Module title

Maths and Programming *(ELE00002C)*

<table>
<thead>
<tr>
<th>Credit value</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module credit level</td>
<td>Level 4</td>
</tr>
<tr>
<td>Stream</td>
<td>Digital & Electronics</td>
</tr>
</tbody>
</table>

Module coordinator *(if known) and department(s) involved in delivery of the module*

Dr John Szymanski

Other teaching staff: Dr Steve Smith, Dr Atsufumi Hirohata, Dr Eugene Avrutin

Indicative JACS subject code for the module

H600 *(Electronic Engineering)*

Teaching cycle

Autumn Term. Annually taught.

Pre-requisite modules/co-requisite modules/prohibited combinations

A-level maths OR Maths Fundamentals *(BSc Music Technology – Stage 1)*

Shared teaching

BSc Stage 2 students take this module alongside B/MEng *(Stage 1)* students.

Breakdown of the module workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>Total hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>54</td>
</tr>
<tr>
<td>Practicals</td>
<td>54</td>
</tr>
<tr>
<td>Workshops</td>
<td>9</td>
</tr>
<tr>
<td>Assessment</td>
<td>25</td>
</tr>
<tr>
<td>Private Study</td>
<td>58</td>
</tr>
</tbody>
</table>
Module aims

- To develop an understanding of the importance of mathematical tools for the modelling and analysis of engineering systems.
- To develop familiarity and fluency in a range of fundamental areas (including basic algebra, complex numbers and calculus).
- Introduce the concepts of software design and the techniques of computer programming.
- Study an appropriate programming language to allow for the understanding of basic programming principles.

Module learning outcomes

- Display knowledge of a range of mathematical methods and be familiar with a number of basic formulae, relationships and their application.
- Identify the appropriate mathematical tools required to solve a range of problems involving single-variable algebra and calculus.
- Apply those methods, and carry out the associated calculations and manipulations required to work towards a solution.
- Demonstrate the ability to design and implement simple programs
- Test software solutions to practical problems against target specifications.

Further information about the module content

Introduction to Computer Programming

Overview of appropriate software design methodologies and the underlying principles of program operation. Introduce object oriented programming and simple user interface design using the Java programming language.

Mathematics

Mathematics for single-input and single-output systems: Interpreting data; graphs - normal, log-log, log-linear, polar and Bode; series expansions of exp, sin, cos and log; trigonometric relationships; combining two periodic signals; advanced properties of complex numbers - exponential form, De Moivre's theorem, roots of a complex number, rotations and phasors; methods and types of differentiation; applications of differentiation, including Taylor series expansion; fundamentals of integration; standard integrals and substitutions.
Assessment

<table>
<thead>
<tr>
<th>Continuous Assessment</th>
<th>Please refer to the Statement of Assessment and the Assessment & Feedback Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reassessment</td>
<td>Please refer to the Statement of Assessment</td>
</tr>
</tbody>
</table>

Feedback to students

Weekly workshops - Immediate feedback provided to problems raised by individual students.

Assignments will be marked and returned within 4 weeks.

Self assessment - complete worked examples incomplete examples for students to complete.

Reading List

Key to recommended books:

- **Strongly recommended for purchase (available from the University bookshop)**
- * Recommended purchase
- ++ Essential library reading
- + Supportive library reading

Date on which the module template was last updated

4th September 2012

Date approved by BoS

3rd March 2010