Exercise 6

Calculate the depletion layer capacity at a reverse bias \(V_R = 0.5 \) V in a Au/n-Si Schottky diode. Assume the following parameters:

- Au work function: \(\phi_M = 4.80 \) eV
- \(n \)-region: doping density of \(N_D = 1 \times 10^{21} \) m\(^{-3}\)
- Si electron affinity: \(\chi = 4.05 \) eV
- Si Fermi level: \(E_F = E_C - 0.15 \) eV
- Permittivity: \(\varepsilon = \varepsilon_0 \times 12.0 \times 8.854 \times 10^{-12} \) F/m
- and \(q = 1.6 \times 10^{-19} \) C.
The built-in potential can be calculated as

\[qV_{bi} = \phi_B - (E_C - E_F) \]

For an \(n \)-type contact,

\[\phi_M < \chi : () \text{ contact} \]
\[\phi_M > \chi : () \text{ contact with the barrier height of } \phi_B = \phi_M - \chi \]

Hence,

\[qV_{bi} = \]

By substituting the given parameters,

\[qV_{bi} = (4.80 - 4.05) - 0.15 = \]

Depletion layer capacity \(C \) is

\[
C = \frac{\varepsilon}{w} = \sqrt{\frac{q\varepsilon N_D}{2(V_{bi} + V_R)}}
\]

\[
= \sqrt{\frac{1.6 \times 10^{-19} \cdot 12.0 \times 8.854 \times 10^{-12} \cdot 1 \times 10^{21}}{2(0.60 + 0.5)}}
\]

\[
= \sqrt{\frac{1.70 \times 10^{-8}}{1.3}} = 1.14 \cdots 10^{-4} [C]
\]

27 Metal Oxide Semiconductor Junction

- Bias application
- Surface space-charge
- MOS FET
Realistic Schottky Barrier

Image force and Shottky barrier:

\[\frac{q\phi_m}{1} \]

\[\text{METAL} \]

\[\text{SEMICONDUCTOR} \]

Metal Oxide Semiconductor Junction

\(n\)-type semiconductor at \(V = 0 \):

\(p\)-type semiconductor at \(V = 0 \):

\[\frac{q\chi}{1} \]

\[\frac{q\phi_B}{1} \]

\[\frac{q\phi_m}{1} \]

\[E_F \]

\[E_C \]

\[E_V \]

\[E_g/2 \]

\[q\psi \]

\[\text{METAL} \]

\[\text{INSULATOR} \]

\[\text{SEMICONDUCTOR} \]

Metal Oxide Semiconductor (MOS)

p-type Si / SiO$_2$ / poly-Si :

In 2007, Intel introduced p-type Si / high-k oxides (HfO$_2$ etc.) / metal.

* http://www.wikipedia.org/

Bias Applications

Reverse bias () :

Forward bias () :

Surface Space-Charge

p-type semiconductor:

Space-Charge Variation

With different surface potentials ψ_S:

Charge Distributions

Band diagram of a metal oxide semiconductor junction under an inversion condition:

Electric field distributions:

Charge distributions:

Potential distributions:

MOS Field Effect Transistor (FET)

One of the most popular transistors for amplification and switching:

MOS FET Operation

Current-Voltage characteristics:

Gate functionality:

* http://www.wikipedia.org/

* https://www.youtube.com/watch?v=DquJSQasWG0