Quick Review over the Last Lecture

Wave / particle duality of an electron:

<table>
<thead>
<tr>
<th></th>
<th>Particle nature</th>
<th>Wave nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brillouin zone (1st & 2nd):

Fermi-Dirac distribution (T-dependence):

\[
f(E) = \mu \left(1 + \frac{1}{e^{\frac{E-E_0}{kT}} + 1}\right)^{-1}
\]
Contents of Introductory Nanotechnology

First half of the course:
Basic condensed matter physics
1. Why solids are solid?
2. What is the most common atom on the earth?
3. How does an electron travel in a material?
4. How does lattices vibrate thermally?
5. What is a semi-conductor?
6. How does an electron tunnel through a barrier?
7. Why does a magnet attract / retract?
8. What happens at interfaces?

Second half of the course:
Introduction to nanotechnology (nano-fabrication / application)

How Does an Electron Travel in a Material?

- Group / phase velocity
 - Effective mass
 - Hall effect
 - Harmonic oscillator
- Longitudinal / transverse waves
 - Acoustic / optical modes
 - Photon / phonon
How Fast a Free Electron Can Travel?

Electron wave under a uniform \(\mathbf{E} \):

Phase-travel speed in an electron wave:

Group velocity:

\[
v_g = \frac{d\omega}{dk}
\]

Here, energy of an electron wave is

\[
E = h\nu = \hbar \omega
\]

Accordingly,

\[
v_g = \frac{1}{\hbar} \frac{dE}{dk}
\]

Therefore, electron wave velocity depends on gradient of energy curve \(E(k) \).

Equation of Motion for an Electron with \(k \):

For an electron wave travelling along \(\mathbf{E} \):

\[
\frac{dv_g}{dt} = \frac{1}{\hbar} \frac{d}{dt} \left(\frac{dE}{dk} \right) = \frac{1}{\hbar} \frac{d}{dk} \left(\frac{dE}{dk} \right) \frac{dt}{dt} = \frac{1}{\hbar} \frac{d^2E}{dk^2} \frac{dt}{dt}
\]

Under \(\mathbf{E} \), an electron is accelerated by a force of \(-q\mathbf{E}\).

In \(\Delta t \), an electron travels \(v_g \Delta t \), and hence \(\mathbf{E} \) applies work of \((-q\mathbf{E})(v_g \Delta t)\).

Therefore, energy increase \(\Delta E \) is written by

\[
\Delta E = -qE v_g \Delta t = -qE \frac{1}{\hbar} \frac{dE}{dk} \Delta t
\]

At the same time \(\Delta E \) is defined to be

\[
\Delta E = \frac{dE}{dk} \Delta k
\]

From these equations,

\[
\Delta k = -\frac{1}{\hbar} qE \Delta t \quad \therefore \quad \frac{dk}{dt} = -\frac{1}{\hbar} qE \quad \therefore \quad \frac{dk}{dt} = -qE
\]

→ Equation of motion for an electron with \(k \).
Effective Mass

By substituting $\hbar \frac{dk}{dt} = -qE$ into $\frac{d\mathbf{v}_g}{dt} = \frac{1}{\hbar} \frac{d^2E}{dk^2} \frac{dk}{dt}$

$$\frac{d\mathbf{v}_g}{dt} = -\frac{1}{\hbar^2} \frac{d^2E}{dk^2} qE$$

By comparing with acceleration for a free electron :

$$\frac{dv}{dt} = -\frac{1}{m} qE$$

$$m^* = \frac{\hbar^2}{\left(\frac{d^2E}{dk^2} \right)}$$

→ Effective mass

Hall Effect

Under application of both an electrical current i and magnetic field B:

$$\mathbf{F} = -qE + v \times B$$

$\mathbf{E} = \frac{1}{qn} i B_z \frac{l}{l}$

$\mathbf{V}_{Hy} = \frac{1}{qn} i B_z \frac{l}{l}$

Hall coefficient
Harmonic Oscillator

Lattice vibration in a crystal:

Hooke's law:

\[M \frac{d^2 u}{dt^2} = -kx \]

Here, we define

\[\omega = \sqrt{\frac{k}{M}} \quad \therefore \frac{d^2 u}{dt^2} = -\omega^2 u \]

\[: u(t) = A \sin(\omega t + \alpha) \]

→ 1D harmonic oscillation

Strain

Displacement per unit length:

\[\delta = \left(\frac{\partial u}{\partial x} \right) dx = \frac{\partial u}{\partial x} \]

Young's law (stress = Young's modulus × strain):

\[\frac{F}{S} = E_Y \frac{\partial u}{\partial x} \quad S : \text{area} \]

Here,

\[+F(x + dx) = F(x) + \left(\frac{\partial F}{\partial x} \right) dx + \cdots \]

For density of \(\rho_i \)

\[\rho S dx \frac{\partial^2 u}{\partial t^2} = \frac{\partial F}{\partial x} dx \]

\[\therefore \frac{\partial^2 u}{\partial t^2} = \frac{E_Y}{\rho} \frac{\partial^2 u}{\partial x^2} = \nu_i \frac{\partial^2 u}{\partial x^2} \]

→ Wave equation in an elastomer

Therefore, velocity of a strain wave (acoustic velocity):

\[v_i = \sqrt{\frac{E_Y}{\rho}} \]
Longitudinal / Transverse Waves

Longitudinal wave: vibrations along or parallel to their direction of travel

Transverse wave: vibrations perpendicular to their direction of travel

Transverse Wave

* http://www12.plala.or.jp/ksp/wave/waves/
Longitudinal Wave

Propagation direction
Amplitude

Sparse
Dense
Sparse
Sparse
Dense
Sparse

Acoustic / Optical Modes

For a crystal consisting of 2 elements (k : spring constant between atoms):

\[
\begin{align*}
M \frac{d^2 u_n}{dt^2} &= k\{(v_n - u_n) + (v_{n-1} - u_n)\} \\
m \frac{d^2 v_n}{dt^2} &= k\{(u_{n+1} - v_n) + (u_n - v_n)\}
\end{align*}
\]

By assuming,

\[
\begin{align*}
\begin{cases}
 u_n(\text{na}, t) = A \exp\{i(\omega t - qa)\} \\
v_n(\text{na}, t) = B \exp\{i(\omega t - qa)\}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
-\omega^2 A &= kB\{1 + \exp(iqa)\} - 2kB \\
-\omega^2 B &= kA\{\exp(-iqa) + 1\} - 2kB
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
\left(2k - \omega^2\right)A - k\{1 + \exp(iqa)\}B = 0 \\
-k\{\exp(-iqa) + 1\} A + \left(2k - \omega^2\right)B = 0
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{vmatrix}
2k - \omega^2 & -k\{1 + \exp(iqa)\} \\
-k\{\exp(-iqa) + 1\} & 2k - \omega^2
\end{vmatrix} = 0
\end{align*}
\]
Therefore, \(\omega^2 = k \left(\frac{1}{M} + \frac{1}{m} \right) \pm k \sqrt{\left(\frac{1}{M} + \frac{1}{m} \right)^2 - \frac{4}{Mm} \sin^2 qa} \)

For \(qa = 0 \),
\[
\begin{align*}
\omega_+ &= \sqrt{2k \left(\frac{1}{M} + \frac{1}{m} \right)} \\
\omega_- &= 0
\end{align*}
\]

For \(qa \sim 0 \),
\[
\begin{align*}
\omega_+ &\approx \sqrt{\frac{2k}{M} \left(\frac{1}{M} + \frac{1}{m} \right)} \\
\omega_- &\approx \frac{k/2}{M + m} qa
\end{align*}
\]

For \(qa = \pi \),
\[
\begin{align*}
\omega_+ &= \frac{2k}{m} \\
\omega_- &= \frac{2k}{M}
\end{align*}
\]

Why Acoustic / Optical Modes ?

Oscillation amplitude ratio between \(M \) and \(m \) (\(A / B \)):

Optical mode: \(\frac{m}{M} \)

Neighbouring atoms changes their position in opposite directions, of which amplitude is larger for \(m \) and smaller for \(M \), however, the centre of gravity stays in the same position.

Acoustic mode: 1

All the atoms move in parallel.
Photon / Phonon

Quantum hypothesis by M. Planck (black-body radiation):
\[E = \frac{1}{2} \hbar \nu + n\hbar \nu \quad (n = 0,1,2,...) \]

Here, \(\hbar \nu \) : energy quantum (photon)
mass : 0, spin : 1

Similarly, for an elastic wave, quasi-particle (phonon) has been introduced by P. J. W. Debye.
\[E = \frac{1}{2} \hbar \omega + n\hbar \omega \quad (n = 0,1,2,...) \]

Oscillation amplitude : larger \(\rightarrow \) number of phonons : larger

What is a conductor?

Number of electron states (including spins) in the 1st Brillouin zone:
\[\int_{-\pi/a}^{\pi/a} \frac{L}{2\pi} dk = \frac{2L}{a} = 2N \quad \left(N = \frac{L}{a} \right) \]

Here, \(N \) : Number of atoms for a monovalent metal
As there are \(N \) electrons, they fill half of the states.

By applying an electrical field \(E \), the occupied states become asymmetric.
- \(E \) increases asymmetry.
- Elastic scattering with phonon / non-elastic scattering decreases asymmetry.
 \(\rightarrow \) Stable asymmetry
 \(\rightarrow \) Constant current flow
 \(\rightarrow \) Conductor :
 Only bottom of the band is filled by electrons with unoccupied upper band.