Resolution of Non-Destructive Imaging for Buried Interfaces

Cross-sectional image of MRAM

[1] https://www.everspin.com

Sample growth by sputtering (HiTUS)

• Ta (5) / Ru (5) / W (0.5) / Ta (5) • Ta (5) / Ru (5) / W (0.5) / Ta (10) • Ta (5) / Pt (0.5) / Ta (6

and Pt (0.5) Ru (5)

Tungsten is the heavy metal.

Confirm the resolution of dispersed nano-particle by using non-destructive technique.

CASINO electron flight simulations [4]

· Landing position of an electron is calculated using

 $x_0 = \frac{d\sqrt{\log(R_1)}}{2 \times 1.65} \times \cos(2\pi R_2)$ (0 ≤ R ≤ 1, random number) $Y_0 = \frac{d\sqrt{\log(R_1)}}{2 \times 1.65} \times \cos(2\pi R_3)$

 \cdot For inelastic scattering, the separation between two successive collisions (S) with an electron-beam at $E~{\rm keV}$ can be calculated as

(C, F, J, k and Z: material constants, ρ: density of a material and $E_{i+1} = E_i + \frac{dE}{dS}L$ $= \frac{-7.85 \times 10^{-3}\rho}{E_i}$ *L*: distance between elastic scattering) $\times \sum_{i=1}^{n} \frac{C_j Z_j}{E_i} \ln \left(1.116 \left(\frac{E_i}{L} + k_j \right) \right) [\text{keV/nm}]$

[4] D. Drouin et al., Scanning 29, 92 (2007).

5 nm Ta	10 nm Ta
	1
Fan i	
• Electron beam reaches W at 0.9 keV.	 Electron beam reaches W at 1.3 keV.
• Electron beam reaches bottom of W at 1.1 keV.	• Electron beam reaches bottom of W at 1.5 keV.

Magnetic tunnel junctions

Two distinctive junctions with high and low TMR ratios :

[2] http://electroiq Cross-sectional sample fabrication induced strain

- Non-destructive evaluation is required.
- Defects should be detected in nm resolution

Non-destructive imaging through 5 nm Ta

Acceleration of 1.1 keV :

Subtraction between images taken at 1.0 and 1.2 $\ensuremath{\text{keV}}$:

Maximum particle diameter : 110 nm

- Minimum particle diameter : < 10 nm
- Confirm some dispersed particles.
- Size distributions can be obtained.

Cross-sectional images

Two distinctive junctions with high and low TMR ratios :

Junction with high TMR ratio Junction with low TMR ratio

Non-destructive images at the top interfaces

High TMR - Interface between CoFeB (10) / MgO (2)

Low TMR - Interface between CoFeB (10) / MgO (2)

Some pinholes observed only for the high TMR pillars.

Aims of this study

Imaging process for buried interfaces : [3]

- 1. Simulate electron flights in a multilayered structure at a series of decelerated electron-beam.
- 2. Select representative electron-beam for imaging.
- 3. Subtract and compare images taken at different electron-beam voltages to highlight any features appeared at each interface.

[3] A. Hirohataet al., Nat. Commun. 7, 12701 (2016)

Non-destructive imaging through 10 nm Ta Subtraction between images taken at 1.4 and 1.5 keV :

Scale : 100 nm, Magnification : 70,000

- Maximum particle diameter : 67 nm
- Minimum particle diameter : 6.8 nm

Non-destructive imaging through 60 nm Ta

Subtraction between images taken at 4.7 and 5.0 keV :

Scale : 100 nm. Magnification : 200.00 Maximum particle diameter : 36 nm inimum particle diameter : 11 nm

Non-destructive images at the bottom interfaces High TMR – Interface between CoFeB (10) / MgO (2)

Some pinholes observed only for the high TMR pillars.

Summarv

• We have successfully developed a new non-destructive method to image buried junctions.

 By controlling the electron-beam energy, we have demonstrated the contrast imaging of buried interfaces at a controlled depth.

• We can resolve particles in ~ 7 nm in size below 10 nm thick over layers

