received 18 responses. In 2021–22, out of 269 unique AF users,
the mid-module survey received 16 responses. There is the risk that the responses could
be skewed towards the more engaged and higher-performing students, and that the re-
sults could be more positive than if all students had responded. Due to the anonymous
nature of the survey, it is not possible to verify whether the respondents were skewed
in this manner, or whether they followed a similar distribution of results as the entire

31

cohort.

7.4.3. Construct validity

This aspect is concerned with the relation between the theory (e.g. the ideas of test-
driven development and test-driven feedback) and observation (e.g. how they appear
to students via the teaching materials and AutoFeedback). The students receive a lec-
ture on TDD before being exposed to AF, and the lab worksheets regularly remind
students to test their work so far and ensure certain expected tests pass before contin-
uing. In order to make the experience as realistic as possible for students, AF reuses
existing mature testing frameworks (JUnit, Mockito, TestFX) which have been widely
adopted by TDD practitioners, and allows students to use any IDE of their choice that
supports Maven. In regard to the implementation of automated test-driven feedback,
the templates are limited to manually-written blocks which are conditionally shown to
students based on their test results: alternative approaches which generate text auto-
matically in some other way (e.g. via automated fault localisation) could perhaps have
produced reports that were more insightful for an individual student (although they
could also be more difficult to understand).

7.4.4. External validity

This last class of threat is concerned with the generalization of the results. Auto-
Feedback has only been used for one module of one CS course at a single university:
evaluating its effectiveness in other cohorts (ideally at other institutions) is part of
our future work. In addition, it has only been used in earnest with Java programs,
although most of AF only requires that the test framework produces a JUnit XML
file: a final-year project ran successful experiments integrating PHP and JavaScript
support by leveraging this fact, and these improvements are waiting to be merged into
the main AF codebase.

8. Related work

Automated provision of feedback for programming assignments has received significant
attention over time. In this section, we discuss several tools similar to AutoFeedback,
techniques for designing and evaluating tests, as well as other experience reports around
automated assessment tools.

8.1. Autograding systems

Our initial search before starting the development of AutoFeedback found the Gradeer
and PABS systems. We identified several other systems after developing the first ver-
sions of AutoFeedback, including WebTA, Web-CAT, and Test My Code.

Gradeer (B. Clegg, Villa-Uriol, McMinn, & Fraser, 2021) is a recently published
system for automated grading of student submissions, combining guided manual checks
with automated JUnit test suites and linting tools like Checkstyle (2021) and PMD
(2021): it is focused on grading rather than on providing rapid feedback.

PABS (Ifflander, Dallmann, Beck, & Ifland, 2015) is another automated grading
system, which uses Subversion repositories to manage tests and student submissions.
Submissions are assessed by Akka agents running Gradle builds, and the approach has

32

been successfully used since 2010 over 19 courses with almost 1300 students. On the
other hand, PABS required students to commit their code to SVN, and the feedback
was limited to test results: module staff could not add custom hints on typical mistakes
that fail tests. PABS is not publicly available as open source software.

WebTA (Ureel & Wallace, 2015) is a web-based system for automated critiquing of
student programs in introductory student courses. Similarly to our intended approach,
WebTA supported a feedback loop where students receive feedback from predefined
“critiques”, which help instructors focus on providing feedback at a deeper level beyond
common issues. Students submit Java source code through a web interface, and this
code is checked against instructor-defined tests (implemented in JUnit) and critiques
(implemented as regular expressions). Instructor-defined tests could provide hints to
students upon failure. In addition, WebTA integrated with the authors’ institution’s
Learning Management System (Canvas), providing grades. The authors reported higher
mean and median grades after WebTA was introduced in a first-year introductory
programming course, and a second-year data structures course. While the idea of having
a large predefined library of code antipatterns is attractive, our experience using regular
expressions for automated coding quizzes suggests that they could be brittle against
minor syntactic variations in student code: ideally, they should be implemented as
pattern matching over abstract syntax trees.

Web-CAT (Edwards, 2003) is one of the most feature-rich alternatives to Auto-
Feedback that is available as open-source software. Web-CAT is a web-based platform
where students can submit code (whether from their browser or their IDE), and one or
more grader “plugins” can process that code to generate grades and feedback. Web-CAT
graders measure three scores: test validity (how many student-provided tests are passed
by the reference solution), test completeness (how well the student-provided tests cover
the student-provided solution), and code correctness (how many student-provided tests
are passed by the student-provided solution). This allows for designing assessments
where students are responsible for creating tests that verify the requirements, instead
of only relying on instructor-provided tests. Web-CAT includes a TDD-driven Java
grader plugin, which in its current version automatically tests and analyses programs
using a predefined Ant script, using (Checkstyle, 2021) and (PMD, 2021) to perform
static analysis. While Web-CAT also runs tests and produces feedback, similar to Au-
toFeedback, there are a number of key differences:

• We have not found any features for fine-grained cohort-level analytics (e.g. finding
out which instructor-provided tests were giving students more trouble). It appears
that plugins only generate reports for individual submissions.

• The Java TDD plugin only uses a predefined build script. Teachers would typi-
cally want to provide custom build scripts for each assignment (with the ability
to automatically fetch dependencies from public software repositories), and add
an extra layer of isolation by running student code in unprivileged and resource-
limited Docker containers.

• Hints provided to students from the Java TDD plugin are directly extracted from
the test assertions in the instructor-provided tests, limiting the level of detail that
could be provided in them, and the available formatting capabilities (as these
are typically short Java strings). AutoFeedback can use arbitrary Markdown-
formatted text to provide feedback, which may include embedded images, videos,
and links (e.g. to past course material), which is kept decoupled from the test
definition and can be easily updated from its web interface.

33

Test My Code (TMC) (Vihavainen, Luukkainen, & Pärtel, 2013; Vihavainen,
Vikberg, Luukkainen, & Pärtel, 2013) has some similarities with AutoFeedback. It
provides timely scaffolding to students who are working through exercises, allowing
them to work more independently. It also allows marks to be awarded for steps com-
pleted, and makes testing of code visible to students, providing feedback from the
results of testing. From the instructors’ viewpoint, it allows exercises to be updated
and modified over time, and it gathers data from student activity. It is also based on
a client-server architecture, with server-side tests, use of Maven for fetching libraries,
and IDE integration via plugins (TMC uses a NetBeans-specific plugin, whereas AF
uses an IDE-agnostic Maven plugin). We have noted several other differences between
TMC and AF:

• One feature in Test My Code that AutoFeedback does not have is analysis of
algorithms, providing some complexity analysis from algorithm execution times.

• The automated feedback aspect of Test My Code does not allow for conditional
feedback, which is provided in AF: we have found this conditional feedback to be
essential in providing more helpful and directed guidance that allows students to
understand why their code is failing the tests. Instead, TMC allows instructors
to manually write code reviews for submissions.

• TMC uses Java reflection to see inside students’ code. In AF, besides reflection,
we have used static analysis tools and also mocks which can substitute certain
program components and check that they implement specific object interactions.

• The data gathering aspect of Test My Code seems to be for future detection of
plagiarism: AF only has some very rudimentary features to detect plagiarism,
but its data collection currently allows mapping student performance over the
provided exercises, which provides instructors detailed information about which
aspects of the exercises were done well by the students, and which were not.

It is important to note a recent 2022 state-of-the-art survey by Paiva, Leal, and
Figueira (2022) on automated assessment in CS education, which was published sev-
eral years after the development of AutoFeedback started. The survey examined 30
different tools present at the time, noting the prevalence of unit testing for finer-
grained information compared to output comparison. It noted a trend towards the use
of containerisation for improved security (with over 25% of the tools adopting it). It
also found that while nearly all tools included failure information and failed tests in
their feedback, only some of these tools provided evaluation logs, gave hints, produced
a structured report, or allowed instructors to add manual hints (and no tools provided
all elements at once). The survey also showed that while it was common for tools to
collect submission history, include a code editor, and produce simple statistics, more
advanced analyses that enabled deeper insights about student behaviour were rare.

Messer, Brown, Kölling, and Shi (2024) conducted a similar survey of automated
grading and feedback tools, covering 121 papers from 2017 to 2021. They made similar
findings, where tools primarily used a combination of unit testing and static analysis
approaches. They noted that the feedback from the tools was usually limited to tests
passing or failing, the expected and actual output, or how they differed from the
reference solution. In this respect, AF is among that majority of tools based on tests
and static analysis, but it stands out in terms of the flexibility that feedback templates
offer. The survey noted that few tools assessed other aspects besides correctness, such
as readability, maintainability, or documentation. In our use of AF, we had some checks
of Javadocs (Section 4.2), but these were simple checks, such as ensuring parameters
were documented, instead of using readability metrics like the Flesch reading ease score

34

used by Eleyan, Othman, and Eleyan (2020). The survey noted that in many cases,
AATs cannot award partial grades for incomplete or uncompilable programs, and that
some AATs had started using program repair techniques to solve this issue: in this
regard, the use of the Eclipse Java compiler by AF is within this line, although it uses
an already mature approach in wide use for years from the Eclipse IDE.

It is worth noting that some of the above tools predate AutoFeedback, with Test
My Code and Web-CAT already appearing in the Keuning et al. (2018) survey, which
covered 101 tools from 1960 to 2015, and whose major findings were discussed in
Section 2.2. JACK is another tool discussed in Keuning’s survey and revisited in later
surveys, which we discuss later in Section 8.4. Web-CAT also appeared in a prior survey
by Ihantola, Ahoniemi, Karavirta, and Seppälä (2010), which mentioned the lack of
open-source tools as a reason for the constant development of new systems: we had
a similar perception, which is why we decided to open-source AF. Even earlier, the
surveye from Douce, Livingstone, and Orwell (2005) is notable in how it divided tools
across generations, with the third generation being web-oriented (like AF).

8.2. Automated grading of UML models

Many software engineering courses require students to create UML diagrams when
designing object-oriented systems (whether it is their data model, their high-level ar-
chitecture, or their detailed design). Often, students are given a description of the
requirements in natural language, and are asked to come up with a UML model that
meets these requirements. Grading these UML models manually can be very labour-
intensive, as there are many details to check (i.e. expected types, attributes, operations,
and relationships). To make matters more difficult, often the requirements can be met
in multiple ways (from slight variations in naming, to completely different ways to
break down responsibilities across objects). Le et al. (2013) considered UML as an “ill-
defined” problem: within their classification of educational problems, they examined
various automated grading systems that handled Class 2 and Class 3 UML problems.

Moritz and Blank (2008) presented an early approach which generated a “solution
template” from an English problem description which could be customised by the
teacher and used to automatically mark submissions, and which allowed for some vari-
ability by using semantics-aware string matching. Striewe and Goedicke (2011) sug-
gested using graph queries to specify the teacher’s expectations in a more flexible way
than through direct comparison against a model solution. More recently, Bian, Alam,
and Kienzle (2020) proposed an approach that allowed for multiple model solutions,
giving students marks based on the solution that was closest to their submission us-
ing a combination of syntactic, structural, and semantic matching criteria. Bian et al.
reported that after refining their tool’s configuration, the average difference between
the automated and manual marks was within 9%, and identified 37 cases where the
automated grading was more consistent than manual grading.

8.3. Evaluation of tests written by instructors and students

The quality of the test suite written by the instructors is crucial to obtaining accu-
rate assessments of the students’ achievements, and providing insightful feedback to
the students. We already observed in AF that some students tried intentionally in-
troducing defects and seeing if the instructor tests could catch them, and noted that
some defects were not detected, and we suggested using mutation analysis to refine

35

our tests. B. S. Clegg, McMinn, and Fraser (2021) experimented with this same idea
across 190 student solutions to first-year programming assignments, and confirmed
that mutation scores were positively correlated to the detection rate of faulty students’
solutions. They recommended to first reach 100% coverage on a model solution, and
then generate mutants using an off-the-shelf mutation testing tool.

Being a first-year course, only the first unit in CS1OOP had students write their
own tests: this was more oriented towards understanding the TDD process behind Au-
toFeedback, rather than giving them an in-depth introduction to test design (which is
covered in a later module). AF would run the students’ own tests, but did not assess
them itself. That said, if we were to add test design in future editions of the module,
or adapt AF to a software testing module, it would require integrating an approach
to evaluate those tests. One of the most common approaches is to measure the stu-
dent tests is to measure how thoroughly they cover the implementation (whether the
student’s, or the model solution’s): for instance, this is used by Web-CAT (Edwards,
2003). A later work by Edwards and Shams (2014) compared code coverage, muta-
tion testing and all-pairs testing (i.e. running a student’s test suite against the other
students’ submissions), and found that only all-pairs testing was strongly correlated
with the test suite’s bug-revealing capability. They also noted that student-written test
suites tended to have very low bug-revealing capabilities, suggesting students tended
to write only the same basic checks, and missing many of the corner cases.

Other works disagree with this push for all-pairs testing. Smith, Tang, Warren, and
Rixner (2017) argue that all-pairs testing requires students to submit a final test suite
“blindly” without the ability to interact with the implementations against which they
would be evaluated, and instead propose an interactive tool where students propose
tests against an instructor-provided program and receive feedback in terms of the next
faulty version of the program their tests cannot catch. Kazerouni et al. (2021) argue
that all-pairs testing is slow and not amenable to incremental feedback (which would
be an issue if integrated in AF), and have a similar concern about requiring several
completed and compatible solutions to the assessment: instead, they propose reducing
the high cost of mutation analysis by selecting a reduced set of mutation operators that
can evaluate test suites at minimal cost, finding that 1 or 2 deletion operators can be
enough for most educational settings, and leaving the full set of mutation operators only
for small submissions (less than 341 lines of code). Hall and Baniassad (2022) reported
a successful experience using hand-written mutants to evaluate student-written tests,
with a small set of 18 mutants having strongly correlated student scores against a larger
set of 73 mutants, and students engaging much more often with the testing section of
their forums compared to when code coverage was the target metric.

8.4. Automated code feedback tools

Various projects have looked into static analysis for automated feedback generation.
Pedal (Gusukuma, Bart, & Kafura, 2020) is an open-source framework for static anal-
ysis of student code written in Python, which can automatically produce feedback in
a more relatable way than typical Python stack traces. Pedal provides a set of func-
tions that instructors combine into a script for a given assignment. These functions
can perform pattern matching against the student code (e.g. to detect infinite recur-
sion), conduct static analysis for typical mistakes (e.g. overwriting a function before
it is read), and run black-box tests (e.g. function should return a certain value given
some inputs). It is worth noting that while AutoFeedback has no specialised features

36

for static analysis, its Maven-based design allows teachers to use existing parsing and
static analysis libraries in their tests. In fact, the basic static analysis described in
Section 4.2 reused an existing library for parsing Java code.

PyTA11 is another static analysis tool for Python student code. In addition to prede-
fined checks (e.g. using a variable before its assignment), it allows for defining contracts:
pre-/post-conditions for functions (checked before and after each call), and class in-
variants (checked after methods calls and when attributes are reassigned). Similarly
to our discussion of Pedal above, AutoFeedback does not have any such specialised
functionality built-in, and it would have to be written into the tests: one option could
be to port the idea to Java and package it as a reusable library.

Jeuring et al. (2022) selected several datasets that included the steps students took
to solve a programming problem, and annotated it with the various points at which
experts would typically intervene and how they would intervene. They used that experi-
ence to compare the feedback given by experts to that given by learning environments,
considering tools such as CodeWars, Codecademy, or CodingBat, among others. Sev-
eral of the tools mentioned allowed students to ask for predefined hints, although it
is repeatedly noted that these hints did not take the current code status (unlike our
conditional feedback templates). The authors noted that while learning environments
typically wait for a user action (e.g. a submission) and cannot deal with hint-avoiding
behavior, experts would step in themselves at certain points: for instance, when seeing
tinkering behavior or continuous try-and-error submissions. In fact, we did observe
such try-and-error behavior in some students, resulting in very high attempt counts
for some labs (c.f. Section 6.1.2) that would necessitate human intervention. They ob-
served that experts would typically combine correct unit test results with hints and
enhance compiler error messages (both of which AF conditional templates could do).

Among the tools reviewed in (Jeuring et al., 2022), the flexibility of the JACK
system (Striewe, 2014) was highlighted, as it was possible to reconfigure it to match
the expert feedback for one of the dataset’s tasks. JACK can perform teacher-defined
static and dynamic checks on the student submissions, with a dedicated query language
(GReQL) for defining patterns on the code, and has recently moved to a worker-based
architecture similar to that of AF (Striewe, 2023). GReQL patterns can have specific
pieces of feedback attached to them upon the existence or absence of a match, which
is close to the conditional templates in AF. AF decouples the check from the feedback
text, however: the check could be implemented using any Maven library as a test
assertion, and a Markdown template would be written to produce certain feedback
based on the result of that assertion. They noted an issue in JACK when teaching
novice programmers, in that it could not produce any feedback if there were syntax
errors, and considered it better for novice programmers to ignore those errors in a first
step and address a critical logical error with valuable feedback. While the reason AF
attempts to run tests in the presence of syntax errors is different (for dealing with
cases where teacher-written tests do not compile due to students ignoring some lab
requirements, c.f. Section 4.2), it could also be useful for this situation.

iSnap (Price, Dong, & Lipovac, 2017) is an extension to the Snap! programming
environment12. iSnap has extended Snap! to allow logging of student actions and on-
demand hints designed to give help to students. While this is helpful for absolute
novices, the iSnap developers recognised that an over-reliance on help was not con-
ducive to helping students learn: we prefer to leave some of the problem solving to the

11https://github.com/pyta-uoft/pyta
12https://snap.berkeley.edu/

37

students. Whereas iSnap suggests how the student should change their program, our
intended approach is to show the student why the program needs to be changed.

8.5. Experiences using automated assessment tools

Several other works have reported the impact of automated feedback on students’ per-
formance, and the attitudes from students towards that automated feedback. Pettit,
Homer, Holcomb, Simone, and Mengel (2015) reviewed in 2015 data from 24 differ-
ent automated assessment tools (AATs) around four dimensions, and found that while
there was evidence that AATs were helpful for student learning, supporting the in-
structors, and assessment accuracy, there was no conclusive answer on how students
generally perceived AATs. They mentioned the case study from Rubio-Sánchez, Kin-
nunen, Pareja-Flores, and Velázquez-Iturbide (2014), where Mooshak (a tool normally
used for programming contests) was used as an AAT: while the students considered
the use of Mooshak a good idea, they thought the feedback produced by Mooshak was
poor, and that it increased their workload. Many of the errors students were getting
from Mooshak were due to its use of a different compiler from the one in their ma-
chines, which meant sometimes their programs would work on their machines but not
on Mooshak’s server. Rubio-Sánchez et al. mentioned that the Mooshak developers
were refining the tool to show hints and the number of passed tests. In contrast, Au-
toFeedback was designed to use the same compiler that students would use on their
machines (the Eclipse Java compiler), and has specific functionality for giving hints
and showing per-test outputs and results from the start. In its second year, AF only
had 4 neutral responses on whether the feedback was understandable, with the other
12 responses agreeing that it was understandable.

Kyrilov and Noelle (2016) noted a prior negative experience with simple correct / in-
correct (KR) feedback, where half of the students needed large amounts of time to reach
a correct solution, and a small number of students either gave up or resorted to dishon-
est practices. They looked at whether it was possible to cluster student submissions
based on their feedback, based on the same intuition we had that many students tend
to make the same mistakes. They manually clustered incorrect student submissions
over 5 different exercises in a module that introduces object-oriented programming,
and found that there were between 4 and 11 clusters per exercise, with roughly 10 on
average, meaning that it could be possible for an instructor to provide richer feedback
for each cluster if there were a way to automatically classify submissions based on
errors. This would be an interesting avenue for future work, as AF already collects
per-test error output that could be used for clustering.

The developers of Test My Code noted that on the first year of its introduction,
only 58% of the feedback was positive (Vihavainen, Luukkainen, & Pärtel, 2013). It
was only after significant iterative refinement on the second year that feedback became
largely positive (80% during their Spring 2012 CS1 course). They also observed an
increase in pass rates from 55.49% before introducing their Extreme Apprenticeship
(XA) method into their modules, to 73.45% after introducing XA, and then to 75.76%
after introducing TMC into their XA-based modules. Likewise, AF went through an
intense period of refinement on its first year, and stabilized to good reception on its
second year, to the point that students wanted to have it in other modules.

More recently, Leite and Blanco (2020) compared the effects of automated and
human-written feedback on students on an intermediate Artificial Intelligence course,
by dividing students into two groups: the first group received feedback only from a

38

purpose-specific in-house grading tool (which checked the logic of the algorithm, rather
than just running black-box tests), and the second group also received feedback from
teaching assistants who reviewed the output of the grading tool, and added two types of
feedback difficult to automate: specific references to what caused students’ code to fail
a criterion, and feedback on the clarity, efficiency, and syntax usage of the code. They
found that receiving human feedback was very likely to improve students’ conceptual
understanding, but that the improvement was limited to certain undetermined areas,
and they noted that human feedback had little effect on the students’ final projects.
Where they saw noticeable impact, however, was in the distribution of overall course
grades, where the students in the middle two quartiles (the “average” students) ob-
tained better grades when receiving human-written feedback. Our experience with AF
is that automated feedback is complementary to human feedback: what the automation
does is to free up the time of the teaching assistants from clarifying common mistakes,
and letting them discuss higher-level concerns and helping with less common mistakes.

Leite and Blanco also noted that human assistants tended to provide more partial
marks than their AAT, as they understood better when the students had gotten closer
to a correct solution, so they had to review the automatically-graded submissions to
award partial credit in the same way. We had to do something similar in the JavaFX
auto-assessed lab (Section 4.2): after the students had made their submissions, we
manually reviewed all submissions who were close to achieving full marks and revised
the test suites in case they were being too strict — once the test suite was refined, we
reran all student submissions who did not have full marks, and gave the student the
highest mark across the old and refined test suite.

We also found a few mentions in the literature about the concern that students may
“game” the automated grader if they are given unlimited submission attempts, doing
trial-and-error submissions without considering the feedback. Leite and Blanco (2020)
mentioned that one student tested their code on an assignment 200 times, the develop-
ers of the Kattis tool (Enström, Kreitz, Niemelä, Söderman, & Kann, 2011) mentioned
some tests had over 100 solutions to a problem (although they did not see that as
an issue), and we have seen similar outliers with 150 attempts for a given assessment
(Section 6.1.2). Besides directly limiting the attempts by setting a maximum number
or imposing a delay between submissions, several works have studied approaches to
discourage such behavior, and we are considering whether to implement them in AF:

• Spacco et al. (2006) showed how their Marmoset tool encouraged starting work
early and not resubmitting too often by limiting the number of times the students
could run their code against the instructor’s confidential release tests, simulating
the cost of a release to production by having students spend release tokens. In-
structors generally saw the concept of release tests as being pedagogically sound,
and students considered the feedback from release tests to be useful and a moti-
vator to start work early. It is also interesting to note that one of their instructor
testimonies recognized the same need to review the test cases after the projects
had been made available to students (which AF has specific provisions for, in-
cluding a dedicated model solution versioning system).

• Baniassad, Zamprogno, Hall, and Holmes (2021) experimented with the concept
of regression penalties, where a penalty was imposed each time a student’s grade
went down. These were explained to the students as part of a larger Software En-
gineering narrative (i.e. submitting to the autograder was equivalent to releasing
code to a client). Introducing these penalties significantly reduced the number of
submissions and how often the students’ code went through regressions, at nearly

39

no impact to the median overall mark. Students reported having to change their
working practices due to these penalties, having to write their own tests more
often: they appreciated how they built better habits, but there were students
who felt stressed due to the penalties.

Finally, we note the case study from Barra et al. (2020) on transitioning the assess-
ment of a programming course to an online format during the COVID-19 pandemic, by
using an AAT. They mentioned similar concerns to ours in terms of the high number
of students and the need for frequent and timely feedback for first-time programmers.
Moving the face-to-face lessons, the programming assignments, and the final exam
into an online format meant the AAT went from being a complementary tool to the
face-to-face sessions and tutorials, to being the primary tool. Their in-house AAT (au-
toCOREctor) ran tests locally (using hashes to ensure students did not manipulate the
tests) and submitted the results to the LMS, and gave unlimited attempts to the stu-
dents. Across the 85 responses to their survey, they found that students were divided
on whether the feedback from the tool was useful: the authors recognize that the tool
only pointed out the errors but did not tell them how to fix them, as they considered it
would have been detrimental to their learning. They also note that students often had
syntax errors which caused the AAT to produce cryptic errors (as we also observed
during the first few weeks AF was deployed, c.f. Section 4.2). The students overwhelm-
ingly preferred having the AAT feedback over no feedback at all, and would have used
it even if it had been optional. These positive results also match ours (Figure 10),
although the response rate to our survey was noticeably lower.

8.6. Tool comparison matrix

From the discussion so far, it is possible to identify a feature set that an ideal tool for
automated feedback over programming assignments would need to have, and perform
comparisons against the tools mentioned in Section 8.1. Unfortunately, we could only
find open-source repositories for Gradeer, Web-CAT, and TMC: we could not find the
repositories for PABS, WebTA, or JACK (discussed in Section 8.4). Table 9 summarizes
the results based on prior publications from the various tools, our study of their open-
source code-bases and public documentation. It is important to note that due to gaps
in the available documentation, we may have missed some of the features in the above
alternatives.

The table has been divided into several groups of features. We focused first on the
types of feedback that can be given from each tool. All tools support feedback based
on test results, and most tools (notably AF being excluded) also allow for running a
code style checking tool such as Checkstyle or PMD. AF did not include this feature
as code style was not a major focus for first-year students (this was usually left to the
second year), but it is a gap that would need to be covered. AF has partial support for
static analysis and documentation checks, due to its ability to use custom build scripts
that allow for having additional libraries for non-standard tests, but it cannot be said
to support these natively. Only TMC tackled performance-oriented tests (e.g. checking
whether a sorting algorithm has been implemented in O(nlogn) time).

The next group focuses on assessing student-written tests: this is one aspect where
we could only find explicit support in Web-CAT, using coverage measurement. We
did not find any explicit support for mutation-based test assessment (as mentioned in
Section 8.3.

The third group covers a number of features for helping organise the feedback. We

40

Feature AF Gradeer Web-CAT TMC

Supported feedback types

Test result feedback X X X X
Performance feedback × × × X
Static analysis feedback ∼ × × ×
Documentation feedback ∼ × × ×
Code quality feedback × X X X

Assessment of student tests

Coverage-based test assessment × × X ×
Mutation-based test assessment × × × ×

Feedback-oriented features

Solution versioning X × × ∼
Test-specific hints X X X X
Template-driven feedback X × × ×
Manual regrading × X X X
Collecting student feedback × × × X
Repair for partial marks ∼ × × ×

Teacher support features

Cohort-level analytics X × × ∼
Plagiarism detection × × × ×
Discouraging “gaming” × × × ×

Deployment features

IDE-based submission X × X X
Web-based user interface X × X X
Custom build scripts X × × ×
Containerised execution X × × X

Table 9. Feature comparison matrix for AF and selected open-source automated assessment tools
within Section 8: X indicates there is support, ∼ indicates partial support, × indicates there is no
support for the feature.

41

could only find two tools that had some explicit handling of the evolution of the model
solution over time: AF explicitly stores every model solution in its database and ties
assessment results to (model solution, submission) version pairs, and TMC can refresh
itself by reloading the assessment description from its source Git repository. All tools
support giving some hints when a test fails (JSON file in Gradeer, test assertions
in Web-CAT / TMC), but only AF uses a template-driven approach with conditional
feedback based on a combination of test result and test output lines. Most tools support
manual regrading, except AF: while we consider this feature to be useful, we considered
it a higher priority to work on solution versioning so that every student would be
assessed consistently — if there was an issue in the test, this issue should be corrected
there so that all students would benefit. While reviewing TMC’s documentation, we
found that it supports feedback questions in assessments, where students can provide
their own feedback: this could be useful to adopt in AF for knowing what the students
think about the automated feedback a specific lab. Finally, we could not find any
evidence of automated program repair of any kind in the other tools besides AF: in
our case, the support is partial as we do not allow for any configurability — it is up
to the Eclipse Java Compiler to decide how to repair a program that does not fully
compile.

The “teacher support features” group includes features that we would appreciate as
instructors, whether to protect the integrity of the assessment (plagiarism detection,
discouraging “gaming” via repeated nearly-identical submissions), or to understand
better the current state of the cohort. TMC has some organisation-level reports, ac-
cording to its documentation, and AF has assessment-level reports: we could not find
such reports in Gradeer or Web-CAT. We could not find evidence of the other de-
sirable features in this group in any of the systems: this suggests that there is space
for integrating the research results of Section 8.5 into the widely available web-based
automated assessment tools.

The last group is more technical in nature, and considers a number of desirable
features to improve the student, teaching, and server administrator experience. Out of
the four systems, only Gradeer did not support direct submission from the student’s
integrated development environment, reducing friction and the likelihood of an incor-
rectly packaged submission. 3 of the 4 tools had web-based user interfaces (whereas
Gradeer is only usable from the command-line by the teacher). Most tools did not
allow for custom build scripts that would make it possible to change the dependencies
/ compilation options used for each assessment: this was only explicitly considered in
AF. Finally, only AF and TMC executed their code in a containerised environment:
AF used Docker containers, and TMC used a specialised Linux-based “sandbox”.

9. Conclusion and future work

In this paper, we have provided the first description of AutoFeedback, an open-source
system for automated feedback over Java-based programming assignments which is
based on standard testing frameworks (JUnit, Mockito, TestFx), can be deployed en-
tirely on university premises, and it is specifically designed to support the concurrent
iterative refinement of the test suites, the feedback templates, and the students’ work.
AutoFeedback is motivated by the dual feedback loop of the Interactive Tutoring Feed-
back model by Narciss (2013), using feedback templates to deliver elaborated feedback
for the learner’s internal feedback loop, and providing various reports to enable the
teacher’s external adjustment of the external feedback loop. A single-node deployment

42

of AF has processed over 58,000 submissions over the 2020–21 and 2021–22 academic
years of the first-year object-oriented programming module at Aston University.

The paper has discussed the original design and refinements of the teaching mate-
rials used with AF, and how AF was integrated into the student experience. Ensuring
students felt they were shaping AF was crucial to its success: tests were refined if
found brittle, feedback templates were clarified if a question was raised, and various
features were introduced at the students’ request. Some students self-organized to pro-
vide early feedback on the tests to instructors, to improve their robustness against
the most common approaches to solve the exercises. Based on our experience, we have
given a number of recommendations on how to write templates and design test suites
for test-driven feedback.

Overall student experience has been positive: students liked obtaining feedback at
any time, and noted it helped find the underlying causes for the problems in their
code. More consistent participation was observed, and lab marks improved with fur-
ther submission attempts. Students found AF easy to use, as it only required two clicks
from their IDE and did not expect any knowledge of version control tools. However,
students also reported multiple areas for improvement. Some tests did not notice in-
tentionally introduced faults or were too brittle, discouraging some valid approaches
to solve assignments: these are recognised problems in test design, and mutation anal-
ysis (which can automatically evaluate if the test can catch these mistakes) could help
design better test suites for automated feedback. In other cases, the feedback template
was too terse or jargon-heavy, leaving the student without a clear idea of what to do
in response: this suggests that a conscious design of “mental models” of the students
at each point of the course may be useful.

When compared to other existing automated assessment tools, AutoFeedback is
among the majority of the observed tools in its use of a combination of automated unit
testing and static analysis. Its major standing out features are its use of a Markdown
dialect for feedback that is driven by the test result and text output, its versioning
system to relate evolving model solutions to student submissions, and its provision of
cohort-wide metrics of progress against specific tests. It also demonstrates some ongoing
trends, such as the use of program repair to grant partial marks: in its case, it uses the
Eclipse Java compiler, which has already been broadly in use before AF was created.
We note that AF does not yet have features to evaluate the quality of the tests, as
these were not part of the learning outcomes for this first-year programming module,
and that it could still be expanded to measure other attributes besides correctness,
such as readability, maintainability, and the quality of the documentation.

This research can be expanded in several directions. The highest priority is to re-
peat the experience in other contexts (e.g. cohorts from other institutions and/or other
programming courses), to evaluate the generalizability of the results. This may require
adding support for other programming languages besides Java, for which a migration
of AF from Docker Compose to the Kubernetes containerization platform is planned.
Some of the analyses in this paper could be integrated into the AF learner analyt-
ics, not only to study the individual learning journey of each student but also to find
the most common challenges faced by the students and ensure that the feedback tem-
plates provide suggestions to tackle them. Finally, it is planned to introduce features
for discouraging trial-and-error submissions, and for students to provide feedback on
the feedback they receive by starting conversations that may be explicitly linked to
clarifications and improvements in the feedback templates (such as adding links to
learning resources that reinforce the underlying programming topics being targeted by
the tests).

43

Acknowledgments

The authors would like to thank the rest of the teaching staff of CS1OOP at As-
ton University for their cooperation with introducing automated feedback into the
student experience (especially Dr. Nick Powell, Vangelis Fafoutis, and Renato Barros
Arantes), as well as the students who provided feedback to shape AutoFeedback. The
authors were employed at Aston University during these experiments. Access and use of
the anonymized student participation, performance and feedback data from CS1OOP
2019–20, CS1OOP 2020–21 and CS1OOP 2021–22 for the purposes of pedagogical re-
search and publication (including the dataset) was authorized by the Aston University
Computer Science Programme Committee and EPS Research Ethics Committee on
the proviso that the data is extracted anonymously, no direct quotes are published,
and only anonymized, analyzed and aggregated data is made public.

Declaration of interest statement

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

Baniassad, E., Zamprogno, L., Hall, B., & Holmes, R. (2021, March). STOP THE (AU-
TOGRADER) INSANITY: Regression Penalties to Deter Autograder Overreliance. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (pp.
1062–1068). New York, NY, USA: Association for Computing Machinery.

Barra, E., López-Pernas, S., Alonso, A., Sánchez-Rada, J. F., Gordillo, A., & Quemada, J.
(2020, January). Automated Assessment in Programming Courses: A Case Study during
the COVID-19 Era. Sustainability , 12 (18), 7451.

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., . . . Prather,
J. (2019, December). Compiler Error Messages Considered Unhelpful: The Landscape of
Text-Based Programming Error Message Research. In Proceedings of the Working Group
Reports on Innovation and Technology in Computer Science Education (pp. 177–210). New
York, NY, USA: Association for Computing Machinery.

Bian, W., Alam, O., & Kienzle, J. (2020, October). Is automated grading of models effective?:
assessing automated grading of class diagrams. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems (pp. 365–
376). Virtual Event, Canada: ACM.

Braun, V., & Clarke, V. (2006, January). Using thematic analysis in psychology. Qualitative
Research in Psychology , 3 (2), 77–101.

Checkstyle. (2021). Checkstyle homepage. https://checkstyle.sourceforge.io/.
(Date of last access: 2021-09-19)

Clegg, B., Villa-Uriol, M.-C., McMinn, P., & Fraser, G. (2021, May). Gradeer: An Open-Source
Modular Hybrid Grader. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET) (pp. 60–65).

Clegg, B. S., McMinn, P., & Fraser, G. (2021, March). An Empirical Study to Determine
if Mutants Can Effectively Simulate Students’ Programming Mistakes to Increase Tutors’
Confidence in Autograding. In Proceedings of the 52nd ACM Technical Symposium on Com-
puter Science Education (pp. 1055–1061). New York, NY, USA: Association for Computing
Machinery.

44

Douce, C., Livingstone, D., & Orwell, J. (2005, September). Automatic test-based assessment
of programming: A review. J. Educ. Resour. Comput., 5 (3).

Edwards, S. H. (2003, September). Improving student performance by evaluating how well
students test their own programs. Journal on Educational Resources in Computing , 3 (3).

Edwards, S. H., & Shams, Z. (2014, May). Comparing test quality measures for assessing
student-written tests. In Companion Proceedings of the 36th International Conference on
Software Engineering (pp. 354–363). New York, NY, USA: Association for Computing
Machinery.

Eleyan, D., Othman, A., & Eleyan, A. (2020, September). Enhancing Software Comments
Readability Using Flesch Reading Ease Score. Information, 11 (9).

Enström, E., Kreitz, G., Niemelä, F., Söderman, P., & Kann, V. (2011, October). Five years
with kattis — Using an automated assessment system in teaching. In 2011 Frontiers in
Education Conference (FIE) (pp. T3J–1–T3J–6). (ISSN: 2377-634X)

Garcia-Dominguez, A. (2022, September). Aggregated results from use of the
AutoFeedback system in the 2020-21 and 2021-22 editions of CS1OOP (Object-
Oriented Programming) (Data collection). Birmingham, UK: Aston University.
(doi:10.17036/researchdata.aston.ac.uk.00000578)

GitHub Inc. (2022). Github actions — features. https://github.com/features/
actions. (Date of last access: 2022-09-26)

GitLab Inc. (2022). GitLab CI/CD. https://docs.gitlab.com/ee/ci/. (Date of last
access: 2022-09-26)

Gusukuma, L., Bart, A. C., & Kafura, D. (2020, February). Pedal: An Infrastructure for
Automated Feedback Systems. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (pp. 1061–1067). New York, NY, USA: Association for Com-
puting Machinery.

HackerRank. (2022). HackerRank homepage. https://www.hackerrank.com/. (Date of
last access: 2022-09-26)

Hall, B., & Baniassad, E. (2022, December). Evaluating the Quality of Student-Written
Software Tests with Curated Mutation Analysis. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on SPLASH-E (pp. 24–34). New York, NY, USA: Association for
Computing Machinery.

Higher Education Statistics Agency. (2022, February). What do HE students study? (Tech.
Rep.). Retrieved 2022-08-29, from https://www.hesa.ac.uk/data-and-analysis/
students/what-study#changes

Ifflander, L., Dallmann, A., Beck, P.-D., & Ifland, M. (2015, November). PABS - a Program-
ming Assignment Feedback System. In Proceedings of the Second Workshop "Automatische
Bewertung von Programmieraufgaben" (Vol. 1496). Wolfenbüttel, Germany: CEUR-WS.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010, October). Review of recent
systems for automatic assessment of programming assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research (pp. 86–93). Koli
Finland: ACM.

Jeuring, J., Keuning, H., Marwan, S., Bouvier, D., Izu, C., Kiesler, N., . . . Sarsa, S. (2022,
December). Towards Giving Timely Formative Feedback and Hints to Novice Programmers.
In Proceedings of the 2022 Working Group Reports on Innovation and Technology in Com-
puter Science Education (pp. 95–115). New York, NY, USA: Association for Computing
Machinery.

Kara, E., Tonin, M., & Vlassopoulos, M. (2021, June). Class size effects in higher education:
Differences across STEM and non-STEM fields. Economics of Education Review , 82 .

Kazerouni, A. M., Davis, J. C., Basak, A., Shaffer, C. A., Servant, F., & Edwards, S. H. (2021,
May). Fast and accurate incremental feedback for students’ software tests using selective
mutation analysis. Journal of Systems and Software, 175 .

Keuning, H., Jeuring, J., & Heeren, B. (2018, September). A Systematic Literature Review
of Automated Feedback Generation for Programming Exercises. ACM Transactions on
Computing Education, 19 (1), 3:1–3:43.

45

Kolb, D. (1984). Experiential learning: experience as the source of learning and
development. Englewood Cliffs, NJ: Prentice Hall. Retrieved from http://www
.learningfromexperience.com/images/uploads/process-of-experiential
-learning.pdf(dateofdownload:31.05.2006)

Kyrilov, A., & Noelle, D. C. (2016, April). Do students need detailed feedback on programming
exercises and can automated assessment systems provide it? J. Comput. Sci. Coll., 31 (4),
115–121.

Le, N.-T., Loll, F., & Pinkwart, N. (2013, July). Operationalizing the Continuum between
Well-Defined and Ill-Defined Problems for Educational Technology. IEEE Transactions on
Learning Technologies, 6 (3), 258–270. (Conference Name: IEEE Transactions on Learning
Technologies)

Leite, A., & Blanco, S. A. (2020, February). Effects of Human vs. Automatic Feedback on
Students’ Understanding of AI Concepts and Programming Style. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (pp. 44–50). New York, NY,
USA: Association for Computing Machinery.

Messer, M., Brown, N. C. C., Kölling, M., & Shi, M. (2024, February). Automated Grading and
Feedback Tools for Programming Education: A Systematic Review. ACM Trans. Comput.
Educ., 24 (1).

Moritz, S., & Blank, G. (2008, June). Generating and Evaluating Object-Oriented Designs for
Instructors and Novice Students. In Intelligent Tutoring Systems for Ill-Defined Domains:
Assessment and Feedback in Ill-Defined Domains. (pp. 35–43). Montreal, Canada.

Narciss, S. (2013). Designing and evaluating tutoring Feedback Strategies for Digital Learning.
Digital Education Review(23), 7–26.

Paiva, J. C., Leal, J. P., & Figueira, A. (2022, June). Automated Assessment in Computer Sci-
ence Education: A State-of-the-Art Review. ACM Transactions on Computing Education,
22 (3), 34:1–34:40.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y. L., & Harman, M. (2019, January).
Chapter Six - Mutation Testing Advances: An Analysis and Survey. In A. M. Memon (Ed.),
Advances in Computers (Vol. 112, pp. 275–378). Elsevier.

Papadakis, M., & Le Traon, Y. (2015). Metallaxis-FL: mutation-based fault localization.
Software Testing, Verification and Reliability , 25 (5-7), 605–628.

Pettit, R., Homer, J., Holcomb, K., Simone, N., & Mengel, S. (2015, June). Are Automated
Assessment Tools Helpful in Programming Courses? In 2015 ASEE Annual Conference and
Exposition Proceedings (pp. 26.230.1–26.230.20). Seattle, Washington: ASEE Conferences.

PMD. (2021). PMD. https://pmd.github.io/. (Date of last access: 2021-09-19)
Poulos, A., & Mahony, M. J. (2008, April). Effectiveness of feedback: the students’ perspective.

Assessment & Evaluation in Higher Education, 33 (2), 143–154.
Price, T. W., Dong, Y., & Lipovac, D. (2017, March). iSnap: Towards Intelligent Tutoring

in Novice Programming Environments. In Proceedings of the 2017 ACM SIGCSE Techni-
cal Symposium on Computer Science Education (pp. 483–488). Seattle Washington USA:
ACM.

Qualified. (2022). Codewars homepage. https://www.codewars.com/. (Date of last
access: 2022-09-26)

Reas, C., & Fry, B. (2006, September). Processing: programming for the media arts. AI &
Society , 20 (4), 526–538.

Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C., & Velázquez-Iturbide, A. (2014, Febru-
ary). Student perception and usage of an automated programming assessment tool. Com-
puters in Human Behavior , 31 , 453–460.

Shute, V. J. (2008, March). Focus on Formative Feedback. Review of Educational Research,
78 (1), 153–189.

Smith, R., Tang, T., Warren, J., & Rixner, S. (2017, June). An Automated System for
Interactively Learning Software Testing. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education (pp. 98–103). New York, NY,
USA: Association for Computing Machinery.

46

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua-Perez, N. (2006,
September). Experiences with Marmoset: designing and using an advanced submission and
testing system for programming courses. ACM SIGCSE Bulletin, 38 (3), 13–17.

Striewe, M. (2014). Automated Analysis of Software Artefacts – A Use Case in E-Assessment
(PhD thesis, Universität Duisburg-Essen, Duisburg, Germany). Retrieved 2024-11-15, from
https://core.ac.uk/download/pdf/33797255.pdf

Striewe, M. (2023). Architectural Revision of the E-Assessment System JACK. In T. Batista,
T. Bureš, C. Raibulet, & H. Muccini (Eds.), Software Architecture. ECSA 2022 Tracks and
Workshops (pp. 19–26). Cham: Springer International Publishing.

Striewe, M., & Goedicke, M. (2011, June). Automated checks on UML diagrams. In Proceedings
of the 16th annual joint conference on Innovation and Technology in Computer Science
Education (pp. 38–42). Darmstadt Germany: ACM.

Ureel, L. C., & Wallace, C. (2015, October). WebTA: Automated iterative critique of student
programming assignments. In 2015 IEEE Frontiers in Education Conference (FIE).

Vargha, A., & Delaney, H. D. (2000). A Critique and Improvement of the "CL" Common Lan-
guage Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics, 25 (2), 101–132.

Vihavainen, A., Luukkainen, M., & Pärtel, M. (2013, January). Test my code: An auto-
matic assessment service for the extreme apprenticeship method. In P. Vittorini, R. Gen-
nari, I. Marenzi, T. D. Mascio, & F. D. l. Prieta (Eds.), 2nd international workshop on
evidence-based technology enhanced learning (Vol. 218, pp. 109–116). Heidelberg: Springer
International Publishing.

Vihavainen, A., Vikberg, T., Luukkainen, M., & Pärtel, M. (2013). Scaffolding students’
learning using Test My Code. In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education (pp. 117–122). New York, NY, USA: Association
for Computing Machinery.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Ex-
perimentation in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
(doi:10.1007/978-3-642-29044-2)

Wong, S. H. S., & Beaumont, A. J. (2012). A quest for helpful feedback to programming
coursework. Engineering Education, 7 (2), 51–62. (doi:10.11120/ened.2012.07020051)

47

