
RoboStar technology: a roboticist’s toolbox for
combined proof, simulation, and testing

Ana Cavalcanti, Will Barnett, James Baxter, Gustavo Carvalho,
Madiel Conserva Filho, Alvaro Miyazawa, Pedro Ribeiro, Augusto Sampaio

Abstract Simulation is favoured by roboticists to evaluate controller design and
software. Often, state machines are drawn to convey overall ideas and used as a
basis to program tool-specific simulations. The simulation code, written in gen-
eral or proprietary programming languages, is, however, the only full account of
the robotic system. Here, we present the RoboStar technology, a modern approach
to design that supports automatic generation of simulation code guaranteed to be
correct with respect to a design model, and complements simulation with model
checking, theorem proving, and automatic test generation for simulation. Diagram-
matic domain-specific, but tool-independent, notations for design and simulation use
state machines, differential equations, and controlled English to specify behavior.
We illustrate the RoboStar approach using an autonomous vehicle as an example.

Ana Cavalcanti
University of York, UK e-mail: Ana.Cavalcanti@york.ac.uk

Will Barnett
University of York, UK e-mail: wb689@york.ac.uk

James Baxter
University of York, UK e-mail: James.Baxter@york.ac.uk

Gustavo Carvalho
Universidade Federal de Pernambuco, Brazil, e-mail: ghpc@cin.ufpe.br

Madiel Conserva Filho
Universidade Federal de Pernambuco, Brazil, e-mail: mscf@cin.ufpe.br

Alvaro Miyazawa
University of York, UK e-mail: Alvaro.Miyazawa@york.ac.uk

Pedro Ribeiro
University of York, UK e-mail: Pedro.Ribeiro@york.ac.uk

Augusto Sampaio
Universidade Federal de Pernambuco, Brazil, e-mail: acas@cin.ufpe.br

1

2 Cavalcanti et al

1 Introduction

Advances in electronics and mechatronics are facilitating exciting applications of
robotics. To realise their potential, however, we need to be able to ensure that robots
do not fail in a way that can cause harm: a robot strong enough to help an elderly
person out of a chair, for example, is strong enough to hurt that person.
Althoughmany factors are involved in establishing the trustworthiness of a robotic

system, software poses a key challenge for design and assurance. Full verification is
beyond the state of the art due to the complexity of models and properties. Lack of
customized techniques and tools means that, despite the very modern outlook of the
applications, the current practice of software engineering for robotics is outdated.
What is routine in many engineering disciplines, that is, the use of models,

tools, and techniques justified by mathematical principles, called formal methods, is
becoming feasible for software developers. Main players in industry like Microsoft,
Amazon, and Facebook have started using formal methods [78].
Several domain-specific languages for robotics are available in the literature [56],

but, by far and large, their focus is support for programming and simulation. Modern
verification techniques have not been widely explored, with a few notable excep-
tions [30, 1, 25, 38]; some are covered in this book, notably in Chapters 4, 5, 7, 8,
11, 12, and 13. Applications of general-purpose formal techniques have shown the
value that they can add to robotics. Due to lack of specialization and difficulties with
automation, however, the cost involved and scalability achieved do not indicate a
clear prospect of wide practical application.
The RoboStar framework for modelling, verification, simulation, and testing of

mobile and autonomous robots uses three domain-specific languages:RoboChart [54],
RoboSim [13], and RoboWorld. RoboChart includes a subset of UML-like state
machines, a customized component-model, and primitives to specify timed and
probabilistic properties. RoboChart is an event-based notation for design; RoboSim
is a matching cycle-based diagrammatic notation for simulation. RoboSim also in-
cludes block diagrams enriched to specify physical and dynamic behaviors of robotic
platforms. RoboWorld uses controlled English to specify assumptions about the en-
vironment and the platform. It complements RoboChart.
RoboChart, RoboSim, and RoboWorld provide a solid foundation to deal with

software engineering for robotics. They are notations akin to those in widespread
use but enriched to enable the use of modern design and verification techniques.
RoboChart, RoboSim, and RoboWorld can be used to generate automatically

mathematical models. In the RoboStar approach, these models are hidden from
practitioners, but can be used to prove properties of designs and simulations, consis-
tency between them, and generate tests. The RoboStar testing approach is covered
in Chapter 11. So far, we have had experience with the model checkers FDR [35]
and PRISM [42], and the theorem prover Isabelle [55]. The RoboStar work with
probabilistic modelling and PRISM is the topic of Chapter 13.

RoboStar technology 3

RoboChart andRoboSimhave an associatedEclipse-based tool, calledRoboTool1,
which supports graphicalmodelling, validation, and automatic generation ofCSP [69]
and reactive modules scripts, simulation code, and tests. It is integrated with FDR4
and PRISM, ARGoS [61], and CoppeliaSim [68]. A variety of plug-ins are available.
By ensuring that a RoboChart and RoboWorld design and a RoboSim simulation

are consistent, the RoboStar framework guarantees that properties established by
analysis of the design are preserved in the simulation. So, problems revealed by
simulation are design problems, not problems in the coding of the simulation itself.
RoboChart, RoboSim, and RoboWorld complement approaches that cater for a

global viewof the systemarchitecture (like that inChapter 3) by supportingmodelling
and verification of the components, covering interaction, time, and probabilistic
properties. It also complements work on deployment of verified code.
In this chapter, we describe the RoboStar technology in detail and illustrate its ap-

plication to modelling, verifying, and simulating control software for an autonomous
vehicle. In the next section, we give an overview of the RoboStar technology, in-
cluding the notations and techniques already available, and those that we envisage
as part of our vision for Software Engineering for robotics. Our running example is
presented in Section 3. Section 4 presents a RoboChart model for its control soft-
ware, and Section 5 presents a RoboSim model. Section 6 discusses environment
modelling in RoboChart and RoboSim. Finally, Section 7 discusses related work,
and Section 8 summarizes the RoboStar vision and agenda for future work.

2 RoboStar vision

The RoboStar approach to Software Engineering for robotics is presented in Figure 1.
For modelling designs, we envisage the combined use of RoboChart to model con-
trol software, and a controlled natural language, RoboWorld, under development to
capture assumptions about the platform and environment. In the proposed workflow,
a RoboChart model is the starting point, as indicated by the label (1) in Figure 1. In
the next section, we present a RoboChart model for our example in Section 4, where
we also give more details about the RoboChart notation.
RoboTool supports the creation and editing of RoboChart diagrams, and the au-

tomatic generation of CSP and PRISM models: labels (2) in Figure 1. RoboTool
also provides a simple notation that uses controlled English, potentially mixed with
CSP processes, to define assertions capturing properties of interest. These asser-
tions can be checked using FDR4 or the PRISM model checker. We plan to enrich
this language to cater for a readable account of properties specified in English or
diagrammatically (using sequence diagrams, for example).
It is possible, of course, to generate automatically other mathematical models

for RoboChart. Currently, we are considering the integration of UPPAAL [6]. A
crucial point, however, is that these models are consistent with each other. The

1 www.cs.york.ac.uk/robostar/robotool/

4 Cavalcanti et al

Fig. 1 Idealized workflow using RoboStar technology

definitive semantics of RoboChart is given by the CSP model, and our vision is one
of integration of techniques and tools (model checkers and theorem provers) via the
justification of soundness based on semantics. It would not be useful, if, for instance,
deadlock checks carried out with different tools could give different results.
RoboTool generates two CSP models. The first gives an untimed semantics to

RoboChart and ignores the time primitives. The definitive semantics uses the tock
dialect of CSP, in which a special event tock marks the passage of discrete time.
Probabilistic modelling is captured via a semantics given using reactive modules.
Consistency between the probabilistic and timed semantics is ongoing work. An
early approach that combines CSP and PRISM is available [24].
For theorem proving based on the CSP semantics, an initial approach is described

in [27, 28, 29]. Automatic generation of Isabelle theories for proof is ongoing work.
Use of Isabelle is our current route to address the issues of scalability that we can
expect with the use of model checking. High levels of automation are still possible
as evidenced by [2], given the use of proof models that are automatically generated.
In the RoboStar approach, initial proofs to check the models can validate them by

establishing core properties, like deadlock and livelock freedom, for example. Checks
for the presence or absence of nondeterminism can also often reveal modelling
problems. These checks are automatically generated by RoboTool.
If any of the properties of interest do not hold, the RoboChart model should be

changed (unless, of course, further work reveals that the property is not actually
relevant). For a property that does not hold, a model checker provides an example

RoboStar technology 5

that illustrates the problem, and the relationship between such examples and the
diagrams is simple. The examples can inform how the model should be changed, and
the iterative process of debugging of amodel ismuch cheaper than that of debugging a
program. Automation of the generation of proof models makes this iterative process
of validation of the RoboChart model using the properties of interest cheap. An
animator would help, though, and it is part of our agenda for future work. Such a
tool allows tracing the diagram based on a sequence of updates to variables, calls to
operations, or occurrence of events indicated by a model checker.
Once we are convinced that enough validation has taken place, it then makes

sense to consider simulation of the model. For cyber-physical systems, in general,
and robotics systems, in particular, it is often the case that we do not have a full
specification of behavior. Such a specification is normally highly dependent on the
platform and environment. Simulations can, therefore, be very useful to validate the
design. Moreover, simulations are core to current practice.
A simulation requires a cyclic account of the design model. This is what is pro-

vided by a RoboSimmodel, which can be automatically generated from a RoboChart
model with guaranteed consistency: label (3) in Figure 1.
For a simulation, however, we also need a physical and behavioral model of the

platform and of the environment. RoboSim includes a block diagram notation to de-
scribe thesemodels. A domain-specific language for robotics based onXML, namely,
SDF (Scene Description Format)2 provides inspiration and domain knowledge. Ro-
boSim block diagrams, however, afford readability, modularity, and extensibility to
models. Moreover, from such diagrams, it is possible to generate SDF documents
for use in robotics simulators. This is ongoing work.
A RoboSim block diagram specifies a particular platform. Roboticists routinely

write such descriptions, either using an XML-based notation like SDF, or using tool-
specific graphical or programming facilities. So, RoboSim block diagrams improve
usability and do not require a significant change in the language used by practitioners.
For a design, however, a model for a particular platform or scenario is too specific.

Instead, we need an account of operational requirements: assumptions that are made
of the platform and environment, and ensure proper behavior of the robot. A proper
account of such requirements are often neglected by practitioners. The RoboStar
vision is, therefore, to provide support for their description based on the RoboSim
block diagrams: label (5) in Figure 1. The RoboStar approach is for the requirements
to be captured in RoboWorld, a controlled natural language under development.
Just like for RoboChart, RoboTool can generate automatically CSP models for

RoboSim: label (6) in Figure 1. That model has a dual role: justify the soundness of
an automatically generated RoboSim model with respect to an original RoboChart
model, and proof of properties of interest just like for RoboChart.
Soundness requires consideration of the design model given some assumptions.

For example, a RoboChart state machine that is in a state with a transition triggered
by an event obstacle, for instance, reacts instantaneously to the detection of such an
obstacle (by the platform). A simulation (whether described by RoboSim or not), on

2 sdformat.org

6 Cavalcanti et al

the other hand, is a cyclic mechanism, where events are only observed and handled
at sample times characterized by a cycle period. If an obstacle is detected in between
sample times, it is ignored until the next sample time. So, consistent behavior only
happens if we assume that events do not happen at all between sample times.
With these assumptions, proof of properties of a RoboSim simulation is not

needed if the simulation is automatically generated. On the other hand, a RoboStar
developer may well decide to write a RoboSim simulation directly, rather than start
from a design model. In that case, proof of properties for RoboSim is useful.
Simulationmay reveal problems, inwhich case, given the high level of automation,

the right and cost-effective way to proceed is to update the RoboChart model, rerun
proofs of properties, and regenerate the simulation. There is no need to deal with the
(low-level) simulation code, and there is value in keeping models up to date.
If the simulation (eventually) suggests that the expected behavior is ensured by

the design, a proof can add value by confirming that the property holds. Running
simulations is a form of testing, and cannot be used to guarantee properties. Proofs
provide evidence of the quality of the design (label (7) in Figure 1) in addition to
the evidence provided by running the simulations. On the other hand, attempting to
prove properties before checking behavior via simulation can lead to wasted effort,
if the simulation can reveal that the property does not hold.
Simulation code for the control software can often be used as a basis for de-

ployment: label (8) in Figure 1. For deployment, system testing, considering both
the target platform and environment, if possible, is necessary. This is essential, for
example, to confirm that the operational requirements are satisfied, or that errors are
not introduced in the (generation of the) deployment code.
The RoboStar approach to testing is the automatic generation of tests from

RoboChart models: label (9) in Figure 1, and the conversion of simulation tests
to deployment tests: label (10) in Figure 1. More information about testing from
RoboChart models is given in Chapter 11; conversion is in our agenda for the future.
In a simulation, we control the whole robot and the environment. In deployment,

since we test the controller on the actual hardware, we typically have less control over
the software and only limited observability of its state. (It is possible to instrument
the controller to record, for instance, values of variables and the execution path, and
to add a probe to control nondeterministic and probabilistic choices. Instrumentation
can, however, be inappropriate if we are interested in timing or probabilities; we end
up testing a program that is not quite the controller.) In deployment tests, we control
just the initial state of the robot, often cannot control the entire environment, and
have even weaker observational power. So, in each case, we have different notions of
test case. Our approach uses conversion to ensure traceability of tests. In this way, if
a deployment test fails, and it corresponds to a simulation test that passed, we gather
information about the system under test and the simulation.
If a deployment test fails, automation of the whole approach, including the auto-

matic generation and traceability of tests, encourages update ofmodels. Development
and change efforts are concentrated on diagrammatic and controlled English arte-
facts, rather than low-level code. This increases productivity, lowering costs, and
enables the production of evidence of quality as well production of the code itself.

RoboStar technology 7

Fig. 2 The autonomous pod, and its inputs and outputs.

(a) (b)

Pod

GPS

Dead Man’s
Handle Gamepad

Speed Steering Sensors

Controller Software

Auxiliaries Fault
Detection

Display

System
State

GPS The current latitude and longitude of the pod.
Dead man’s handle Status of the safety driver’s speed limiting control.
Gamepad Manual commands for pod control.
Display Instructions to the user of the autonomous pod system.
Pod speed The speed the pod currently maintains.
Pod steering The steering angle the pod currently maintains.
Pod auxiliaries The state of the pod’s peripheral devices, such as indicators and horn.
Pod sensors The state of the pod’s various internal sensors, such as bump sensors

or seat occupancy.
Pod system state Indication of the status of the pod embedded controller: drive dis-

abled, manual-drive enabled, or autonomous-drive enabled.
Pod fault detection A seed-key response to the pod’s embedded controller to enable fault

detection.

Next, we illustrate the RoboStar technology in Figure 1 in the example of an
autonomous vehicle. We focus on the mature components of the framework.

3 Autonomous vehicle

Our case study has been described in [34]. It is a fully autonomous vehicle whose
software has been developed by the UK Connected Places Catapult3. The pod has
been developed as part of the LUTZ Pathfinder project: see Figure 2(a). Our focus
is on the Basic Autonomous Control System (B-ACS), which is implemented using
C++ and the ROS (Robot Operating System) middleware.
The B-ACS directs the pod around a predetermined route, specified by a sequence

of latitude and longitude points. It ensures the pod follows the route and keeps
within the speed limit for the current location. Reaction to obstacles, pre-emption,
and mitigation of hazardous situations is carried by a safety driver, who can override
autonomous control by limiting the pod’s speed or stopping the pod altogether.
Figure 2(b) is an overview of the B-ACS inputs and outputs, corresponding to

onboard sensors and actuators, extra sensors added to the pod, and interactions with
the embedded controller (shown in the shaded area). They are described in Figure 2.

3 Formerly, the Transport Systems Catapult.

8 Cavalcanti et al

Table 1 Uses of the ROS nodes, message definitions, and classes in each group of nodes of the
pod software controller.
Group of nodes Description
b-acs Generation and processing of demand messages that guide the pod around

a predetermined path. The messages specify the speed and steer values
required for the pod to follow the path, based on its current location. Pro-
cessing involves geofencing, enforcing speed limits, and validity checks,
for example.

lutz Interfacing with the pod to receive and manage its state, translating de-
mands into control messages, carrying out the fault detection protocol, and
generating user instructions to guide the safety driver.

data logging Recording sensor data for later evaluation.

The use of ROS strongly influences the structure of the controller software.
It is composed of many modules executed concurrently as an individual process
known as a ROS node. The ROS nodes typically communicate with each other using
asynchronous messages via a publish/subscribe mechanism provided by ROS.
The behavior of the pod’s controller is determined by the function of each ROS

node and the messages communicated among them. We describe all these nodes and
their relationship in [5]. The original documentation identifies three groups of nodes
called b-acs, lutz, and data logging. They are characterized in Table 1.
The nodes for data logging are for evaluation; they are not central to the application

and not considered here. More information about them is available at [5].
Figure 3 depicts the nodes of the b-acs group and the messages communicated

between them (via the publish/subscribe ROS mechanism). (The nodes of Figure 3
represent each ROS node and the edges represent the messages that the nodes
communicate.) Groups of ROS nodes are indicated in the figure by a shaded node
with a dashed outline. A description summarising the behavior of the b-acs nodes
we model in the next section can be found in Table 2. A full list is in [5].

4 RoboChart model

This section presents a RoboChart model for the pod controller. Section 4.1 outlines
the overall structure of themodel. The following sections present the robotic platform
and the controllers. Section 4.2 covers theRoboChartmodule and its robotic platform,
and Section 4.3 covers the controller for the group of nodes b-acs and their state
machines. The data types used in the RoboChart model reflect those used in the
source code; they are all defined in [5]. Section 4.4 discusses verification.

RoboStar technology 9

Fig. 3 The ROS nodes of the b acs group, adapted from Transport Systems Catapult specifications

au
to

_
de

m
an

d

pa
th

_
re

pl
ay

gp
s_

to
_

lo
ca

l

u
dp

/
cl

ie
nt

xn
av

55
0

de
m

an
d_

lim
it

er
co

nt
ro

l_
sw

it
ch

lu
tz

de
m

an
d_

lim
it

er
ag

e_
ch

ec
ke

r

de
ad

_
m

an
s_

ha
nd

le
tu

rn
ig

y_
jo

y

ge
of

en
ce

ar
du

in
o

ud
p/

rx

la
tln

g

/b
_a

cs
/

lo
ca

tio
n

/b
_a

cs
/

G
oa

l

/b
_a

cs
/

au
xi

lia
ry

_d
em

an
d

/b
_a

cs
/

lo
ca

tio
n

au
xi

lia
ry

_
sw

it
ch

/b
_a

cs
/

de
m

an
d

ca
vl

ab
_c

or
e/

au
xi

lia
ry

_d
em

an
d

ca
vl

ab
_c

or
e/

po
d_

de
m

an
d

ca
vl

ab
_c

or
e/

po
d_

de
m

an
d_

ag
e_

ch
ec

ke
d

/g
eo

fe
nc

e_
lim

it

ca
vl

ab
_c

or
e/

po
d_

de
m

an
d_

lim
ite

d

/c
av

la
b_

co
re

/
sp

ee
d_

lim
it

br
ak

e
ca

vl
ab

_c
or

e/
ou

tp
ut

_p
od

_d
em

an
d

ar
du

in
o/

rc
_i

n
ar

du
in

o/
D

ea
dM

an
sH

an
dl

e

la
tln

g

/c
av

la
b_

co
re

/
po

d_
de

m
an

d_
ge

o_
lim

ite
d

/c
av

la
b_

hw
/

tu
rn

ig
y_

po
d_

de
m

an
d

/lu
tz

/p
od

_s
ta

te

/c
av

la
b_

hw
/

tu
rn

ig
y_

au
xi

lia
ry

_d
em

an
d

10 Cavalcanti et al

Table 2 b acs ROS nodes
Node Description
turnigy joy Converts remote control into messages for the pod and its peripheral de-

vices.
dead mans handle Converts dead man’s handle messages to publish speed-limit messages.
gps to local Translates the pod’s global location sensor information to publish local 2D

location messages.
path replay Publishes an intermediary goal towards the route’s destination using the

pod’s local location. The goal contains the target local location, curvature,
maximum speed, and duration describing the path to take. The route to the
destination is defined using a configuration file containing a sequence of
global locations and auxiliary state.

auto demand Receives a goal, the pod’s local location, and speed from the pod state to
create and publish a demand message. The demand message contains the
specific steer and speed values to meet the goal.

control switch Receives multiple pod demand inputs and publishes only the highest prior-
ity non-abdicating input. The highest-priority input can abdicate, allowing
lower-priority inputs to be published.

geofence Receives the global location of the pod and publishes the speed limit for
the current location. The speed limit for rectangular areas are configured
using a file containing a sequence of two pairs of latitude and longitude
points, each with an associated speed limit.

demand limiter Adjusts the speed of a demand based on a speed limit.
age checker Checks the age of a demand; demandmessages that are older than a defined

time have their speed reduced. The speed reduction increases the older the
demand message is, until the speed is zero. The age-checked demand with
appropriately adjusted speed is published.

4.1 Overall structure

A RoboChart model is defined by a module, which specifies a robotic platform, and
one or more (software) controllers. The module AutonomousVehicle for the pod
system is shown in Figure 4. In this example, there are, besides the robotic platform
Vehicle, two controllers B-acs and Lutz. Connections between a controller and the
platform are always asynchronous. In our example, all connections are asynchronous,
whether they are with the platform, or between controllers.
The robotic platform of a RoboChart model captures a representation of its

sensors and actuators via variables, events, and operations available to the controllers.
Changes to the values of the variables, occurrences of the events, and calls to these
operations define the observable interactions between the robot control software and
its environment. For the pod, the robotic platform represents the Vehicle, including
all of the extra sensors in Figure 2. Section 4.2 defines the robotic platform for the
pod and details the analysis of the inputs and outputs for the controller software.
Because RoboChart controllers can describe concurrent behavior, they can repre-

sent either the individual ROS nodes of the pod or higher-level functionality provided
by the groups of nodes in Table 1. Representing each node as a controller wouldmean
that there are more controllers in the module, making it more difficult to understand.

RoboStar technology 11

Fig. 4 The autonomous pod RoboChart module.
AutonomousVehicle

Vehicle
SpeedControl
FourWheelSteering
FaultDetection
AuxiliaryControl
State
Logging

latlng: LatLngHeadingFix

deadmanshandle:
DeadMansHandleReading

rc_in: Gamepad
route: Seq(GpsPathPoint)

instruction:
UICode

faultDetectResponse:
Handshake

configGoal:
ConfigGoalGeneration

powertrain: Powertrain

eps: Eps

eps_inboard: Steer

eps_outboard: Steer

epb: ParkBrake

battery: Battery

control_command1:
ControlCommand1

status: Status

indicator: Indicator

configController:
ConfigGamepad

configAutonomousDemand:
AutoDemandConfig

configGeofence:
ConfigGeofence

configDeadMansController:
ConfigDeadMans

configAgeCheck:
ConfigAgeChecker

configBrakeTime: real

ref bacs::B_acs

rc_in: Gamepad

deadmanshandle:
DeadMansHandleReading
latlng: LatLngHeadingFix

route: Seq(GpsPathPoint)

output_pod_demand:
PodDemand

auxiliary_demand:
AuxiliaryDemand

pod_state: PodState

configGoal:
ConfigGoalGeneration
configController:
ConfigGamepad
configAutonomousDemand:
AutoDemandConfig
configGeofence:
ConfigGeofence
configDeadMansController:
ConfigDeadMans
configAgeCheck:
ConfigAgeChecker

configBrakeTime: real

ref lutz::Lutz

output_pod_demand:
PodDemand
auxiliary_demand:
AuxiliaryDemand

instruction: UICode

acs_handshake: Handshake

status: Status

powertrain: Powertrain

eps: Eps

eps_inboard: Steer

eps_outboard: Steer

epb: ParkBrake

battery: Battery

control_command1:
ControlCommand1

indicator: Indicator

pod_state: PodState

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

Representing functionally related groups of ROS nodes as controllers emphasizes
the coupling between related areas of functionality. This means, however, that ROS
nodes are represented as RoboChart machines, and so their behavior is predomi-
nately sequential. For our example, this is not an issue because the nodes of the pod
are sequential. In addition, in general, a node that has a parallel implementation can
be modelled by a group of machines inside a controller.
The controller for the group b-acs that determines the autonomous behavior of

the pod is in Section 4.3. The rest of the model is discussed in [5].

12 Cavalcanti et al

Table 3 Mapping from the pod inputs and outputs to the RoboChart robotic platform.

System input Name in the model
Sensors status

eps outboard
epb
battery
powertrain
eps
indicator
epsInboard

Fault detection faultDetectResponse

System State control command1

GPS latlng

Dead man’s handle deadmanshandle

Gamepad rc in

Configuration files con�gGoal
con�gController
con�gAutonomousDemand
con�gGeofence
con�gDeadMansController

System output Name in the model
Speed setSpeed

setParkingBrake

Steering setFrontSteering
setRearSteering

Auxiliaries setAuxiliaries

System state requestState

Fault detection sendHandshakeResponse

Display display

4.2 Robotic platform

The pod sensors are modelled as inputs and the actuators as outputs of the controller
software; Figure 2 shows these inputs and outputs. Table 3 lists the names of the
corresponding elements used in the RoboChart robotic platform (see Figure 4).
Besides the inputs and outputs of Figure 2, there are configuration files that record

ROS parameters for the nodes. They are stored in a server accessible by the nodes
and can be modified at runtime. So, the parameters are a form of input represented
in the robotic platform. For example, con�gDeadMansController communicates a
record whose fields specify minimum and maximum ranges for analogue inputs; the
DeadMansHandle node uses this parameter to validate its inputs.
The inputs provide information about a robot’s state or environment, therefore,

they are modelled as events. Outputs alter the state of the system; this means that
they can be mapped to variables, events, or operations.
For our example, outputs that significantly affect the state of the system, for

instance, the movement of the pod, are modelled as operations. Because the display
does not affect the state of the system, it is modelled as an event.
For ease of reference, variable, events, and operations can be grouped in interfaces.

Figure 5 shows the interfaces of our model. They group the operations, and are
provided by the platform and required by the controllers, as described next.

RoboStar technology 13

Fig. 5 The interfaces.
SpeedControl

setSpeed(kilometersPerHour: Speed)
setParkingBrake(brake: BrakeState)

FourWheelSteering

setFrontSteering(degrees: Angle)
setRearSteering(degrees: Angle)

FaultDetection

sendHandshakeResponse(message: Handshake)

AuxiliaryControl

setAuxiliaries(newState: AuxiliaryDemand)

State

requestState(newState: VehicleState)

4.3 B acs controller

To define the B acs controller, the behavior of the nodes in Figure 3 has to be
captured. Some of them are modelled via the abstraction provided by the robotic
platform. The UDP/client node provides connectivity between the several devices
that comprise the robotic platform, and are abstracted away by the definition of the
platform as a single component. The xnav550 and arduino nodes translate low-level
sensor data into ROS messages captured as input events in the platform: location,
safetyDriverInput, and remoteControl. All other nodes contribute to the functionality
of the controller and so are modelled as state machines.
Figure 6 depicts theB acs controller: itsmachines and connections. Themessages

used for communication between nodes are captured by events of their corresponding
machines. Their connections correspond to ROS topics, which are used to commu-
nicate the messages via the publish and subscribe ROS mechanism. So, overall,
the connections mirror the edges in Figure 3. Given the nature of the publish and
subscribe mechanism, the connections are all asynchronous.
The structure of the messages are modelled using RoboChart data types and

fields. For example, the LatLngHeadingFix message consists of three doubles
representing a latitude, a longitude, and a heading; this can be represented using a
RoboChart data type with three fields of type real. These message types are used to
define the types of the events that represent the communications via these messages.
The states of theRoboChart statemachines are determined by control flowanalysis

of the source code for the corresponding ROS nodes. As a small example, we
show in Listing 1 pseudocode that is representative of the implementation of the
dead mans handle node. The corresponding state machine is shown in Figure 7.
The method deadMansHandleNode() (line 7) is the node’s constructor; it

gets configuration information from the ROS parameter server (lines 8 and 9), and
subscribes and publishes to the topics used in the node (lines 11 and 12). In the
state machine DeadMansHandle, the check for availability of new parameter val-
ues, carried out by the calls to getParam, is captured by a communication via a
con�guration event. The subscribed and published topics are represented by the
events deadmanshandle and speed limit. The type Con�gDeadMans of con�gura-
tion is a record with three fields: two corresponding to the variables rangeMin and
rangeMax (lines 1 and 2), and a third boolean field retrieved to indicate whether
a new configuration is available. The types of deadmanshandle and speed limit are
primitive (basic) types corresponding to those in the code.

14 Cavalcanti et al

Fig. 6 The B acs controller

ref bacs::
DemandLimiterSpeed

geofence_limit: SpeedLimit

pod_demand: PodDemand

pod_demand_geo_limited:
PodDemand

ref bacs::DeadMansHandle

deadmanshandle: DeadMansHandleReading

speed_limit: SpeedLimit

configuration: ConfigDeadMans

ref bacs::AuxiliarySwitch

auxiliary_demand: AuxiliaryDemand

turnigy_pod_demand: AuxiliaryDemand

resultantDemand: AuxiliaryDemand

ref bacs::TurnigyJoy

rc_in: Gamepad

turnigy_pod_demand: PodDemand

turnigy_auxiliary_demand: AuxiliaryDemand

config: ConfigGamepad

ref bacs::PathReplay

location: Pose2DStamped

goal: Goal

route: Seq(GpsPathPoint)

config: ConfigGoalGeneration

auxiliary_demand:
AuxiliaryDemand

routeOrigin: GpsPathPoint

 ref bacs::
GpsToLocal

latlng:
LatLngHeadingFix

location1:
Pose2DStamped
location2:
Pose2DStamped

origin:
GpsPathPoint

 ref bacs::
ControlSwitch

demand: PodDemand

turnigy_pod_demand:
PodDemand

pod_demand:
PodDemand

 ref bacs::
AutoDemand

location: Pose2DStamped

demand: PodDemand

pod_state: PodState

goal: Goal

configuration:
AutoDemandConfig

ref bacs::Geofence

latlng: LatLngHeadingFix

geofence_limit:
SpeedLimit

configuration:
ConfigGeofence

ref bacs::DemandLimiterRatio

speed_limit: SpeedLimit

pod_demand_geo_limited:
PodDemand

pod_demand_limited:
PodDemand

 ref utility::
LocationDistributor

locationIn:
LatLngHeadingFix

locationOut1:
LatLngHeadingFix

locationOut2:
LatLngHeadingFix

ref bacs::AgeChecker

pod_demand_limited:
PodDemand

pod_demand_age_checked:
PodDemand

config: ConfigAgeChecker

ref bacs::Brake

output_pod_demand: PodDemand

pod_demand_age_checked:
PodDemand
configBrakeTime: real

B_acs

SystemConstants

rc_in: Gamepad

deadmanshandle:
DeadMansHandleReading

latlng: LatLngHeadingFix

route: Seq(GpsPathPoint)

pod_state: PodState

configGoal:
ConfigGoalGeneration

configController:
ConfigGamepad

configAutonomousDemand:
AutoDemandConfig

configGeofence: ConfigGeofence

configDeadMansController:
ConfigDeadMans

configAgeCheck: ConfigAgeChecker

configBrakeTime: real

output_pod_demand: PodDemand

auxiliary_demand: AuxiliaryDemand

async

async
async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

RoboStar technology 15

Listing 1 Pseudo code for the ROS node dead mans handle.
1 rangeMin 100
2 rangeMax 500
3

4 sub / / I n s t a n c e o f r o s : : S u b s c r i b e r c l a s s
5 pubSpeedLimi t / / I n s t a n c e o f r o s : : P u b l i s h e r c l a s s
6

7 deadMansHandleNode () {
8 nodePa r ame t e r s . ge tParam (" rangeMin " , rangeMin) ;
9 nodePa r ame t e r s . ge tParam (" rangeMax " , rangeMax) ;
10

11 sub = node . s u b s c r i b e (" a r d u i n o / deadMansHandle " , 10 , r xCa l l b a ck
, t h i s)

12 pubSpeedLimi t = node . a d v e r t i s e (" c a v l a b _ c o r e / s p e e d _ l im i t " , 10)
13 }
14

15 r xCa l l b a c k (deadMansHandleReading & msg) {
16 s p e edL im i t / / I n s t a n c e o f SpeedLimi t c l a s s
17

18 s p e edL im i t . h e ade r . s tamp = msg . h e ade r . s tamp ;
19

20 i f (msg . ana logRead ing < rangeMin) {
21 s p e edL im i t . s p e edL im i t = 0 . 0 ;
22 } e l s e i f (msg . ana logRead ing > rangeMin && msg . ana logRead ing

< rangeMax) {
23 s p e edL im i t . s p e edL im i t = (msg . ana logRead ing − rangeMin) /

(rangeMax − rangeMin) ;
24 } e l s e {
25 s p e edL im i t . s p e edL im i t = 1 . 0 ;
26 }
27

28 pubSpeedLimi t . p u b l i s h (s p e edL im i t)
29 }

When the deadMansHandleNode() node constructor is executing (lines
7-13), the node can be considered to be initialising. So, the first state in the
RoboChart model is a composite Initialise state. On entry to Initialise, DE-
FAULT CONFIGURATIONparameter values are assigned to the variables rangeMin
and rangeMax (lines 1 and 2). Next, an input retrievedCon�guration is taken via
con�guration (lines 8 and 9). The machine in Initialise captures the behavior of
getParam. If the call returns true, that is, retrievedCon�guration.retrieve holds,
rangeMin and rangeMax are updated. Otherwise, the input is ignored.
The ROS nodes in the pod control system have either a periodic or a aperiodic

control flow. In both cases, after the initialization, the spin()method is invoked. It
simply calls the ROS ros spin()method, which blocks handling asynchronously
received messages on subscribed topics by calling the corresponding callback meth-
ods defined by the node. So, the callback methods define the node’s behavior. In
Listing 1, the callback method rxCallback is in lines 15-29.

16 Cavalcanti et al

Fig. 7 The DeadMansHandle machine.
DeadMansHandle

DEFAULT_CONFIGURATION: ConfigDeadMans
retrievedConfiguration: ConfigDeadMans, rangeMin: real, rangeMax: real
msg: DeadMansHandleReading, executingRxCallback: boolean, speedLimit: SpeedLimit

Initialise

entry rangeMin = DEFAULT_CONFIGURATION.rangeMin; rangeMax =
DEFAULT_CONFIGURATION.rangeMax; configuration?retrievedConfiguration

Spin

RxCallback

entry executingRxCallback = true; speedLimit.header.stamp = msg.header.stamp

BelowRange

entry speedLimit.speedLimit = 0.0

Scale

entry speedLimit.speedLimit =
(msg.analogReading-rangeMin)/
(rangeMax-rangeMin)

AboveRange

entry speedLimit.speedLimit = 1.0

deadmanshandle: DeadMansHandleReading
speed_limit: SpeedLimit

configuration: ConfigDeadMans

[not (msg.analogReading<rangeMin\/msg.
analogReading>rangeMin/\msg.

analogReading<rangeMax)]

[not retrievedConfiguration.retrieved]

[msg.analogReading>rangeMin/\msg.
analogReading<rangeMax]

[msg.analogReading<rangeMin]

/speed_limit!speedLimit; executingRxCallback = false

[not executingRxCallback]

[retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

deadmanshandle?msgdeadmanshandle?msg

[not executingRxCallback]

[msg.analogReading<rangeMin]

[not (msg.analogReading<rangeMin\/msg.
analogReading>rangeMin/\msg.

analogReading<rangeMax)]

[msg.analogReading>rangeMin/\msg.
analogReading<rangeMax]

/speed_limit!speedLimit; executingRxCallback = false

[not retrievedConfiguration.retrieved]

[retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

In the RoboChart model, from the Initialise state, a transition (without a label)
moves immediately to the state Spin. This captures the behavior as the node waits for

RoboStar technology 17

a message msg. When it arrives (via the event deadmanshandle), a transition leads
to a (composite) state RxCallback that models the callback method.
A boolean variable executingRxCallback is used to ensure that the state RxCall-

back is not left until the behavior corresponding to the execution of the method is
finished. So, upon entry of RxCallback, this variable is set to true, and the only
transition out of RxCallback has a guard that requires it to be false.
In the machine in RxCallback, the initial junction leads to a junction that corre-

sponds to the if-else structure in rxCallback (lines 20-26). The guard in each
transition coming out of the junction matches those in lines 20, 22, and 24 (which has
an implicit condition). Each target state has entry actions that match the assignments
in the code (lines 21, 23, and 25). From each state, there is an immediate transition to
a junction with a single transition to a final state. The action of that transition commu-
nicates the output via the event speed limit, corresponding to the publish statement
in line 28 of Listing 1. The transition action also updates executingRxCallback so
that a transition out of RxCallback leads back to Spin.
Other machines are presented in [5]. We now briefly discuss their verification.

4.4 Verification

The RoboChart model of the autonomous vehicle enables both core and user-
specified timed and untimed properties of the controller software to be verified
automatically. The core properties that are automatically generated include: deadlock
and livelock freedom, determinism, termination, and reachability. Other properties
of interest can be, for the moment, defined as CSP processes that are verified by
refinement checking against the calculated semantics.
RoboTool supports the specification of the core properties to be verified utilising

an assertion language that uses controlled English [53]. For example, to check the
core property that theDeadMansHandlemachine is deterministic, the corresponding
statement written using the assertion language is as follows.

assertion DMH 1:
bacs::DeadMansHandle::DeadMansHandle is deterministic

The assertion keywords are indicated in boldface and specify the property to be
checked. DMH 1 is a user-defined label for easy identification of the property. The
next part of the assertion statement is a fully qualified name of a component (module,
controller, or machine) from the RoboChart model. Figures 8 and 9 show RoboTool
and a report generated in the verification of the DeadMansHandle machine.
For the DeadMansHandle machine, an important property, which we name

DMH INOUT, is that for every input received from deadmanshandle an output
is generated via speed limit; this can be expressed as shown below in CSP.
The expression defines a CSP processOFEI (Output For Every Input) that offers a

choice of events corresponding to the three events of theDeadMansHandlemachine.
(Fully qualified names have been truncated for readability.)

18 Cavalcanti et al

Fig. 8 The DeadMansHandle machine in RoboTool.
default - Modeling - platform:/resource/AutonomousVehicle/bacs/bacs.aird/bacs::DeadMansHandle - Eclipse

DeadMansHandle

DEFAULT_CONFIGURATION: ConfigDeadMans
retrievedConfiguration: ConfigDeadMans, rangeMin: real, rangeMax: real
msg: DeadMansHandleReading, executingRxCallback: boolean, speedLimit: SpeedLimit

Initialise

entry rangeMin = DEFAULT_CONFIGURATION.rangeMin; rangeMax =
DEFAULT_CONFIGURATION.rangeMax; configuration?retrievedConfiguration

Spin

RxCallback

entry executingRxCallback = true; speedLimit.header.stamp = msg.header.stamp

BelowRange

entry speedLimit.speedLimit = 0.0

Scale

entry speedLimit.speedLimit =
(msg.analogReading-rangeMin)/
(rangeMax-rangeMin)

AboveRange

entry speedLimit.speedLimit = 1.0

deadmanshandle: DeadMansHandleReading
speed_limit: SpeedLimit

configuration: ConfigDeadMans

[not (msg.analogReading<rangeMin\/msg.
analogReading>rangeMin/\msg.

analogReading<rangeMax)]

[not retrievedConfiguration.retrieved]

[msg.analogReading>rangeMin/\msg.
analogReading<rangeMax]

[msg.analogReading<rangeMin]

/speed_limit!speedLimit; executingRxCallback = false

[not executingRxCallback]

[retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

deadmanshandle?msgdeadmanshandle?msg

[not executingRxCallback]

[msg.analogReading<rangeMin]

[not (msg.analogReading<rangeMin\/msg.
analogReading>rangeMin/\msg.

analogReading<rangeMax)]

[msg.analogReading>rangeMin/\msg.
analogReading<rangeMax]

/speed_limit!speedLimit; executingRxCallback = false

[not retrievedConfiguration.retrieved]

[retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

OFEI =
configuration.in?currentConfiguration −→ OFEI
@
speed limit.out?speedLimit −→ OFEI
@
deadmanshandle.in?msg −→ speed limit.out?speedLimit −→ OFEI

The first two choices consider occurrences of the events configuration, which is
an input, and speed limit, an output. In these cases, OFEI recurses, placing no
constraints on the behavior of the machine being verified. The final choice is an
input via deadmanshandle, which is immediately followed by a speed limit output
event. This describes the desired property DMH INOUT shown below.
The assertion language can be used to specify refinement checks against the

defined CSP expressions and instances of RoboChart components. The assertion
DMH INOUT specifies a refinement check and themodel to use for verification; in
our example, we consider just the traces of the process.

RoboStar technology 19

Fig. 9 The DeadMansHandle machine verification in RoboTool.

Results of analysis of assertions in bacs-DeadMansHandle.assertions

Results of timed analysis of assertions in bacs-
DeadMansHandle.assertions using FDR

Assertion States Transitions Result

bacs_DeadMansHandle::DeadMansHandle is deterministic (DMH_1)
[failures divergences model]

1231879 2033497 true

bacs_DeadMansHandle::DeadMansHandle is divergence free
(DMH_2) [failures divergences model]

1231879 2033497 true

bacs_DeadMansHandle::DeadMansHandle is deadlock free (DMH_3)
[failures divergences model]

1231879 2033497 true

bacs_DeadMansHandle::DeadMansHandle does not terminate
(DMH_4)

1231879 2033497 true

bacs_DeadMansHandle::DeadMansHandle::Initialise is reachable in
bacs_DeadMansHandle::DeadMansHandle (DMH_5)

1514 2122 true

bacs_DeadMansHandle::DeadMansHandle::Spin is reachable in
bacs_DeadMansHandle::DeadMansHandle (DMH_6)

3339 5122 true

bacs_DeadMansHandle::DeadMansHandle::RxCallback is reachable
in bacs_DeadMansHandle::DeadMansHandle (DMH_7)

122064 183347 true

bacs_DeadMansHandle::DeadMansHandle::RxCallback::BelowRange
is reachable in bacs_DeadMansHandle::DeadMansHandle (DMH_8)

120189 180847 true

bacs_DeadMansHandle::DeadMansHandle::RxCallback::Scale is
reachable in bacs_DeadMansHandle::DeadMansHandle (DMH_9)

126564 190347 false

bacs_DeadMansHandle::DeadMansHandle::RxCallback::AboveRange
is reachable in bacs_DeadMansHandle::DeadMansHandle (DMH_10)

120189 180597 true

file:///scratch/staff/wb689/av_verify_robosoft/robochart-text-2020-03/default/AutonomousVehicleSVN_simplified/bacs-Do

default - file:/scratch/staff/wb689/av_verify_robosoft/robochart-text-2020-03/default/AutonomousVehicleSVN_simplified/bacs-DeadMansHa...

assertion DMH INOUT:
bacs::DeadMansHandle::DeadMansHandle refinesOFEI in the traces model

Similar processes and assertions can be used to verify that the value of the out-
put speed limit must always be less than or equal to a given maximum (assertion
DMH OUT BELOW MAX) and the out speed limit must always be greater than
or equal to zero (DMH OUT ABOVE MIN). For that, we define processes similar
to OFEI, but restrict the values of the outputs that are produced to the valid sets.
For abstraction, RoboChart models can contain undefined types, constants, and

functions that must be defined to verify the properties specified. For model checking,
RoboTool generates preliminary instantiations for all of the undefined elements and
core types. These instantiations need to be tailored appropriately to the domain of
the system, noting that a large cardinality of definitions of sets leads to models that
are complex and require significant resources to verify. The instantiation file used for
verification of the DeadMansHandle state machine is shown in Listing 2. To prevent
RoboTool from overwriting customized instantiations, not is appended to the end of
a description to suppress regeneration of the corresponding definition.

20 Cavalcanti et al

Listing 2 DeadMansHandle instantiations.

1 −− g e n e r a t e r e a l no t
2 nametype c o r e _ r e a l = { −2 . . 2}
3

4 −− g e n e r a t e
5 −− const_bacs_DeadMansHandle_DeadMansHandle_DEFAULT_CONFIGURATION

no t
6 const_bacs_DeadMansHandle_DeadMansHandle_DEFAULT_CONFIGURATION =

(−1 , 1 , f a l s e)

Table 4 The verification results for the DeadMansHandle machine. Legend: ¬ Deterministic,
­ Divergence freedom, ® Deadlock freedom, ¯ Does not terminate, ° All states are reachable, ±
DMH INOUT, ²DMH OUT BELOW MAX, ³ DMH OUT ABOVE MIN

Property
State Machine ¬ ­ ® ¯ ° ± ² ³ Note
DeadMansHandle X X X X X X X X
DeadMansHandle X X X X X X X X Timed

Types have been represented by minimal sets, for example, core real (line 2)
ranges from -2 to 2. These values can be used to represent data domains of the
DeadMansHandle machine; for example, we can have 2 to represent values above
the maximum range, 1 for the that maximum, 0 for values in range, and so on. The
FDR model checker does not support real numbers, so, for verification, we need to
use integers, and may need to make approximations in the model. To the best of our
knowledge, there are no model checkers for FDR that deal with real numbers.
The results obtained in verifying properties for the aperiodic DeadMansHan-

dle machine are summarized in Table 4. Further verification, associated with the
generation of a simulation, is discussed in the next section.

5 Simulation

As well as verification, a RoboChart model can also be used as a basis to develop
a simulation. It is, of course, possible to develop a simulation from scratch, as it
is usually the case. Even in this scenario, there is still value derived from using
a RoboChart model for guidance because it is precisely described in an organized
notation. As already mentioned, with the use of RoboTool, it can be guaranteed that
the model is valid (well typed, all operations are declared, all states are connected,
and so on) and core properties can be checked automatically. So, a RoboChart model
is a high-quality starting point for further work on coding.
In addition, it is possible to check whether the RoboChart model can be accurately

described by a simulation at all. A simulation is an iterativemechanism; in each cycle,
the inputs are read, the data is processed, the outputs are produced, and then time is

RoboStar technology 21

advanced. So, developing a simulation corresponding to a RoboChart model requires
scheduling the processing in the state machines in cycles. This may not be possible
if, for example, the RoboChart model requires at some point two urgent calls to the
same operation. It is not possible to call the same operation twice in a simulation
cycle, and, so, if both calls are urgent, that timed behavior cannot be reproduced in
a simulation. Such a RoboChart model needs to be revisited.
An automated schedulability check can reveal such a problem. It consists of

verifying whether, in the presence of the assumptions normally made when writing
a simulation, the RoboChart model does not deadlock. The assumptions relate the
events, variables, and operations of the robotic platform of a RoboChart model to
the inputs and outputs read in a simulation cycle. They also enforce the restriction on
operation calls. Absence of deadlock in the presence of these assumptions ensures
that there is no behavior of the RoboChart model that cannot be implemented in the
simulation paradigm that reflects the assumptions.
For our example, DeadMansHandle state machine, this check passes. It can be

carried out automatically by RoboTool using the assertion below.

simulation DMHSim of
bacs::DeadMansHandle::DeadMansHandle { cycleDef cycle == 1 }

assertion Schedulable: DMHSim is schedulable

The simulation clause defines a simulation specification from a RoboChart compo-
nent. In this example, we have a specification DMHSim based onDeadMansHandle.
The specification requires the definition of a cycle, which is given in the cycleDef
clause and embeds the simulation assumptions mentioned above. The cycleDef
clause specifies the value of a variable cycle; in our example, it is 1. The actual as-
sertion, called Schedulable in the example, requires that DMHSim is schedulable.
Given that the pod model is constructed to reflect a (cyclic) implementation, it is not
a surprise that the machines are schedulable in simulations.
If theRoboChartmodel is schedulable, we can generate simulations automatically.

For constrained RoboChart models, it is possible to generate a C++ simulation for
ARGoS. The gap between event-based control flow embedded in a design state
machine and cycle-based control flow of a simulation, however, is very large. To
bridge this gap and produce an artefact that describes the cycle-based mechanism
faithfully, we have developed RoboSim. This is also a diagrammatic notation, with
support for modelling, validation, and verification in RoboTool.
In what follows, we present two aspects of RoboSim. In Section 5.1, we describe

a RoboSim module corresponding to the RoboChart module in Figure 4. This is
an account of the simulation of the control software; it is called a d-model (for
data model). We focus our discussion on the simulation of the state machine Dead-
MansHandle. In Section 5.2, we describe the RoboSim support to describe physical
models, called p-models, and illustrate our ideas using a simplified version of the
pod vehicle. Finally, Section 5.3 discusses our approach to generate simulation code
from RoboSim models for use with robotics simulators.

22 Cavalcanti et al

Fig. 10 The DeadMansHandle RoboSim machine.
DeadMansHandle [cycleDef = (cycle==1)]

Inputs

deadmanshandle: DeadMansHandleReading
configuration: ConfigDeadMans

Outputs

speed_limit: SpeedLimit

I_DeadMansHandle_Scale_entry_op
I_DeadMansHandle_RxCallback_entry_op
I_DeadMansHandle_BelowRange_entry_op
I_DeadMansHandle_AboveRange_entry_op
I_DeadMansHandle_Initialise_entry_op
DEFAULT_CONFIGURATION: ConfigDeadMans
retrievedConfiguration: ConfigDeadMans, rangeMin: real, rangeMax: real
msg: DeadMansHandleReading, executingRxCallback: boolean, speedLimit: SpeedLimit
cF: boolean = true, dF: boolean = true

Initialise

entry DeadMansHandle_Initialise_entry_op()

EmptyCycles

Spin

RxCallback

entry DeadMansHandle_RxCallback_entry_op()

BelowRange

entry DeadMansHandle_BelowRange_entry_op()

Scale

entry DeadMansHandle_Scale_entry_op()

AboveRange

entry DeadMansHandle_AboveRange_entry_op()

EmptyCycles
/executingRxCallback = false

 [$deadmanshandle?msg/\dF]/dF = false

 [msg.analogReading>rangeMin/\msg.analogReading<rangeMax]

 [executingRxCallback]/exec; cF = true; dF = true

 [msg.analogReading<rangeMin]

 [not ($deadmanshandle/\dF)]/exec; cF = true; dF = true

 [not executingRxCallback]

 [not retrievedConfiguration.retrieved]

 [retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

 [not (msg.analogReading<rangeMin\/msg.analogReading>rangeMin/\msg.analogReading<rangeMax)]

 [not true]/exec; cF = true; dF = true

/$speed_limit!speedLimit/$speed_limit!speedLimit

 [msg.analogReading<rangeMin]

 [msg.analogReading>rangeMin/\msg.analogReading<rangeMax]

 [not (msg.analogReading<rangeMin\/msg.analogReading>rangeMin/\msg.analogReading<rangeMax)]

 [executingRxCallback]/exec; cF = true; dF = true
/executingRxCallback = false

 [$deadmanshandle?msg/\dF]/dF = false [not executingRxCallback]

 [retrievedConfiguration.retrieved]/rangeMin = retrievedConfiguration.
rangeMin; rangeMax = retrievedConfiguration.rangeMax

 [not retrievedConfiguration.retrieved]

 [not ($deadmanshandle/\dF)]/exec; cF = true; dF = true

5.1 RoboSim: d-model

RoboSimhas the same structure ofmodules, controllers, andmachines asRoboChart.
For our example, we use the same module and controller definitions in RoboChart to
define the RoboSim simulation, except only that the RoboSim versions define a value
for the length of the simulation cycle. For the machines, however, different models

RoboStar technology 23

give a cycle-based account of the behavior. We present in Figure 10 a RoboSim
machine corresponding to DeadMansHandle in Figure 7. The RoboSim machine
has the same name but defines the cycle in a cycleDef clause next to the name.
In a RoboSim machine, there is only one event (in the RoboChart sense) called

exec, available without declaration. It controls the cyclic flow of the simulation. The
processing phase of the simulation is defined by the machine, using the inputs, and
the event exec to indicate when processing is finished and outputs can be provided.
In each cycle, inputs are read to determine whether the corresponding events have

happened and, if so, the values that are provided as input. In the definition of the
machine, if needed, this information is available. For our example, the inputs are
deadmanshandle and con�guration, declared as events in the RoboChart model, but
used in RoboSim differently. Rather than as a trigger, we use $deadmanshandle?msg
as a boolean in a guard, which is true if the input deadmanshandle event has
happened. In this case, the input value is recorded in the local variable msg.
The transition whose guard includes $deadmanshandle?msg is part of the trans-

lation of the transition from Spin to RxCallback in the RoboChart model. In the first
cycle, like in the RoboChart model, the machine starts in Initialise and proceeds to
Spin, and from there to a junction. In the junction, there is a decision character-
ized by the guards of the outgoing transitions. If $deadmanshandle?msg is true, the
simulation machine moves to the state RxCallback, as in the RoboChart machine.
The guard uses also a local boolean variable dF initialized to true. Our model-

transformation strategy for generating a RoboSim model from a RoboChart model
uses such variables to record whether an associated input event, in this case, dead-
manshandle has been referenced. It ensures that only one reference is possible in
each cycle. This is to match the structure of the RoboChart model, where multiple
references to an event denote different occurrences of that event. In RoboSim, a
different occurrence can take place only in a future cycle.
Another transition from the junction is for when deadmanshandle does not hap-

pen. In RoboChart, the machine remains in Spin waiting to be interrupted by the
event. In RoboSim, exec is raised to allow the simulation to progress to the next
cycle (when it then might be the case that the event happens). In this extra transition,
all boolean variables (dF and cF, for $con�guration) are reset to true. No variable
is associated with the reference to $deadmanshandle, so no variable is updated.
In the translation, all state actions (that is, entry, during, and exit actions) become

calls to operations that capture the original action in the RoboChart model. In our ex-
ample, for instance, we have an operation DeadMansHandle Initialise entry op()
for the entry action of Initialise. Its definition is shown in Figure 11.
This transformation to include operation calls is part of an initial normalization

phase in themodel transformation. It removes or reduces complexity in the potentially
rich structure of the RoboChart model to simplify translation. For the state actions,
normalization ensures that they all have the same form: an operation call. In the
actions themselves, structure defined by sequence (;) and conditionals (if-then-else),
for example, is also removed in favour of exclusive use of states and junctions.
Based on the variables (including constants), events, and operations referenced in

the original action, an interface is defined and required in the corresponding operation

24 Cavalcanti et al

Fig. 11 The DeadMansHandle Initialise entry op() RoboSim operation.
DeadMansHandle_Initialise_entry_op()

Inputs

configuration: ConfigDeadMans

Outputs

ReqVars_DeadMansHandle_Initialise_entry

/rangeMin = DEFAULT_CONFIGURATION.rangeMin

/rangeMax = DEFAULT_CONFIGURATION.rangeMax

/rangeMin = DEFAULT_CONFIGURATION.rangeMin

/rangeMax = DEFAULT_CONFIGURATION.rangeMax

 [$configuration?retrievedConfiguration/\cF]; cF = false

 [not ($configuration/\cF)]/exec; cF = true; dF = true

definition. The interface ReqVars DeadMansHandle Initialise entry required in
DeadMansHandle Initialise entry op() collects retrieveCon�guration, rangeMin,
rangeMax, cF, and dF, and the constant DEFAULT CONFIGURATION.
Each primitive action (assignment or input) in the entry action of Initialise occurs

as an isolated transition action in DeadMansHandle Initialise entry op(). This
results from the normalization. In the case of the input, similar to what is done in
DeadMansHandle, an extra transition with event exec allows the cycles to proceed.
The structures of the machines for Initialise and RxCallback are very similar to

those of the original RoboChart machines. Of note is the fact that, during processing,
outputs are defined, but become visible to other machines, controllers, and the
platform only when exec occurs. So, in the RoboChart machine for RxCallback, the
output via speed limit is the trigger of the transition to the final state. In the RoboSim
machine, the output occurs as a transition action $speed limit!speedLimit. The use
of $speed Limit, instead of simply speed limit, indicates that this is an output that
is only actually visible when the processing phase of the simulation terminates.
The final states of the machines for Initialise and RxCallback are replaced with

a new state EmptyCycles. This is because, in general, the final state of a machine
of a composite state needs to explicitly raise the exec event to allow the cycles to
proceed. So, instead of the special final state, the translation uses a new state with
an extra transition that has an exec action. This transition is guarded by the negation
of the guards of the transitions that leave that composite state.
In the example, there is only one outgoing transition from Initialise and one

from RxCallback. In the case of Initialise, the negation of its outgoing transition is
just false; in the case of RxCallback, it is executingRxCallback. In both cases, the
extra transitions are never taken because their guards never hold. For RxCallback,
as soon as its machine finishes, the outgoing transition is enabled because of the
action executingRxCallback = false, and the state machine DeadMansHandle exits
RxCallback. In general, however, this is not the case.
Generating code for a simulation from a RoboSim module is much more direct

than from a RoboChart module. In the case of RoboSim, cyclic behavior is already
identified. If the RoboSimmodel is verified against, or generated automatically, from

RoboStar technology 25

a RoboChart model, we can be certain that its properties are preserved (given the
assumptions characteristic of the cyclic control flow of a simulation). For example,
we know that the outputs produced are as specified by the RoboChart model for the
inputs provided, and time budgets and deadlines are preserved.
For a simulation, however, as well as an account of the control software, we also

need a model of the physical robot. This is discussed in the next section.

5.2 RoboSim: p-model

RoboSim has a block-diagram notation that allows us to describe robotic platforms by
characterising their physical properties and behaviors using systems of differential-
algebraic equations. Figure 12 presents a RoboSim specification of a (simplified)
physical model (p-model) for the pod in our running example.
A diagram for a p-model defines blocks to represent links (that is, rigid bodies),

joints, sensors, and actuators, as well as blocks to represent some of their properties.
The diagramdefines a tree structure that specifies a containment relationship between
elements. The root of the tree represents the physical component as a whole. Its
children are blocks representing links (or parts) of that physical component. Links
may contain junctions; links and junctions may contain sensors and actuators; and
so on. In Figure 12, the tree represents a physical model for the pod called Vehicle.
This simplifiedmodel for the vehicle omits its body (just for conciseness).What is

modelled is the frame and the wheels, as shown in Figure 13. This p-model contains
several links. A link called frame has three bodies, namely, front, column, and rear.
These are the bars that define the H shape in Figure 13. Since frame is a link, its
multiples bodies are pieces of a single rigid component.
The containment association is represented by connections between blocks with

a closed lozenge on the side of the containing block. They can be annotated with
the position coordinates (x, y, and z), and orientation (roll, pitch, and yaw) of the
contained block. These are defined with respect to the frame of reference of the
containing block. For the p-model block, by convention, the position and orientation
are (0,0,0) and (0,0,0). In Figure 12, the front and rear bars are positioned by
identifying their y coordinates as 0.975m to the front and to the back (-0.975m) of
the column. They have the same orientation as the vehicle.
The wheels are also links of the Vehicle. In Figure 12, they are left front wheel,

right front wheel, left rear wheel, and right rear wheel, defined as parts. Each
part is an instance of a p-model defined separately by another block diagram. In this
example, the p-model is Wheel; it is shown in Figure 14. Each Wheel has a link
wheelL with a body wheelB defined as a Cylinder.
The left rear wheel and right rear wheel are connected by an axle, whose body

is a Cylinder. The connection to the wheels are fixed: represented by solid lines.
Twomore parts, left kingpin and right kingpin, are instances of aKingpinAssem-

bly that can be used to turn a wheel. As shown in Figure 14, this is a Box with a
Revolute joint kingpin joint, whose axis is the wheel axis defined as a parameter to

26 Cavalcanti et al

Fig. 12 The pod p-model.

RoboStar technology 27

Fig. 13 The pod in CoppeliaSim.

Fig. 14 The physical models for the parts used in the pod.

KingpinAssembly. In the definitions of left rear wheel and right rear wheel, the
values of this parameter are specified for the wheel associated with the kingpin.
Every joint is contained in a link, and has a flexible connection, identified by

a dashed arrow, to another link. The joint kingpin joint of a KingpinAssembly is
contained in its link. Its flexible connection is specified when defining a part. In
Figure 12, the flexible connections are to the wheels. Connections to and from a part
are annotated with the elements of the part that are being connected. In the case of
both left kingpin and right kingpin, the kingpin joint is flexibly connected to the
link wheelL (of left front wheel and of right front wheel).
The frame has three Revolute joints: left kingpin joint and right kingpin joint,

flexibly connected to the links in left kingpin and right kingpin to turn the front
wheels, and axle joint, flexibly connected to the axle for the rear wheels. The
behavior of a Revolute joint, and others, is defined as part of a library, using a
system of differential-algebraic equations. Sensors and actuators can also have their
behavior defined in this way, and the library includes a number of such definitions.
In our example, all joints contain a motor, an actuator defined in a library.
As an example, we show a sensor DeadMansHandle contained in the frame. Its

input is the force F applied to the handle, and its output is a voltage. The equations at

28 Cavalcanti et al

Fig. 15 The platform mapping for the pod.

the bottom of the DeadMansHandle block, use local variables a, v, and p, to record
the acceleration, velocity, and position of the handle, and the spring constant K.
When the driver releases the handle, it goes back to the initial position.
A more realistic physical model for the pod includes a description of its body

and properties such as its weight and shape, which have an effect on its motion.
Moreover, the simple steering mechanism based solely on kingpin joints is not what
is used in the pod. It uses two sets of rack-and-pinion steering mechanisms, although
only the front set is used by the control software. The functionality of the simplified
steering component presented here is all that is needed for the control software.
To give an account of the behavior of the robot, considering both its control

software, defined by a d-model, and its physical platform, defined by a p-model,
we need to combine these models. Their connection is via the variables, events,
and operations defined in the d-model for the platform. These elements identify the
visible behavior of the software. So, to make the connection, we need to define them
using elements of the p-model: outputs of sensors and inputs of actuators.
This definition is provided via a platform mapping. For our example, a sketch

is presented in Figure 15. The mapping box connects a d-model, in our example,
AutonomousVehicle, to a p-model, here,Vehicle. In the box, we define each variable,
event, or operation of the connected d-model. In Figure 15, we present just two such
definitions: for the event deadmanshandle and for operation setSpeed.
For events, a condition specifies when they happen. In our example, the condition

for deadmanshandle is just true, indicating that this event is always available. The
Action defines the communicated value v, using two Local Variables rseq and fID

RoboStar technology 29

Fig. 16 The simulation approach for RoboSim.

RoboSim Model

p-model d-modelPlatform
Mapping

Platform Model Control
Software Model

Pattern for Code

Hardware Simulations
with tailored solvers

Automatically-generated
platform-independent code

Platform-dependent
glue code

CoppeliaSim Simulation

CoppeliaSim
Automatically-generated

platform-independent
C++ code

CoppeliaSim API-based
glue code

differential-algebraic
equations

SDF

to record elements of a ROS header defined by built-in platform software operations
called ROSseq and ROSframeId. These variables are used to define the record of
typeDeadMansHandleReading that is assigned to v. It records the voltage output by
the sensor DeadMansHandle in the p-model, and, in the header, the time t in which
deadmanshandle occurs and the message is communicated. The operation setSpeed
is defined by Equations that define a PID that reaches the speed kilometersPerHour.
To validate a p-model, and to execute the simulation as a whole, we need code

for a robotics simulator. Generation of such code is discussed next.

5.3 Simulation code

Figure 16 summarizes our approach to simulation of RoboSim models. As already
mentioned, a RoboSim model (light-grey box in Figure 16) is composed of three
distinct components. The p-model is a block diagram that describes the physical
platform in terms of links, joints, sensors, actuators, and their equations. The d-
model is a RoboSim module that specifies the control software in terms of variables,
events, and operations of the platform. The platform mapping describes how they
are interpreted in terms of variables (continuous flows) of the physical model.
Accordingly, a simulation derived from a RoboSim model consists of three com-

ponents, matching the structure of the RoboSim model; see Figure 16. In general,
the p-model needs to be used to produce a system of differential-algebraic equations
that is passed to an off-the-shelf or tailor-built solver to simulate the continuous
behaviors of the system. The d-model needs to be used to automatically generate

30 Cavalcanti et al

platform-independent code. Finally, the platform mapping needs to be used to gener-
ate solver-dependent interface code that bridges the gap between the control software
and platform simulations, passing data back and forth between them.
This general pattern can be adopted to develop a simulation from scratch, but can

also be instantiated for an existing simulator to streamline the simulation process. Our
approach to generating simulations relies on existing simulators.We have experience
with ARGoS and CoppeliaSim. Such robotics simulators embed domain knowledge,
such as multi-body physics notions like links and joints. They also provide the means
to simulate their behaviors efficiently through the use of various physics engines.
Figure 16 describes the instantiation of our pattern for use with CoppeliaSim. The

d-model is used in the same way, with the generated code suitable for any simulator
that adopts the used programming language. For CoppeliaSim, we use C++. The p-
model does not need to be used to provide the equations for simulation. Abstractions
such as link and joints are available in CoppeliaSim and can be imported via SDF,
which can be used as an input to various robotics simulators. Finally, the platform
mapping is used to produce an interface that implements the platform’s variables,
events, and operations used by d-model in terms of the API of CoppeliaSim.
With a high level of automation, fixing problems found during simulation costs

much less. Tests for use with the simulation are discussed in Chapter 11.

6 Environment modelling

Another core component of a robotic system is the environment in which it oper-
ates. For RoboSim, as a simulation language, we need a notation to characterize a
particular scenario (or a collection of specific scenarios). We envisage the use of a
block diagram, like for a p-model definition, to specify an e-model, that is, an en-
vironment model. Like for a p-model, such a diagram defines the physical elements
of the scenario and their behavior. An environment mapping needs to describe how
elements of the scenario are perceived and affected by the sensors and actuators.
For a RoboChart model, the possibility of defining only a particular scenario is

too restrictive. In a design model, we need, instead, to identify the assumptions about
the environment and the robotic platform that need to be satisfied to ensure the proper
behavior of the robotic system. The assumptions are the operational conditions.
When documented, if at all, these assumptions are commonly expressed in natural

language. In the RoboStar technology, these assumptions, which abstract general
properties of any valid environment and platform, are alsowritten in natural language,
but using controlled English. For natural-language processing (NLP), we need to
manage the trade-off between unconstrained text and automation capabilities.
Some NLP techniques, such as the one described in [14], do not restrict the text

and, thus, can be considered to deal with fully natural languages. In general, they
are built on artificial intelligence techniques, and rely on a large corpus of sentences
to train the underlying models to be capable of processing new unseen text. This
approach is not suitable for RoboStar, since we do not have a large corpus of envi-

RoboStar technology 31

ronment and platform assumptions; many times, they are not properly documented,
and left as part of the roboticists tacit knowledge.
At the other end of the spectrum of NLP techniques, we have very constrained

languages, such as that in [21]. They require loss in naturalness by considering
fragments of formal definitions and programming concepts. The imposed structure,
however, favours text processing automation even without a corpus of examples.
In the middle of this spectrum, we have approaches that seek for a compromise

between naturalness and constrained writing [77, 46, 11]; we seek this compromise.
We have devised RoboWorld, a controlled natural language (CNL) for the speci-
fication of environment and platform assumptions with a precise semantics. From
the controlled English, we can automatically generate CSP scripts of models that
support the consideration of these assumptions within the RoboStar technology.
RoboWorld is defined using the Grammatical Framework (GF) [65], a special-

purpose functional programming language for developing grammars. It supports
the complexities found in different natural languages, such as word inflections and
agreement between elements of a sentence. In Section 6.1 we comment on the syntax
of RoboWorld, followed by an overview of its semantics in Section 6.2.

6.1 RoboWorld syntax

RoboWorld is defined with abstract and concrete grammars. The abstract grammar
defines the types of assumptions that can be described in the language. It can be
seen as a metamodel of the supported controlled English. Differently, the concrete
grammar relates the metamodel with actual English sentences.
The grammars establish that a RoboWorld specification defines assumptions about

the world, including the environment and the platform, and mapping information.
The mapping explains how the world influences and is influenced by the values of
the variables, events, and operations of the platform of a RoboChart module. The
concept is similar to that of a platform mapping described in Section 5.2.
Here,we illustrate the syntax ofRoboWorld via an example presented in Figure 17.

It specifies some assumptions and part of the mapping for the autonomous pod. The
environment assumptions highlight that the arena is two-dimensional, the ground is
flat, and that we have obstacles in some locations of the arena.
To exemplify amapping definition, we show how the input event deadmanshandle

can be defined. The English description defines when the event occurs, and the value
communicated. The assumption is slightly more abstract than the definition in the
platform mapping in Figure 15, since it does not impose any restriction on values of
the header that are not relevant for the software. The RoboChart module for the pod
reflects in many ways the fact that we have a ROS application, so it is to be expected
that features of ROS are assumed (like the format of messages).
In general, we can be more abstract if it is convenient. For example, if an appli-

cation has an input event obstacle, the RoboWorld mapping can specify “The event
obstacle happens when the robot is less than one meter from a location in which

32 Cavalcanti et al

Fig. 17 RoboWorld assumptions for the pod.
World assumptions
The arena is two-dimensional.
The gradient of the ground is 0.
There are entities called obstacle.
Some of the locations contain an obstacle.

Mapping definitions
** Output event definitions **
** Input event definitions **
The event deadmanshandle is always available, and it communicates a record
whose field analogReading records the voltage obtained from the
DeadMansHandle, and whose field header is a record whose field stamp
records the time the event occurs.
** Operation definitions **
When the operation setSpeed(x) is called, the speed of the robot is set
to x km/h.
** Variable definitions **

there is an object”. In this case, there is no reference to a particular sensor, and a
variety of technologies can be used to satisfy such an assumption.
In Figure 17, the definition of the operation setSpeed explains how it affects the

robotic platform. Here, we have another example of a very abstract definition, where
the use of motors that is needed to achieve the required speed is not mentioned. This
is in direct contrast with the platform mapping in Figure 15.
As already said, RoboWorld has a precise formal semantics given in CSP. As

we explain in the next section, in the semantics, there are concepts that are appli-
cation independent, whereas others are derived directly from the controlled English
specification, such as that presented in Figure 17.

6.2 RoboWorld semantics

A CSP process that captures a RoboWorld specification consists of two components,
shown in Figure 18: a process that captures the world assumptions, and another
for the mapping. The process that captures the whole robotic system behavior also
includes the CSP definition for the RoboChart module.
CSP processes communicate via channels. In the case of a process for a RoboChart

module, there are channels to represent each of the variables, events, and operations
of the robotic platform. In the system process in Figure 18, these channels are used for
communication with themapping process. A process for a RoboChart module, which
defines control software, does not communicate directly with the world process.
The mapping process captures how the variables, events, and operations of the

control software affect and are affected by the world. To specify that, the mapping
needs to set and get information about the world. So, the mapping process commu-

RoboStar technology 33

Fig. 18 The structure of the RoboWorld CSP semantics.

World

Grid
Grid location Grid

initialization

Robot
Robot

components
Robot

initialization

Mapping
Mapping Definitions

RoboChart module

platform
input events

platform
output events,
variables,

and operations

channels for setting robot
velocity, acceleration etc.

channels for getting robot
position, velocity etc.

channels to coordinate
grid movement

nicates with the world process via get and set channels for properties like position,
velocity, and acceleration of the robot, for example. The world process describes the
layout and behavior of objects in the world.
The parts of the CSP process that are application-dependent and generated from

the RoboWorld description are indicated in Figure 18 by grey shading. Roughly
speaking, as probably expected, the world process is generated from the world
assumptions, and the mapping process is generated from the mapping definitions.
The world process has two components: the grid and the robot processes. The grid

process models a 2D or 3D arena as a grid of locations. With that, we can represent
the position of each of the entities in the environment, including the robot itself. The
world assumptions define the initial positions and properties of each of the entities
on the grid, in terms of application-independent location processes that manage the
movement and placing of entities on the grid.
The robot process has several components for managing the robot’s dynamic be-

havior, such asmovement and carrying of objects. These components are application-
independent. For example, the processes that manage the robot’s movement compute
its path, but the robot is moved by communication with the grid process. The world
assumptions are used to generate an initialization process that defines the movement
components required, and specifies initial values for the robot’s position and velocity.

34 Cavalcanti et al

The mapping includes a process for each mapping definition, specifying how the
variables, events, and operations of themodule affect and are affected by the behavior
of the robot. For an input event, information about the robot, such as its position,
is obtained from the world process and the event generated when the conditions for
its occurrence specified in the mapping definition are met. For an output event or
operation, the mapping process gets information from the module and communicates
with the world to get and set values, such as the robot velocity and acceleration, as
specified in the mapping definition. The mapping-definition processes are combined
in parallel so that each input and output is handled separately.
We automate the translation of RoboWorld descriptions to CSP using the GF

Java API. We use GF to parse the input text, and Java code to traverse the AST and
generate the CSP script. RoboWorld embeds primitive notions of 2D and 3D arenas,
regions, areas, objects (with a physical body), and entities (like gas and light), and
so on. More examples are required to enrich RoboWorld further.

7 Related work

Early on, existing mathematical techniques [20, 38] have been applied to robotics.
Model-checking techniques are available for many general-purpose languages. The
goal of the RoboStar technology, however, is customization to produce simple
domain-specific languages for practitioners [18, 60, 10], and with tool support for
graphical modelling, and optimizations in the semantics and verification that do not
apply in general. Nordmann et al. [56] suggest that domain-specific languages for
robotics like RoboChart and RoboSim are becoming popular. Our work is distinctive
in its use of mathematical models for verification.
There are several general languages for architectural and behavioral mod-

elling: SysML [58], AADL [23], and Focus [9], and others. For SysML, a com-
prehensive semantics in a CSP-like language is available [43]. The RoboSim block
diagrams used to specify physical models are based on SysML block diagrams.
UML (and its derivatives) have been used in various application domains, includ-

ing safety-critical systems. There are many formalizations of UML, but, in general,
covering subsets of UML. There are tailored semantic domains [8], and applications
of existing techniques: graph transformations [41], CSP [66, 16], and others.
The AutoFocus [74] approach caters for the whole development process, from

informal textual specification to code. This tool chain is similar to RoboTool in its
goals. On the other hand, where AutoFocus targets embedded software with behavior
defined by automata or functions, RoboTool focuses on robotic applications with
behavior defined by state machines. Verification in AutoFocus uses theorem proving
with Isabelle/HOL; similar goals are explored in [27] for RoboTool. Semi-automatic
model transformation encodes properties into temporal logic; the transformation
generates a refinement of the original model, rather than encoding its semantics.
So the properties of the generated model can be slightly different. AutoFocus also
provides facilities for code generation.

RoboStar technology 35

In this book, other domain-specific approaches to modelling and verification of
robotic systems are presented. In Chapter 1, we have an approach to deal with the
challenges of creating product lines for robotic systems that uses a few domain-
specific languages. RoboChart and RoboSim can be useful in that context to specify
functionality, physical elements such as sensors, and (non-functional) time require-
ments. They would complement, rather than replace, the use of the domain-specific
notations that deal with feature modelling and can support use of verification.
Model-based and component-based development is at the heart of the very ambi-

tious RobMoSys framework presented in Chapter 2. That effort proposes amodelling
approach for development of robotic software based on loosely connected compo-
nents. It puts these forward as a basis for the collaborative construction of a base of
reusable resources developed and used by a variety of stakeholders. For description of
behaviour, they use data sheets, an abstractionmechanism . RoboChart (or RoboSim)
could be used in conjunction with data sheets to provide a layer of formality while
maintaining abstraction, something that cannot be achieved with code. A challenge
is to map the concepts in RoboChart and RoboSim related to the abstraction of the
robotic platform and of the environment, since these are not present in RobMoSys.
Chapter 8 also reports on a very successful approach based on a domain-specific

language called GenoM. Like RoboStar notations, GenoM covers architectural de-
sign, concurrency, control of events, and verification by translation to existing formal
notations and tools. GenoM is an executable language (potentially including C code).
RoboChart, on the other hand, is a self-contained modelling language supporting
various levels of abstraction, but indeed requiring extra modelling effort from users.
SafeRobots [63] is a general component-based framework in which components

have a data-flow architecture. OCL is adopted for definition of properties, but spec-
ification of behavior is via code from libraries rather than state machines.
MontiArcAutomaton [67] comprises an ADL based on components and connec-

tors that allows extension with component-behavior modelling languages. There is
support for use and integration of multiple modelling languages and code gener-
ators, and for heterogeneous target platforms. RoboChart, as a language based on
components and connectors, could be integrated with this setting.
FlexBE [70] is a behavior engine for ROS that enables human operators to specify

and observe a robot’s behavior and intervene at runtime by pausing or modifying
it. Behaviors are specified by hierarchical state machines with actions implemented
in Python. Similar, but more abstract, models can be developed in RoboChart for
verification using shared variables and multiple state machines. FlexBE’s tool does
not support formal verification. Thus our approach is complementary.
MissionLab [19] supports end users in specifying behavior as mission plans

in military applications. A wizard allows the definition of tasks, environment, the
possibility of presence of enemies, and other parameters. Behavior is defined using
simple state machines. Verification is not mentioned, but usability studies indicate
ease of use. Such studies for RoboChart and RoboSim are not available yet.
SPECTRA allows modelling of behavior and environment assumptions using

patterns [48] of LTL with efficient synthesis algorithms [7]. This requires discrete
data type abstractions [50]. Time constraints cannot be directly specified, and so the

36 Cavalcanti et al

model needs to account for the target cyclic paradigm. Evidence [49] suggests that
modelling of realistic environments and traceability are challenging.
Mauve [36] supports component-based models with interfaces defined by con-

stants, operations, and ports, but not shared variables like RoboChart and RoboSim.
Behavior can be defined just by code or simple textual state machines. Specifica-
tions, however, can use a contract language based on temporal logic and observation
points of the code or machine. Code generation is for Orocos [73] platforms, with an
optimizedWCET analysis used to ensure schedulability. Time properties are derived
from this analysis, rather than specified like in RoboChart.
The work in [25] is for an adaptive architecture; the verification enables identifi-

cation of optimal configurations based on various proof techniques including model
checking. Verification of behavioral properties, however, is not the focus.
Orccad [20, 38] is a notation for modelling, simulation, and programming, with

verification (of timed properties) based on the translation of models into formal
languages like for RoboChart and RoboSim. Orccad models are formed of tasks
defined by control laws, combined by procedures defined by reactive programs. The
combined use of RoboChart with control laws is addressed in [12], and that approach,
based on modern co-simulation standards [26], can be used for RoboSim.
The RoboChart time primitives are inspired by timed automata and Timed CSP.

Timed automata use synchronous continuous-time clocks, and properties expressed
in temporal logic can be checked using the model checker UPPAAL. RoboChart, in
contrast, provides abstractions specific for robotic applications and has a semantics
for refinement. Comparable UPPAAL models require additional states, interleaved
automata, and state invariants. Ongoing work is exploring a RoboChart and a Ro-
boSim semantics using timed automata for property verification.
A real-time extension of UML statecharts called Hierarchical Timed Au-

tomata (HTA) is proposed in [15]. Roughly speaking, HTA is timed automata with
hierarchy and history, but no operations. In [15], HTA are translated to timed au-
tomata for use with UPPAAL. Some of the restrictions on UML are similar to those
of RoboChart, but some impose severe constraints on data, guards, and use of events.
On the positive side, the target UPPAAL timed automata remain decidable.
UML [37] has a simple notion of time and little support to model timed prop-

erties. On the other hand, UML-MARTE [72] is a profile with support for logical,
discrete and continuous time using clocks. Clock constraints may be specified using
CSSL [47], and a constraint solver [17] can find solutions for deployment. Specifica-
tion of deadlines and time budgets is through sequence and time diagrams.While it is
possible to define budgets for a particular behavior, it is not possible to define timed
constraints in terms of transitions and states. Limited support for UML-MARTE is
available in the freely available Papyrus tool [32], an Eclipse plugin for UML.
UML-RT, an extension to UML, focuses on the architectural description of sys-

tems using the notions of capsules, ports, and protocols. Capsules encapsulate state
machines, while communication between capsules is via ports and defined by pro-
tocols. A timing protocol can act as a timer by raising timeouts [71], but it is not
obvious how deadlines can be specified directly on UML-RT state machines.

RoboStar technology 37

ACSP-based semantics for UML-RT is defined in [64], but it does not cover time.
An extension to UML-RT [3] has a timed semantics defined using CSP+T [79], an
extension of CSP that supports the timing of events. CSP+T is the inspiration for the
work in [3], where annotations are added to record the occurrence time of events and
constrain the occurrence time of subsequent events. Some RoboChart and RoboSim
time primitives are similar, we have a richer set of primitives.
General-purpose simulation frameworks, such as Simulink and Stateflow [51, 52],

20-sim4, and Modelica [31] are in widespread use. They can be used in robotics,
but roboticists often describe state machines using an informal notation [59, 62, 75]
before writing optimized code (in C or C++, for instance) for a simulator tailored
for robotics. When there are complex control laws involved, the general simulators
are useful. This is, however, not the case in many applications, and the flexibility of
code-based simulations enable the development of more efficient simulations.
Compared to Stateflow, which is a statechart simulation language, RoboSim is,

on one hand, much more restrictive, but, on the other hand, the cycle of a RoboSim
model can be more flexibly defined. The occurrence of events or the structure of the
machine does not implicitly define the behavior in each cycle.Moreover, in Stateflow,
in each cycle, the machine is potentially executed several times, once for each event
that has occurred. RoboSim adopts the approach of reactive simulators, where the
machine is executed just once, when all events are normally considered. We expect,
however, that it is possible to define a pattern for Stateflow models to allow their
verification following the RoboSim approach.
Robotics simulators vary in their coding language. Webots [57] and Cop-

peliaSim (previously called V-REP) [68] provide (different) graphical interfaces.
Webots adopts a human-readable customized notation; in CoppeliaSim, several
general languages are available. ARGoS and Enki (home.gna.org/enki/) are pro-
grammed using different C++ libraries. The Microsoft Robotics Developer Stu-
dio (www.microsoft.com/robotics) has environments and platforms that can be pro-
grammed in VPL or C#. Player/Stage [33] provides a device server, and clients can
be programmed using popular languages. MASON [45] and BREVE [39] adopt the
agent paradigm; BREVE adopts a custom language or Python, and MASON, Java.
None of these simulators adopts a diagrammatic notation like RoboSim to specify

simulation code. Moreover, there is no portability between them. The RoboStar
vision is that a RoboSim model can be used for automatic generation of code for
such simulators. We have illustrated the results for CoppeliaSim.
RobotML [18] is a domain-specific language for robotics based on UML. It has

support for automatic generation of platform-independent code, but reasoning about
non-functional properties is envisaged although not available yet.
In the same vein, rFSM [40] is a domain-specific language for simulation and

deployment but does not have a formal semantics. There no support for analysis of
models, either in isolation or in relation to designs, like we have for RoboSim.

4 www.20sim.com/

38 Cavalcanti et al

RoboFlow [4] is a programming languagewith operational semantics. This formal
semantics provides a clear way to define sound tools, but there is no support for
reasoning about RoboFlow models in relation to designs.
ArmarX and Rafcon are programming languages for robotics based on state

machines, but without formal semantics [76, 10]. Some of their restrictions, like the
absence of inter-level transitions, are similar to those of RoboChart and RoboSim,
and ultimately can facilitate the provisioning of reasoning facilities.
In summary, what is distinctive about the RoboStar technology are small and

controlled domain-specific languages. The architectural pattern that they embed can
guide roboticists in developing models; the same is not true of open and general
languages. The restrictions of RoboChart and RoboSim simplify their semantics and
facilitate verification. Beyond support for verifying desirable properties of individual
models, we have a conformance notion for a simulation with respect to a more
abstract design model. More than new notations, the RoboStar technology provides
a modelling and verification approach for simulation of robotic applications that can
be useful in the context of all notations based on state machines above.
A comprehensive survey on formal specification and verification in robotics [22,

44] highlights model checking as the most prominent verification approach in the
literature. As illustrated here, RoboChart supports verification by model checking.
Our long-termplan, however, is the use of theoremproving to dealwith largermodels.
Ongoing and future work will explore combination of verification approaches.

8 Final considerations and future work

Current practice in robotics is normally based on standard state machines [18, 60, 10,
76], without formal semantics, to specify the robot controller only. The state machine
that gives an abstract account of the robot controller guides the development of a
simulation, but no rigorous connection between them is established. For implemen-
tation in a robotic platform, ad hoc adjustments are normally required to cater for
the reality gap between the simulation and actual environment. Numerous iterations
of (re)development and testing, tool dependency, and low-level programming are
prevalent, with an impact on cost, maintainability, and reliability.
RoboStar technology addresses the issues of principled modelling, verification,

sound simulation generation, and testing. With domain-specific languages, and sup-
port for automatic generation of artefacts, and verification, it enables significant
advances in the practice of software engineering for robotics.
Reactive robotics simulators do not normally generate code specifically for de-

ployment. Instead, simulation code is often reused after changes, because the API for
simulation and for deployment are different, and simulation code is based on a cyclic
executive. (This is a simple programming pattern for single-processor architectures; it
cannot easily cope with multiple processors, heterogeneous architectures, and mixed
criticality.) There is potential loss of properties observed via simulation: because of
the possibility of changes introducing errors, and of the reality gap.

RoboStar technology 39

In future work, we will develop a domain-specific language for modelling de-
ployment (layered) architectures and code, and a library of architectures. For each of
them, wewill define how to derive code automatically from aRoboChart or RoboSim
model. Automation will ensure preservation of properties. The code will use mul-
tiple processors, and have components with differentiated levels of guarantee: hard
results for the high-criticality, and probabilistic guarantees for the low-criticality
components. Fault models will justify adequacy of the approach to fault tolerance.
Monitors will enable update of the deployment, simulation, and design models.
RoboWorld provides the basis for further work on identification of additional

environment concepts of relevance to particular areas of application and categories
of robotic platforms. In Chapter 7, the authors quite rightly state that a mathematical
model cannot capture the physical world. Our approach with RoboWorld is to capture
the assumptions that are necessary to prove properties of interest. These assumptions
are operational conditions that, currently, are, at best, left implicit.
CorteX, described in Chapter 10, provides support for principled programming.

It is a middleware designed to deal with the maintainability challenges faced by
large-scale long-running applications, typical of those in the nuclear industry. Code
generation for CorteX from RoboChart or RoboSim models is a very interesting
avenue for future work. CorteX is equipped with validation support based on testing,
and complementarity of RoboStar technology is promising.
Our vision is a 21st-century toolbox for robot-controller developers. In this tool-

box, a developer can find unambiguous diagrammatic notations to specify models
for the environment, the robotic platform, and the controller. For commonly used
environments and robotic platforms, the toolbox includes a range of ready-made
models. Because these models are precise, there is no scope for misunderstanding
and, most importantly, the toolbox includes techniques for desirable properties of
the models: deadlock freedom, speed limits, and so on.
Since the technique for validation that robot controller developers favour nowadays

is simulation, in the 21st-century toolbox, there are tools for automatic generation of
these simulations. The ingenuity of the developer is now focused in the optimization
of the simulation and of the associated deployed code. Because the languages used
for simulation and programming are high-level, the results are tool independent, and
can be deployed in a variety of robotic platforms.
With the 21st-century toolbox, the costly cycles of iterations of design and testing,

with problems found very late, even just at deployment time, are reduced. Moreover,
the developer can demonstrate that the controller produced satisfies essential prop-
erties. Software for mobile and autonomous robots is cheaper and more reliable.

Acknowledgements The B-ACS work has been done as part of the CAVlab project in 2017 - 2018.
The team involved includes Dave Barnett, Servando German Serrano, Ujjar Bhandari, Nastaran
Shatti, and Alan Peters. Zeyn Saigol is proposing and developing the B-ACS work as a suitable au-
tonomy verification case study. All members of the RoboStar group (www.cs.york.ac.uk/robostar/)
have contributed directly or indirectly to the vision described here. Our work is funded by the Royal
Academy of Engineering under Grant No CiET1718/45, and by the UK EPSRC (Engineering and
Physical Sciences Research Council) under Grants No EP/M025756/1 and EP/R025479/1.

40 Cavalcanti et al

References

1. T. Abdellatif, S. Bensalem, J. Combaz, L. deSilva, and F. Ingrand. Rigorous design of
robot software: A formal component-based approach. Robotics and Autonomous Systems,
60(12):1563–1578, 2012.

2. M. M. Adams and P. B. Clayton. Cost-Effective Formal Verification for Control Systems. In
K. Lau and R. Banach, editors, ICFEM 2005: Formal Methods and Software Engineering,
volume 3785 of Lecture Notes in Computer Science, pages 465–479. Springer-Verlag, 2005.

3. K. B. Akhlaki, M. I. C. Tunon, J. A. H. Terriza, and L. E. M. Morales. A methodological
approach to the formal specification of real-time systems by transformation of UML-RT design
models. Science of Computer Programming, 65(1):41–56, 2007.

4. S. Alexandrova, Z. Tatlock, and M. Cakmak. Roboflow: A flow-based visual programming
language for mobile manipulation tasks. In IEEE International Conference on Robotics and
Automation, pages 5537–5544, 2015.

5. W. Barnett. Architectural Data Modelling for Robotic Applications. Technical report, 2019.
6. G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hendriks.
UPPAAL 4.0. In 3rd International Conference on the Quantitative Evaluation of Systems,
pages 125–126. IEEE Computer Society, 2006.

7. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs.
Journal of Computer and System Sciences, 78(3):911 – 938, 2012. In Commemoration of Amir
Pnueli.

8. M. Broy, M. V. Cengarle, and B. Rumpe. Semantics of UML - Towards a System Model
for UML: The State Machine Model. Technical Report TUM-I0711, Institut für Informatik,
Technische Universität München, February 2007.

9. M. Broy and K. Stølen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer-Verlag, 2001.

10. S. G. Brunner, F. Steinmetz, R. Belder, and A. Domel. Rafcon: A graphical tool for engineering
complex, robotic tasks. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3283–3290, 2016.

11. G. Carvalho, A. L. C. Cavalcanti, and A. C. A. Sampaio. Modelling Timed Reactive Systems
from Natural-Language Requirements. Formal Aspects of Computing, 28(5):725–765, 2016.

12. A. L. C. Cavalcanti, A. Miyazawa, R. Payne, and J. Woodcock. Sound simulation and co-
simulation for robotics. In M. Mazzara and B. Meyer, editors, Present and Ulterior Software
Engineering, pages 173–194. Springer International Publishing, 2017.

13. A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva Filho, A. Didier,
W. Li, and J. Timmis. Verified simulation for robotics. Science of Computer Programming,
174:1–37, 2019.

14. D. Chen and C. Manning. A fast and accurate dependency parser using neural networks. In
Conference on Empirical Methods in Natural Language Processing, pages 740–750. Associa-
tion for Computational Linguistics, 2014.

15. A. David, M. O. Möller, and W. Yi. Formal Verification of UML Statecharts with Real-Time
Extensions. In R.-D. Kutsche and H. Weber, editors, Fundamental Approaches to Software
Engineering, pages 218–232. Springer Berlin Heidelberg, 2002.

16. J. Davies and C. Crichton. Concurrency and Refinement in the Unified Modeling Language.
Formal Aspects of Computing, 15(2-3):118–145, 2003.

17. J. DeAntoni and F. Mallet. Objects, Models, Components, Patterns, chapter TimeSquare: Treat
Your Models with Logical Time, pages 34–41. Springer, 2012.

18. S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane. Simulation, Modeling, and
Programming for Autonomous Robots, chapter RobotML, a Domain-Specific Language to
Design, Simulate and Deploy Robotic Applications, pages 149–160. Springer, 2012.

19. Y. Endo, D. C. MacKenzie, and R. C. Arkin. Usability evaluation of high-level user assistance
for robot mission specification. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 34(2):168–180, 2004.

RoboStar technology 41

20. B. Espiau, K. Kapellos, and M. Jourdan. Formal Verification in Robotics: Why and How?,
pages 225–236. Springer London, 1996.

21. M. Esser and P. Struss. Obtaining Models for Test Generation from Natural-Language like
Functional Specifications. In International Workshop on Principles of Diagnosis, pages 75–82,
2007.

22. M. Farrell, M. Luckcuck, and M. Fisher. Robotics and integrated formal methods: Necessity
meets opportunity. In C. A. Furia and K. Winter, editors, Integrated Formal Methods, volume
11023 of Lecture Notes in Computer Science, pages 161–171. Springer, 2018.

23. P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 2012.

24. M. S. Conserva Filho, R. Marinho, A. C. Mota, and J. C. P. Woodcock. Analysing robochart
with probabilities. In T. Massoni and M. R. Mousavi, editors, Formal Methods: Foundations
and Applications, pages 198–214. Springer, 2018.

25. F. Fleurey and A. Solberg. A domain specific modeling language supporting specification,
simulation and execution of dynamic adaptive systems. In 12th International Conference on
Model Driven Engineering Languages and Systems, pages 606–621. Springer-Verlag, 2009.

26. FMI development group. Functional mock-up interface for model exchange and co-simulation,
2.0. https://www.fmi-standard.org, 2014.

27. S. Foster, J. Baxter, A. L. C. Cavalcanti, A. Miyazawa, and J. C. P. Woodcock. Automating
Verification of State Machines with Reactive Designs and Isabelle/UTP. In K. Bae and P. C.
Ölveczky, editors, Formal Aspects of Component Software, pages 137–155, Cham, 2018.
Springer.

28. S. Foster, A. L. C. Cavalcanti, S. Canham, J. C. P. Woodcock, and F. Zeyda. Unifying theories
of reactive design contracts. Theoretical Computer Science, 802:105 – 140, 2020.

29. S. Foster, Y. Nemouchi, C. O’Halloran, K. Stephenson, and N. Tudor. Formal model-based
assurance cases in Isabelle/SACM: An autonomous underwater vehicle case study. In 8th
International Conference on Formal Methods in Software Engineering. ACM, 2020. To
appear.

30. M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mallet. Model checking real-time
properties on the functional layer of autonomous robots. In K. Ogata, M. Lawford, and S. Liu,
editors, Formal Methods and Software Engineering, pages 383–399. Springer, 2016.

31. P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

32. S. Gérard, C. Dumoulin, P. Tessier, and B. Selic. Model-Based Engineering of Embedded
Real-Time Systems: International Dagstuhl Workshop, Dagstuhl Castle, Germany, November
4-9, 2007. Revised Selected Papers, chapter 19 Papyrus: A UML2 Tool for Domain-Specific
Language Modeling, pages 361–368. Springer, 2010.

33. B. Gerkey, R. T. Vaughan, and H. Andrew. The Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems. In 11th International Conference on Advanced Robotics, pages
317–323, 2003.

34. S. German, A. Peters, D. Barnett, U. Bhandari, and N. Shatti. Connected and Autonomous
Vehicles Laboratory (CAVLab) - An accessible facility for development and integration of
CAV thecnologies. In ITS World Congress, 2018.

35. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 - A Modern
Refinement Checker for CSP. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 187–201, 2014.

36. N. Gobillot, C. Lesire, and D. Doose. A modeling framework for software architecture
specification and validation. In D. Brugali, J. F. Broenink, T. Kroeger, and B. A. MacDonald,
editors, Simulation, Modeling, and Programming for Autonomous Robots, pages 303–314.
Springer International Publishing, 2014.

37. Object Management Group. OMG Unified Modeling Language, 2015.
38. K. Kapellos, D. Simon, M. Jourdant, and B. Espiau. Task level specification and formal
verification of robotics control systems: State of the art and case study. International Journal
of Systems Science, 30(11):1227–1245, 1999.

42 Cavalcanti et al

39. J. Klein. BREVE: a 3DEnvironment for the Simulation of Decentralized Systems andArtificial
Life. In 8th International Conference on Artificial Life, pages 329–334. The MIT Press, 2003.

40. M. Klotzbucher and H. Bruyninckx. Coordinating Robotic Tasks and Systems with rFSM
Statecharts. Journal of Software Engineering for Robotics, 2(13):28–56, 2012.

41. S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An Integrated Semantics for UML
Class, Object and State Diagrams Based on Graph Transformation. In M. Butler, L. Petre, and
K. SereKaisa, editors, Integrated Formal Methods, volume 2335 of Lecture Notes in Computer
Science, pages 11–28. Springer, 2002.

42. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with
PRISM: a hybrid approach. International Journal on Software Tools for Technology Transfer,
6(2):128–142, 2004.

43. L. Lima, A. Miyazawa, A. L. C. Cavalcanti, M. Cornélio, J. Iyoda, A. C. A. Sampaio, R. Hains,
A. Larkham, and V. Lewis. An integrated semantics for reasoning about SysML design models
using refinement. Software & Systems Modeling, 16(3):1–28, 2017.

44. M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher. Formal specification and
verification of autonomous robotic systems: A survey. CoRR, abs/1807.00048, 2018.

45. S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, andG.Balan. Mason:Amultiagent simulation
environment. Simulation, 81(7):517–527, 2005.

46. B. Luteberget, J. J. Camilleri, C. Johansen, and G. Schneider. Participatory Verification of
Railway Infrastructure by Representing Regulations in RailCNL. In A. Cimatti and M. Sirjani,
editors, Software Engineering and Formal Methods, pages 87–103. Springer International
Publishing, 2017.

47. F. Mallet. Clock constraint specification language: specifying clock constraints with UML/-
MARTE. Innovations in Systems and Software Engineering, 4(3):309–314, 2008.

48. S. Maoz and J. O. Ringert. GR(1) Synthesis for LTL Specification Patterns. In 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 96–106. Association
for Computing Machinery, 2015.

49. S. Maoz and J. O. Ringert. Synthesizing a Lego Forklift Controller in GR(1): A Case Study.
In 4th Workshop on Synthesis, 2015.

50. S. Maoz and J. O. Ringert. On the Software Engineering Challenges of Applying Reactive
Synthesis to Robotics. In 1st International Workshop on Robotics Software Engineering, pages
17–22. Association for Computing Machinery, 2018.

51. The MathWorks,Inc. Simulink. www.mathworks.com/products/simulink.
52. The MathWorks,Inc. Stateflow and Stateflow Coder 7 User’s Guide.
www.mathworks.com/products.

53. A. Miyazawa, P. Ribeiro, A. L. C. Cavalcanti, W. Li, J. Timmis, and J. C. P. Woodcock.
RoboChart and RoboTool: Modelling, Verification and Simulation for Robotics. Technical
report, University of York, Department of Computer Science, York, UK, 2020. Available at
www.cs.york.ac.uk/circus/RoboCalc/robosim/robosim-reference.pdf.

54. A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis, and J. C. P. Woodcock.
RoboChart: modelling and verification of the functional behaviour of robotic applications.
Software & Systems Modeling, 18(5):3097–3149, 2019.

55. T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant for higher-order
logic. Springer, 2002.

56. A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede. A survey on domain-specific
modeling and languages in robotics. Journal of Software Engineering for Robotics, 7(1):75–99,
2016.

57. M. Olivier. WebotsTM: Professional Mobile Robot Simulation. International Journal of
Advanced Robotic Systems, 1(1):39–42, 2004.

58. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3, 2012.
59. H. W. Park, A. Ramezani, and J. W. Grizzle. A finite-state machine for accommodating
unexpected large ground-height variations in bipedal robot walking. IEEE Transactions on
Robotics, 29(2):331–345, 2013.

RoboStar technology 43

60. I. Pembeci, H. Nilsson, and G. Hager. Functional reactive robotics: An exercise in principled
integration of domain-specific languages. In 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, pages 168–179. ACM, 2002.

61. C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Fer-
rante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo. ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence,
6(4):271–295, 2012.

62. C. A. Rabbath. A finite-state machine for collaborative airlift with a formation of unmanned
air vehicles. Journal of Intelligent & Robotic Systems, 70(1):233–253, 2013.

63. A. Ramaswamy, B. Monsuez, and A. Tapus. Saferobots: A model-driven framework for
developing robotic systems. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1517–1524, 2014.

64. R. Ramos, A. C. A. Sampaio, and A. C. Mota. A Semantics for iUML-RT Active Classes via
Mapping into Circus. In Formal Methods for Open Object-based Distributed Systems, volume
3535 of Lecture Notes in Computer Science, pages 99–114, 2005.

65. Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, 2011.

66. H. Rasch and H. Wehrheim. Checking consistency in UML diagrams: Classes and state
machines. In E. Najm, U. Nestmann, and P. Stevens, editors, Formal Methods for Open
Object-Based Distributed Systems, volume 2884 of Lecture Notes in Computer Science, pages
229–243. Springer, 2003.

67. J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann. Code generator composition for model-
driven engineering of robotics component & connector systems. Journal of Software
Engineering for Robotics, 6(1):33–57, 2015.

68. E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In IEEE International Conference on Intelligent Robots and Systems, volume 1,
pages 1321–1326. IEEE, 2013.

69. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer,
2011.

70. P. Schillinger, S. Kohlbrecher, and O. von Stryk. Human-robot collaborative high-level con-
trol with application to rescue robotics. In IEEE International Conference on Robotics and
Automation, pages 2796–2802, 2016.

71. B. Selic. Using UML for modeling complex real-time systems. In F. Mueller and A. Bestavros,
editors,Languages, Compilers, and Tools for Embedded Systems, volume 1474 ofLecture Notes
in Computer Science, pages 250–260. Springer, 1998.

72. B. Selic and S. Grard. Modeling and Analysis of Real-Time and Embedded Systems with UML
and MARTE: Developing Cyber-Physical Systems. Morgan Kaufmann Publishers Inc., 2013.

73. P. Soetens and H. Bruyninckx. Realtime hybrid task-based control for robots and machine
tools. In 2005 IEEE International Conference on Robotics and Automation, pages 259–264,
2005.

74. M. Spichkova, F. Hölzl, and D. Trachtenherz. Verified system development with the autofocus
tool chain. In Workshop on Formal Methods in the Development of Software, 2012.

75. T. Tomic, K. Schmid, P. Lutz, A. Domel,M. Kassecker, E.Mair, I. L. Grixa, F. Ruess,M. Suppa,
and D. Burschka. Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor
Urban Search and Rescue. IEEE Robotics Automation Magazine, 19(3):46–56, 2012.

76. M. Wachter, S. Ottenhaus, M. Krohnert, , N. Vahrenkamp, and T. Asfour. The ArmarX
Statechart Concept: Graphical Programing of Robot Behavior. Frontiers in Robotics and AI,
3:33, 2016.

77. C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal. Automatic generation of system
test cases from use case specifications. In International Symposium on Software Testing and
Analysis, pages 385–396. Association for Computing Machinery, 2015.

78. J. C. P. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. Formal methods: Practice
and experience. ACM Computing Surveys, 41(4), 2009.

79. J. J. Zic. Time-constrainedBuffer Specifications inCSP+T andTimedCSP. ACM Transactions
on Programming Languages and Systems, 16(6):1661–1674, 1994.

