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Abstract. The Unifying Theories of Programming underpins the devel-
opment of Circus, a state-rich process algebra for refinement. We have
previously presented a theory of testing for Circus; it gives a symbolic
characterisation of tests. Each symbolic test specifies constraints that
capture the effect of the possibly nondeterministic state operations, and
their interaction. This is a sound basis for testing techniques based on
constraint solving for generation of concrete tests, but does not sup-
port well selection criteria based on the structure of the specification.
We present here a labelled transition system that captures information
about a Circus model and its structure. It is useful for testing techniques
based on specification coverage. The soundness argument for the new
transition system follows the UTP style, but relates the new transition
relation to the Circus relational model and its operational semantics.

1 Introduction

We have recently proposed a theory of testing for Circus [24], a state-rich process
algebra that combines Z [37], CSP [28], and a refinement calculus [22]. Its se-
mantics is based on the Unifying Theories of Programming (UTP) [18]. Tutorial
introductions to the UTP can be found in [35, 9].

Formal specifications have been widely applied as a starting point for software
testing; a few approaches can be found in [10, 14, 2, 3, 1, 20]. Our testing theory
for Circus [6] instantiates Gaudel’s long-standing theory of formal testing [15].
Its foundation is the Circus operational semantics [36], which is described and
justified in the context of the UTP theory for Circus [24].

The main distinguishing feature of the Circus testing theory is its symbolic
nature: it provides a symbolic characterisation of traces, acceptances and initials,
and, most importantly, tests and exhaustive test sets. This takes advantage of the
symbolic nature of the Circus operational semantics, where unknown data values,
such as an input or the result of a nondeterministic choice, are represented by
loose constants, which we call symbolic variables. Tractability stems first from
the use of alphabets (of symbolic variables) in a manner akin to the use of
alphabets (of observational variables) in the UTP. Additionally, we exploit a
characterisation of process states as predicates of the UTP theory of relations,
using the light touch of the UTP approach for clarity and simplicity.



The conformance relation considered in the Circus testing theory is process
refinement, which is characterised using the UTP notion of refinement. As usual
in testing, we consider divergence-free processes. We take the typical view that,
in a specification (as opposed to the system under test) divergence is a mistake
and should not be used. In other words, in the specification, divergence should
not be indicated as an allowed behaviour. Furthermore, in a program (as opposed
to a program model) divergence cannot be distinguished from deadlock.

In previous work, we have shown that, for divergence-free processes, refine-
ment can be characterised by the conjunction of traces refinement and conf .
This is justified in the UTP in [7], based on a relationship between the UTP and
the failures-divergences models of CSP. The conf relation [3] has been widely
explored in the testing community, and requires reduction of deadlock.

The (symbolic) exhaustive test sets for both traces refinement and conf are
potentially infinite. Practical techniques rely on selection criteria both to gener-
ate and to select a finite set of tests. Together, exhaustiveness and the selection
criteria justify the conclusions that can be reached from testing experiments.

The symbolic tests and test sets of Circus are ideal as a starting point to
consider well-known selection criteria based on constraints decomposition and
solving [1, 11, 17]. These allow us to explore the rich data models and ensure
meaningful coverage of possible observations. They cater for the infinite data
types of Circus models, with operations specified in the Z predicative style. The
symbolic tests, along with the symbolic traces and acceptance sets used to define
them, are a prerequisite for proposing and justifying test-data generation tech-
niques in any language combining control and complex data types. They specify
the constraint-solving problems that need to be addressed.

On the other hand, complementary selection criteria that have been widely
explored are based on coverage of the syntactic structure of the specification: ac-
tions, transitions, paths that link variable assignments and uses, and so on. The
labelled transition system defined by the Circus operational semantics, however,
abstracts from this structure, including from the particular way in which vari-
ables are used. Moreover, it includes transitions that do not correspond to ob-
servable behaviour; their coverage is unlikely to be interesting for testing.

In this paper, we present a new labelled transition system for Circus that
is appropriate for the definition of specification-based coverage criteria, and the
associated algorithms for test-case generation. We define the new system in terms
of two other new transition relations, which we also present here. We briefly
discuss the soundness of the new transition rules, but leave a complete account
as future work. For illustration purposes, we explain how we can use the new
transition system to define a definition-use selection criterion [13].

Section 2 provides an introduction to Circus, its operational semantics, and
testing theory. The specification-oriented transition system is described in Sec-
tion 3. Its use in testing is the subject of Section 4. Soundness is discussed in
Section 5. Finally, we present our conclusions in Section 6. Appendix A repro-
duces the rules of the operational semantics used in discussions and examples.

2



2 Circus, its operational semantics, and testing

The UTP has been the basis for a now ten-year-old research agenda on the
development of the Circus family of languages based on a combination of Z
and CSP. There have been extensions to cater for time [32], synchronicity [4],
mobility [33], pointers [16], and object-orientation [8, 29]. We give here a brief
description of the original Circus language, and its operational semantics [36].
Our results, however, are a starting point to consider coverage of specifications
for all Circus extensions. They are all justified using UTP theories.

2.1 Circus notation

A Circus model is formed by a sequence of paragraphs, like in Z [37], but they
can define channels and processes, like in CSP and its machine-readable ver-
sion (CSP-M) [28]. Figure 1 presents a model of a resource manager. Its first
paragraph introduces a given set Resource including the valid resources. The
second paragraph declares two channels: insert is used to request the addition
of a resource in the pool, and get to request a resource from the pool. The last
paragraph is a basic (or explicit) definition for a process called ResourceManager .

A basic process definition is itself formed by a sequence of paragraphs. The
first paragraph of ResourceManager is a Z schema RM marked as the state

definition. Circus processes have a private state defined using Z, and interact
with each other and their environment using channels, like CSP processes.

The state of ResourceManager includes two components: a pool of resources,
and a cache that records a resource ready for delivery. The state invariant re-
quires that the cached resource is not in the pool as well.

Operations over the state can be defined by schemas just like in Z. For in-
stance, the schema Cache specifies an operation that caches a resource, if the
pool is not empty. The schema Cache includes the schema ∆RM to bring into
scope the names of the state components defined in RM and their dashed coun-
terparts to represent the state after the execution of Cache.

State operations are called actions in Circus, and can also be defined using
Morgan’s specification statements [22] or guarded commands from Dijkstra’s
language [12]. The operation Insert in our example, for instance, is defined by
an assignment. It adds a resource r? given as input to the pool.

CSP constructs can also be used to specify actions. For instance, the resource
manager has two components: a CacheManager and a PoolManager , specified
by separate actions. CacheManager accepts requests for a resource through the
channel get . When such a request occurs, the cache becomes empty and the
manager terminates. The PoolManager , on the other hand, accepts requests to
insert a resource in the pool, which is carried by Insert . It also monitors requests
for a resource (through get). When this happens, if the pool is not empty, the
manager terminates, otherwise, it waits for an element to be inserted in the pool
before terminating. The specification of PoolManager combines an assignment,
the action Skip, which terminates immediately, without changing the state, a
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[Resource]

channel insert , get : Resource

processResourceManager =̂ begin

stateRM

pool : PResource

cache : Resource

cache 6∈ pool

Init

RM ′

pool ′ = ∅

Cache

∆RM

pool 6= ∅

pool ′ = pool \ {cache ′}

Insert =̂ r? : Resource • pool := pool ∪ {r?}

CacheManager =̂ get !cache → Skip

PoolManager =̂

µX •




insert?r → Insert(r); X
@
get?x → (if pool 6= ∅→ Skip 8 pool = ∅→ insert?r → Insert(r))









• Init ;
(µX • (CacheManager J {cache} | {| get |} | {pool} K PoolManager); Cache; X )

end

Fig. 1. Resource manager in Circus
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schema operation, a conditional (in Dijkstra’s style), and an external choice (@).
Z and CSP constructs are intermixed freely in an action definition.

A main action at the end defines the behaviour of the ResourceManager .
After a call to the initialisation operation Init , a parallel composition combines
the CacheManager and the PoolManager . When the parallelism terminates, the
Cache operation updates the cache to make a resource available.

Like in CSP, the parallel operator defines a synchronisation channel set: com-
munications through channels in this set require agreement of both parallel ac-
tions. In our example, get is in the synchronisation set. To avoid race conditions,
the parallel operator also associates with each action a partition of the variables
in scope over which it has write control. Both parallel actions can access the
value of the state before the parallelism starts. Both can write to all state com-
ponents. An update, however, only becomes visible to other actions after the
parallelism terminates, and then only if the action has write control over the
changed variable. In our example, the CacheManager has control over cache,
and PoolManager over pool . (In fact, CacheManager does not change cache,
but we require the name sets to be a partition of the state.)

Processes can also be defined by composition using CSP constructs. For ex-
ample, in a distributed setting, we can have two resource managers available.

processResources =̂ ResourceManager 9 ResourceManager

In this case, we have two copies of a ResourceManager , each with its own private
state. A request to insert or get a resource is responded by either of them;
the choice is nondeterministic. Nondeterminism in Circus may arise from data
operations, like in Z, or from parallelism, like in CSP. We also have the explicit
operator for nondeterministic choice of CSP. In our example, the data operation
Cache is nondeterministic, as is the process Resources above.

A full account of Circus and its denotational semantics, including the UTP
theory that underpins it, is given in [25]. The Circus operational semantics [36]
is briefly discussed and illustrated in the next section.

2.2 Circus operational semantics

As usual, the operational semantics of Circus is based on a transition relation
that associates configurations. For processes, the configurations are processes
themselves. For actions, the configurations are triples. The first component is a
constraint over symbolic variables used to define labels and the state. The second
component is a total assignment in the UTP theory of relations of symbolic
variables to variables. The last component is an action.

The constraints in the configurations are texts that denote predicates (over
symbolic variables). Like in the UTP, we use typewriter font for pieces of text.
The syntax used to define them is that of the UTP relational theory, and of
Circus predicates, which are basically Z predicates [23].

State assignments are expressed using the UTP notation x := e for relational
assignments. They can also include declarations and undeclaration of variables
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using the UTP constructs var x and end x . The declaration of a variable is
immediately followed by an assignment of a symbolic variable to it, so that state
assignments are deterministic programs that define a specific value (represented
by a symbolic variable) for all variables in scope. We use the notation var x := e

as an abbreviation for var x ; x := e. It is the combination of the constraint
over symbolic variables, and the state assignment of symbolic variables to all
variables in scope that, together, specify the state of a configuration.

To give the operational semantics of a process, we use a novel construct for a
basic process. It records the current local state of a process using a constraint and
a state assignment. The first transition rule for processes shown below introduces
the record of the local state. It is characterised using a (list of) fresh symbolic
variable(s) w0. The constraint defines that w0 is (are) of the appropriate type(s),
and in the state assignment w0 is assigned to the state component(s) x. In all
transition rules, the symbolic variables introduced are assumed to be fresh.





begin

state [ x : T ]
• A

end




ǫ

−→





begin

state [ x : T ] | loc (w0 ∈ T | x := w0)
• A

end





The semantics of composed processes is defined by providing a corresponding
basic process [23]. We, therefore, do not consider them here. The complete set
of transition rules is in [36]; some are presented below and in Appendix A.

The second transition rule for processes, which we omit here for conciseness,
applies to the extended form of a basic process. The rule allows a process to
evolve in accordance with the evolution of its main action in the state defined
by the loc clause. We therefore focus on the transition relation for actions.

The rule for designs (which are a simplified form of specification statement)
is below. The hypothesis requires the constraint to hold, the precondition to
hold in the current state s , and the design to be feasible. In this case, evolution
to Skip is silent (not labelled, or labelled by ǫ). The constraint is strengthened
by introducing fresh symbolic variables w0 that satisfy the postcondition, and
the state is updated by assigning w0 to all variables in scope. The state s is not
completely discarded, since it may contain variable declarations.

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p⊢ Q)
ǫ

−→ (c ∧ (s; Q [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs

Another rule states that, if the precondition does not hold, the design evolves
to Chaos, the action that diverges immediately.

The evolution of an output prefixing d!e→A, an action that outputs the value
of the expression e through channel d and then behaves like A, is labelled. The
label d.w0 involves the fresh constant w0; the new constraint defines its value to
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be that of e in the current state s. The remaining action is A.

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

The transition rule for an input prefixing d?x→ A is as follows.

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

The label is d?w0. In the new the state, x is declared and assigned w0. The only
restriction on w0 is that it has the same type as d. The remaining action let x • A
records the fact that x is in scope in A as a local variable. The construct let x • A
has been introduced specifically for use in the operational semantics. When A

terminates, a rule for let x • Skip closes the scope of x in the state and removes
the let x declaration. This is Rule (8) in Appendix A.

The transition rules for sequences A1; B are standard. Evolution of A1 leads
to evolution of the sequence. When it terminates, a rule for Skip; B allows a
silent transition to B, thus removing the sequence.

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

−→ (c2 | s2 |= A2; B)

c

(c | s |= Skip; A)
ǫ

−→ (c | s |= A)

For an internal choice A1⊓A2, silent transitions are available to either A1 or A2 (in
a configuration with the same constraint and state assignment).

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A1)

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A2)

The treatment of parallelism is more subtle. We introduce an extra form of action
par s | x • A that records the local state s of the parallel action A, which has
write control over the variables in x . The first transition rule for a parallelism
defines a silent transition that rewrites it in terms of this new construct.

The rule below allows evolutions of the first parallel action A1 that are either
silent or do not involve a channel in the synchronisation set to be reflected in
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the parallelism. A similar omitted rule considers independent evolutions of A2.

(c | s1 |= A1)
l

−→ (c3 | s3 |= A3) l = ǫ ∨ chan l 6∈ cs




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








l

−→





c3 | s
|=


(par s3 | x1 • A3)

JcsK
(par s2 | x2 • A2)









The next rule is for when the parallel actions can evolve by synchronising. In
particular, A1 can carry out an input d?w1, and A2 an output d!w2, where d is a
channel in the synchronisation set, and the values communicated are equal. The
transition rule establishes that, in this case, the parallelism as a whole actually
performs an output. The new constraint records the restriction that w1 = w2.

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








d!w2−→





c3 ∧ c4 ∧ w1 = w2 | s
|=


(par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)









Similar rules apply when A1 can output and A2 input, or when both A1 and A2
can output. When they can both input, the parallelism also performs an input.
We refer to the Appendix A for an account of all transition rules for parallelism.

Perhaps the most interesting rule is the one that applies when both parallel
actions have terminated. In this case, the parallelism terminates.

c




c | s
|=


(par s1 | x1 • Skip)

JcsK
(par s2 | x2 • Skip)








ǫ

−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

The state after the parallelism is defined by composing the local states of the par-
allel action. We keep from the local state s1 of the first action only the changes to
the variables in its name set x1. This is achieved by hiding (quantifying) the final
value of the variables in the complement set x2. The same applies for the changes
in s2. The conjunction of the quantifications defines the new state. We observe
that, alternatively, we can define the new state as s1; end x2 ∧ s2; end x1.
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Rules for external choice require similar considerations. Actions in an external
choice can evolve independently, with local access to all variables, until an event
decides the choice, and consequently, makes the local changes global.

For a hiding A1 \ cs, the rules allow evolution of A1 to lead to evolution of
the hiding itself. In the rule below, evolution does not involve a hidden channel,
so the label for the hiding transition is that for the A1 transition.

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2) chan l 6∈ cs

(c1 | s1 |= A1 \ cs)
l

−→ (c2 | s2 |= A2 \ cs)

If, on the other hand, A1 can communicate on a hidden channel, the correspond-
ing evolution of the hiding is silent. This is defined by Rule (20) in Appendix A.
Finally, Rule (21) specifies that if A1 terminates, so does the hiding.

Example 1. We consider the action defined below, in the context of a process
that has a state with components x and y, of type Z, for instance. Channels inp
and out also of type Z are in scope and used in E .

E =̂ x := 2; (y > x N out !(y − x )→ Skip ⊓ inp?z → Stop); x := y

As suggested by the transition rule for processes, we consider the transitions
from a state characterised by (w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1). We can justify
the following transitions using the Circus operational semantics described above.
The rule numbers mentioned refer to the list in Appendix A.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

−→ [Rules (2) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x N out!(y− x)→ Skip ⊓ inp?z→ Stop); x := y




−→ [Rule (10)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip⊓ inp?z→ Stop); x := y




At this point two rules for internal choice apply, corresponding to the two choices
available. We pursue the first below, and the second afterwards.

−→ [Rules (11) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y



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−→ [Rules (12) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y




out!w3−→ [Rules (4) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip; x := y




−→ [Rule (10)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y




−→ [Rule (2)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip




Considering the second option of the internal choice, we can proceed as follows.

−→ [Rules (11) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y




inp?w3
−→ [Rules (5) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
(let z • Stop); x := y




From here, we cannot proceed, as there are no transition rules for Stop.
All transitions above are valid when the associated constraints are satisfied.

2

Example 2. We consider the action defined below, in the context of a process
that has a state with a component x of type Z. Channels inpA, inpB , int , and
out , also of type Z, are in scope and used in PA.

PA =̂


 x := 2;




(inpA?y → int !y → out !(y − x )→ Skip)
J{| int |}K

(inpB?z1 → int?z2 → z1 > z2 N out !(z1 − x )→ Skip)







Strictly speaking, we would need to define the sets of names of variables that
can be updated by each of the parallel actions. In this simple example, however,
they update no variables, so we omit these sets.
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We consider below the transitions from the state (w0 ∈ Z | x := w0). We can
justify the following transitions using the Circus operational semantics.

(w0 ∈ Z | x := w0 |= PA)

−→ [Rules (2) and (9)]



w0 ∈ Z ∧ w1 = 2 | x := w1
|=

Skip;




(inpA?y→ int!y→ out!(y− x)→ Skip)
J{| int |}K

(inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip)







−→ [Rule (10)]



w0 ∈ Z ∧ w1 = 2 | x := w1
|=


(inpA?y→ int!y→ out!(y− x)→ Skip)
J{| int |}K

(inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip)







−→ [Rule (13)]



w0 ∈ Z ∧ w1 = 2 | x := w1
|=

par x := w1 • inpA?y→ int!y→ out!(y− x)→ Skip

J{| int |}K
par x := w1 • inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip







Now, there are two rules that are applicable (Rules (15) and (16)), reflecting the
fact that either of the parallel actions can evolve independently. So, we can have
the following sequence of transitions if the left-hand action evolves first.

inpA?w2
−→ [Rules (5) and (15)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z | x := w1
|=

par x := w1; vary := w2 • (let y • int!y→ out!(y− x)→ Skip)

J{| int |}K
par x := w1 • inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip







inpB?w3
−→ [Rules (5) and (16)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z | x := w1
|=


par x := w1; vary := w2 • (let y • int!y→ out!(y− x)→ Skip)
J{| int |}K(
par x := w1; var z1 := w3 •
let z1 • int?z2 → z1 > z2 N out!(z1 − x)→ Skip

)







If the right-hand action evolves first, we have the following transitions. We choose
the names of the symbolic variables carefully, so that the same communicated
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values are represented by variables of the same name. In our use of the opera-
tional semantics to define traces, initials, acceptances, and tests [6], this careful
choice is guided and fixed by an alphabet of symbolic variables.

inpB?w3
−→ [Rules (5) and (16)]



w0 ∈ Z ∧ w1 = 2 ∧ w3 ∈ Z | x := w1
|=


par x := w1 • inpA?y→ int!y→ out!(y− x)→ Skip

J{| int |}K(
par x := w1; var z1 := w3 •
let z1 • int?z2 → z1 > z2 N out!(z1 − x)→ Skip

)







inpA?w2
−→ [Rules (5) and (15)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z | x := w1
|=


par x := w1; vary := w2 • (let y • int!y→ out!(y− x)→ Skip)
J{| int |}K(
par x := w1; var z1 := w3 •
let z1 • int?z2 → z1 > z2 N out!(z1 − x)→ Skip

)







The configurations reached in both options are the same. (If we did not choose
the names of the symbolic variables appropriately, there would be syntactic
differences in the text of the constraint and state assignment, arising (just) from
the differentiated use of fresh names. For the sake of simplicity, we are choosing
the names in an adequate way as explained before. With the support of simple
pattern matching facilities, a tool can identify the commonality in any case.)

The next transition rule that applies is that for synchronisation of parallel
actions, when we have a matching input and output.

int!w5−→ [Rules (4), (7), (5), and (17)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧ w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 | x := w1
|=


par x := w1; vary := w2 • (let y • out!(y− x)→ Skip)
J{| int |}K(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 N out!(z1 − x)→ Skip

)







We now have two choices again corresponding to the independent evolutions of
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the parallel actions. If the left-hand action evolves first, we have the following.

out!w6−→ [Rules (4), (7), and (15)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1


 | x := w1

|=


par x := w1; vary := w2 • (let y • Skip)
J{| int |}K(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 N out!(z1 − x)→ Skip

)







And again we have a choice of the silent evolution of the left-hand action, or the
evolution of the second action. Continuing with the evolution of the left-hand
action, we proceed with the following sequence of transitions.

−→ [Rules (8) and (15)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1


 | x := w1

|=


par x := w1; vary := w2; end y • Skip

J{| int |}K(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • z1 > z2 N out!(z1 − x)→ Skip

)







−→ [Rules (12), (7) and (16)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5


 | x := w1

|=


par x := w1; vary := w2; end y • Skip

J{| int |}K(
par x := w1; var z1, z2 := w3, w5 •
let z1, z2 • out!(z1 − x)→ Skip

)







out.w7−→ [Rules (4), (7) and (16)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1


 | x := w1

|=

par x := w1; vary := w2; end y • Skip

J{| int |}K
par x := w1; varz1, z2 := w3, w5 • (let z1, z2 • Skip)






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−→ [Rules (8) and (16)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1


 | x := w1

|=

par x := w1; vary := w2; end y • Skip

J{| int |}K
par x := w1; varz1, z2 := w3, w5; end z1, z2 • Skip







−→ [Rule (14)]





w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w4 = w5 ∧
w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1


 | x := w1

|=
Skip




Various interleavings of the evolution of each of the parallel actions are possible.
The above is just an example. A second option, for instance, carries out all
the evolutions of the right-hand side action to Skip before evolving the left-
hand action. In this case, the order of communication of y − x and z1 − x on
out changes. The end configuration, with a careful choice of the names of the
symbolic variables as illustrated before, is the same in all cases. 2

In the next section, we explain how the operational semantics is used to define
tests based on Circus models of a system.

2.3 Testing in Circus

In previous work, we have instantiated Gaudel’s long-standing testing theory to
Circus [15]. The conformance relation we have considered is process refinement.
This is the UTP notion of refinement applied to processes, that is, to their main
actions, where the state components are taken as local variables.

As already said, we take the view that, in specifications, divergences are
mistakes. In programs, they are observed as deadlocks. We, therefore, consider a
theory for divergence-free models and systems under test (SUT ). In this case, the
refinement relation of Circus can be characterised by the conjunction of a traces
refinement relation, and a conf relation that requires reduction of deadlock. This
is proved in [7], where both relations are defined in the UTP Circus theory.

Accordingly, we have defined separate exhaustive test sets for traces refine-
ment and conf . We have taken advantage of the symbolic nature of the Circus

operational semantics, and defined the tests symbolically. These definitions spec-
ify how concrete tests can be obtained by a process of instantiation.

A test for traces refinement is constructed by considering a trace of the
Circus model and one of the events that cannot be used to extend that trace to
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obtain a new trace of the Circus model [5]. Such events are called the forbidden
continuations of the trace. Traces and forbidden continuations are characterised
symbolically. The exhaustive test set includes all the tests formed by considering
all the traces and all their forbidden continuations.

For the process PA in Example 2, we have traces of communications over
inpA, inpB , and int . Below, we present a symbolic trace that specifies some of
them; it has an associated constraint over the symbolic variables used in the
specification of the trace. We call these pairs constrained symbolic traces.

(〈 inpA.w2, inpB.w3, int.w5〉, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2)

Roughly speaking, the constrained symbolic trace can be obtained by evaluating
the operational semantics, collecting the labels together, and keeping the con-
straint over the symbolic variables used in the labels. The ? and ! decorations
that determine whether the communications are inputs or outputs are ignored.

There is a forbidden continuation of this trace for each of the channels in
scope. The only possible continuations involve communications over out , but
not all of them are allowed. For example, the following is the specification of the
forbidden continuations involving inpA; it is a constrained symbolic event.

(inpA.w6, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2)

It records the constraint of the trace, and imposes no restriction on the value
w6 communicated via inpA, since no value is allowed. The specification for the
forbidden continuations involving out , on the other hand, is as follows.

(out.w6, w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 ∧ w6 6= w2 − 2 ∧ w6 6= w3 − 2)

The symbolic tests corresponding to the above trace and the forbidden contin-
uation above (involving out) is as follows.

inc → inpA?w2 : w2 ∈ Z→
inc → inpB?w3 : w2 ∈ Z ∧ w3 ∈ Z→
inc → int?w5 : w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 → pass→
out?w6 : w2 ∈ Z ∧ w3 ∈ Z ∧ w5 = w2 ∧ w6 6= w2 − 2 ∧ w6 6= w3− 2→
fail → Stop

We use extra special events inc, pass and fail to indicate a verdict. In the
execution of a testing experiment, the test is run in parallel with the SUT , with
all the model events hidden, so that the interaction between the test and the SUT
cannot be affected by the environment. In our example, the communications
over inpA, inpB , and int are hidden. The last special event observed in a testing
experiment provides the verdict. Due the possibility of nondeterminism, a trace
of the model is not necessarily available in the SUT . The inc event indicates an
inconclusive verdict: the SUT has not performed the proposed trace. If it does
perform the trace, we have a pass event, but if the SUT proceeds to engage in
the forbidden communication, then we have a fail .
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The last event is that observed before the testing experiment leads to a
deadlock. As already hinted, we do assume that we can observe a deadlock. In
practice, this requires the definition of a timeout.

A possible concrete test satisfying the test specification above is as follows.

inc → inpA.0→ inc → inpB .1→ inc → int .0→ pass → out .2→ fail → Stop

There are, of course, infinitely many other choices, as there may be infinitely
many test specifications, in the case, for example, of nonterminating processes.

In the tests for conf , we use the traces and acceptances of a process. In the
exhaustive test set for conf , we have all tests formed by considering all traces of
the model, and all the acceptance sets after each of them.

In a conf test we check that, after the trace, the SUT does not deadlock if it
is offered all the events of an acceptance set. Acceptance sets, like refusals, are
more interesting for nondeterministic processes. So, we consider the action E in
Example 1. After the empty trace (〈 〉, True), the specification of the minimal
sets of acceptances is the following set of constrained symbolic events. They
record whether the communications are inputs or outputs. As explained below,
this is important in the creation of the concrete acceptance sets and conf tests.

{(out!w3, w3 > 0), (inp?w3, w3 ∈ Z)}

Roughly speaking, this is obtained by picking one of the continuations from each
of the stable states that can be reached via the empty trace. Stable states are
those from which there is no silent transition available. In our example, the stable
states are those from which just a transition with label out!w3 or label inp?w3
is available. These labels define the continuations.

The symbolic test for conf defined by the empty trace and the constrained
symbolic acceptance set above is as follows.

fail → (out !w3 : w3 > 0→ pass → Stop @ inp?w3 : w3 ∈ Z→ pass → Stop)

Since the trace is empty, there is no need for inc events. Before offering the SUT
all the events of the acceptance set, we have a fail . The SUT cannot deadlock
when all events of an acceptance are available, so if it accepts any of them, then
we have a pass . Otherwise, the fail verdict stands.

In instantiating the above test, we can obtain the concrete test below.

fail → (out?w3 : w3 > 0→ pass → Stop @ inp.0→ pass → Stop)

The output in the model becomes an input in the test, since any output produced
by the SUT is acceptable as long as it satisfies the associated constraint. For
the input, a concrete test chooses a particular value satisfying the constraint.

The constraints in the symbolic tests for both traces refinement and conf

define the constraint-satisfaction problems that need to be solved to obtain con-
crete tests. They provide a concise account of the state operations and their
properties. Selection of concrete tests can use criteria based on coverage of the
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symbolic transition system, for instance. In addition, we can use the constraints
to apply standard techniques based on uniformity subdomains. A very simple
approach, for instance, considers, to start with, just one concrete test for each
symbolic test (so that the constraints are themselves taken as definitions of uni-
formity subdomains: sets of tests that provide the same verdict).

What the symbolic tests do not provide is support for criteria based on the
structure of the models. For example, in the tests above, we have no record of
the way in which the variables x , y, z and so on are used. For larger examples,
uses of data operations can also be of interest. For instance, the symbolic tests
for the ResourceManager presented in Section 2.1 do not keep a record of the
use of the operations Cache, Insert , and so on. It is to address this issue that
we define a new transition system for Circus in the next section.

3 Specification-oriented transition system

The main distinguishing feature of the new transition system is its labels. They
record not only events, like in the operational semantics, but also guards and
state changes. Additionally, they are expressed in terms of the expressions of the
Circus model, rather than symbolic variables. For example, for the action E in
Example 1, we have transitions with labels x := 2, y > z, and out!z.

Furthermore, the specification-oriented system has no silent transitions; they
correspond to evolutions that are not guarded, and do not entail any communi-
cation or state change. These transitions do not capture observable behaviour,
and so are not interesting from a testing point of view.

We first discuss the definition of the new transition system for processes (Sec-
tion 3.1). It is specified in terms of a transition relation for actions (Section 3.4),
which is itself defined in terms of two other relations (Sections 3.2 and 3.3).

3.1 Processes

Like in the operational semantics, we have a transition relation =⇒ between
texts of process. It is defined in terms of the corresponding relation for actions
by the transition rule below. The labels are triples including a guard, an event,
and an action. As mentioned above, there are no silent transitions.

We have a single transition rule, which allows us to lift transitions of the
main action of a process in its local state to the process itself.

(state(P1) |= maction(P1))
l

=⇒ (state(P2) |= maction(P2))

P1
l

=⇒ P2

(1)

The local state of a process is characterised by the syntactic function state (P). It
is defined below for basic processes: those originally in the Circus notation, and
the extended form of process with a loc clause used in the operational semantics.

state(begin state [x : T] • A end) = (w0 ∈ T | x := w0)

state(begin state [x : T] loc (c | s) • A end) = (c | s)

where w0 is a fresh symbolic variable. As mentioned in Section 2.2, there is no
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need to consider the composed processes, which are defined in terms of basic
processes. Another syntactic function maction extracts the main action of a
basic process. Its simple definition is omitted.

Unlike in the operational semantics, we do not have a rule to introduce the
extended form of basic process as a first step of the evaluation. That is a silent
transition, which we do not keep in the specification-oriented system.

For actions, a transition (c1 | s1 |= A1)
(g,e,A)
=⇒ (c2 | s2 |= A2) establishes that

in the state characterised by (c1 | s1), if the guard g holds, then in the execution
of A1 the event e takes place, and afterwards A is executed. The new state is
then characterised by (c2 | s2) and the remaining action to execute is A2. In the
label, if the guard is True, we can omit it, and write just (e,A). Similarly, we
omit the event if its value is ǫ, and the action, if omitted, is Skip. We do not
have silent transitions, here defined as transitions with label (True, ǫ, Skip). So,
at least one of the components of a label has to be given explicitly. If it has only
one component given explicitly, we do not use the tuple notation.

The language used to write guards, events, and actions is Circus [23]. For
actions, however, we include the extensions necessary to express the operational
semantics, add the UTP constructs for variable declaration (var x : T ) and un-
declaration (end x ), and two new constructs for parallelism and external choice.

The definition of (c1 | s1 |= A1)
(g,e,A)
=⇒ (c2 | s2 |= A2) uses a succession of other

transition relations that we define in the next sections.

3.2 Specification labels

The first relation (c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2) associates configurations

that are already related by a transition of the operational semantics. It, however,
records more information in the labels, as explained above, and formalised below
by the transition rules that define this new relation.

Basic actions There are three rules for basic actions presented below: one for
designs, one for schemas, and one for assignment. They are basically the same
as the corresponding rules of the operational semantics (see Appendix A). The
difference is that we record the executed action (state change) in the label.

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p⊢ Q)
p⊢ Q
=⇒L (c ∧ (s; Q [w0/v

′]) | s; v := w0 |= Skip)
v
′ = outαs (2)

c ∧ (s; preOp)

(c | s |= Op)
Op
=⇒ (c ∧ (s; Op [w0/v

′]) | s; v := w0 |= Skip)
v
′ = outαs (3)
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c

(c | s |= v := e)
v:=e
=⇒L (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(4)

What we do not have are rules corresponding to those in the operational se-
mantics that cover the situation where the precondition of a design or schema
is false, and the action diverges. These are not useful in our work on testing,
where, as previously explained, we assume the absence of divergence.

Example 3. For components of our example action E introduced in Example 1,
we have the two transitions below. The numbers refer to the transition rules of
the new relation presented above, rather than those of the operational semantics.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 2)

x:=2
=⇒L [Rule (4)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1 |= Skip)


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y




x:=y
=⇒L [Rule (4)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip




2

We do not use symbolic variables in labels. We still, however, keep the charac-
terisation of the state in terms of symbolic variables. This allows the combined
use of the operational semantics and the specification-oriented transition sys-
tem. This is useful both in the definition of the new transition system, and in
the testing techniques that we plan to explore, since as explained in Section 2.3,
Circus tests are expressed in terms of the symbolic variables.

Guards and prefixings As previously mentioned, guards are also recorded in
labels. We present below a rule similar to Rule (12) of the operational semantics,
but which records the guard in the label.

c ∧ (s; g)

(c | s |= g N A)
g

=⇒L (c ∧ (s; g) | s |= A)
(5)

There is no rule here and in the operational semantics for when the guard does
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not hold. This is a deadlock, represented by the absence of available transitions.

Example 4.



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
y > x N out!(y− x)→ Skip




y>x
=⇒L [Rule (5)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
out!(y− x)→ Skip




2

As opposed to the transitions in the operational semantics, here the labels for
the transitions that apply to output prefixings record the expressions e whose
values are output (rather than symbolic variables representing those values).

c

(c | s |= d!e→ A)
d!e

=⇒L (c ∧ (s; w0 = e) | s |= A)
(6)

As discussed before, in the labels of =⇒L, there is no use of symbolic variables.
These labels record the text of the specification, rather than events with eval-
uated values (represented by symbolic variables). In this way, they record, for
instance, the specification variables used in the communication d!e.

Example 5.



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
out!(y− x)→ Skip




out.(y−x)
=⇒L [Rule (6)]



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip




2

In the case of an input, the label records the input variable.

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?x
=⇒ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(7)

Just like in CSP, the input implicitly declares the input variable x.
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Example 6.



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
inp?z→ Stop




inp?z
=⇒L [Rules (5) and (9)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
let z • Stop




2

Variables To record a variable declaration in a label, we use the UTP variable
declaration construct var x . It is not available in Circus, originally, but can be
defined as ∃ x • Skip in the UTP theory for Circus.

c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A)
(var x:T)
=⇒L (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(8)

Like in the operational semantics, we assume that variable names are not reused.
When the action in the scope of a variable declaration finishes, the end of the

scope is also recorded. For that we use the UTP undeclaration construct end x .

c

(c | s |= let x • Skip)
(end x)
=⇒L (c | s; end x |= Skip)

(9)

Action operators There are standard rules that reflect the fact that evolution of
a component action leads to the evolution of the composed action that uses it.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l

=⇒L (c2 | s2 |= let x • A2)
(10)

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

=⇒L (c2 | s2 |= A2; B)
(11)

For the silent transitions of the operational semantics that are involved in the
evolution of a composed action, we have no corresponding transition rule. For
instance, we have no specific rule for an action Skip; A or an action A1 ⊓ A2. In
the following section, we give a transition relation that handles these actions.
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Example 7. We consider again the action E of Example 1, and present below
transitions that are justified by the rules for the specification-oriented relation.
We observe that, in many cases, no such rule applies, and we indicate again the
transitions of the operational semantics that are possible.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

x:=2
=⇒L [Rules (4) and (11)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x N out!(y− x)→ Skip ⊓ inp?z→ Stop); x := y




−→


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip⊓ inp?z→ Stop); x := y




As before, we consider each of the options of the internal choice in turn.

−→


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y




y>x
=⇒L [Rules (5) and (11)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y




out!(y−x)
=⇒L [Rules (6) and (11)]



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip; x := y




−→


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y




x:=y
=⇒L [Rule (2)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip



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For the second option of the internal choice, we proceed as follows.

−→


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y




inp?z
=⇒L [Rules (7) and (11)]


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
(let z • Stop); x := y




From here, we cannot proceed with either kind of transition. 2

Parallelism and external choice For these, the use of global variables raises an
important issue. As already explained, parallel actions have access to the values
of the global variables before the start of the parallelism, and can change their
values locally. The name partitions define the updates that become visible after
the parallelism finishes. This raises an issue concerning the interpretation of
labels of transitions that reflect the evolution of parallel actions.

Example 8. We consider the following action involving an interleaving. (In both
the operational and denotational semantics, interleaving is treated as a paral-
lelism with an empty set of synchronisation channels.)

PA =̂ x := 2; ((x := 3; out !x → Skip) ||[ {x} | { } ]|| (x := 4; out !x → Skip))

A naive approach to recording the evolution of the parallelism could lead to a
sequence of labels like (x := 2), (x := 3), (x := 4), out!x. A perhaps reasonable
interpretation of this path of execution would then be that the value 4 is output
via out . This is, however, not necessarily the case, since, if the output comes
from the first parallel action, then the value output is 3, and after two outputs,
the new value of x is 3, in spite of the intermediate x := 4. The sequence of
labels is not an accurate description of a path of execution of PA. 2

Example 9. A similar situation arises with the external choice below.

ECA =̂ x := 2; ((x := 3; outA!x → Skip) @ (outB !x → Skip))

A sequence of labels (x := 2), (x := 3); outB!x would be misleading, because the
assignment x := 3 is discarded once the choice for the other action is taken. 2

In both cases, the difficulty is related to the fact that labels expose expressions
that occur in the local scope of alternative paths of execution. In the operational
semantics, this has been addressed by recording in the symbolic variables the
evaluated values of the expressions, and using the symbolic variables, rather
than the expressions themselves, to write the labels. Here, to record information
about the structure of the specification, we need to keep the expressions.
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What we need is to record is the use of global variables as local variables in
parallel actions and external choices. For PA in Example 8, for instance, we need
local versions xl and xr of x for the left-hand and the right-hand parallel actions.
They are declared at the start of the parallelism, and the parallel actions use the
local instead of the global variables. When the parallelism terminates, the global
variables are updated in accordance with the name sets, and the local variables
undeclared. A possible path for the action PA, for instance, is as follows.

(x := 2), (varxl, xr := x, x),
(xl = 3), (xr := 4), (out!xl), (out!xr),
(x := xl; end xl, xr)

A related problem arises from the use of local variables in parallel paths of
execution. This is illustrated and explained in the example below.

Example 10. We consider the interleaving and external choice below.

PALV =̂ x := 2; (int?z → out !z → Skip) 9 (out !x → Skip)
ECALV =̂ x := 2; ((var z • x := z ; outA→ Skip) @ (outB → Skip))

In the case of PALV , the labels int?z and out!z refer to a variable z that is not
in the scope of (the state of) PALV , but in the local state of its first parallel
action. The same holds for the labels var z and x := z in the case of ECALV ,
which correspond to state changes that are local to the first action in the choice,
and that are discarded if an interaction on outB occurs. 2

In the operational semantics, this is again addressed by recording the local state
of parallel actions and of branches of an external choice. The local state is used to
evaluate any predicates or expressions when defining the constraint on symbolic
variables. Since only the symbolic variables are used in labels, their interpretation
is clear. Once again, however, here we need to keep the expressions.

For that, we in fact consider a single global scope declaring all variables.
The structure of the specification itself, and the fact that names are not reused,
enforces the appropriate use of the variables. In the case, of PALV , for instance,
we have the following possible sequence of labels (x := 2), (varxl, xr := x, x),
int?z, out!xr, out!z, (end z), (x := xr; endxl, xr). In this case, the scope of z
is declared inside that of the local versions xl and xr of x.

In summary, we provide an alternative view of the parallelism. It no longer
creates two local states as in the operational semantics. Instead, the parallelism
gives rise to two local copies of the global variables, which coexist, and at the end
of the parallelism are used to update the global variables. This is in contrast with
the parallel by merge in the UTP, where the the parallel actions work on local
copies of the global state, whose variables are undeclared, and the local states
are reconciled when needed. This is the view adopted in the Circus denotational
and operational semantics. Here, we keep an extended global state containing
the original (global) variables and their local copies.

To provide a transition system with these characteristics, we use a new con-
struct spar v | v1 | v2 | x := x1 • A, which is used to represent a parallel action
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A in a state containing the original global variables v , copies v1 of these variables
that are only used by A, and copies v2 of these variables that are not used by A.
In addition, A has write control over the global variables x , which correspond to
the variables x1. In out example action PALV , for instance, for the first action
v is x , v1 is xl , v2 is xr , and if we assume that this is the action that has write
control over x , then x is itself the programming variable x , and x1 is xl .

The transition rule that introduces the use of this new construct is as follows.
The label in this case records the declaration of the new variables.

c

(c | s |= A1 J x1 | cs | x2 K A2)

var vl,vr:=v,v
=⇒L





c | s; var vl, vr := v, v
|=


(spar v | vl | vr | x1 := x1l • A1[vl/v])

JcsK
(spar v | vr | vl | x2 := x2r • A2[vr/v])









v ′ = outαs
v = x1, x2
fresh vl , vr

(12)

As opposed to the transitions for parallelism in the operational semantics, the
transitions here lead to change of state before the termination of the parallelism.
As defined above, the state is first changed by a declaration of fresh copies vl
and vr of the global variables v. The parallel action A1 is transformed to record
that the original global variables are v, that it uses vl, but does not use vr.
There is also a record that the variables x1 in its name set take the value of the
variables x1l upon termination of the parallelism. Finally, the variables v are
renamed to vl in A1. The other action A2 is transformed in a similar way.

The renaming A[y/x] substitutes y for x in the action A covering also deco-
rated input, output, and dashed variables, to cater for the uses of x in schemas
and specification statements. For instance, (x : [x > 0, x′ = x − 1])[y/x] is
y : [y > 0, y′ = y− 1] and [ ∆S; x! : Z • x! = 3][y/x] is [ ∆S; y! : Z • y! = 3].

Example 11. We consider again the action PA of Example 2. We show the =⇒L

transitions, and as before in Example 7 repeat the transitions of the operational
semantics when no =⇒L transition is possible. We define that the first parallel
action has control over x , even though neither action actually updates x .

(w0 ∈ Z | x := w0 |= PA)

x:=2
=⇒ [Rules (4) and (11)]



w0 ∈ Z ∧ w1 = 2 | x := w1
|=

Skip;




(inpA?y→ int!y→ out!(y− x)→ Skip)
J{x} | {| int |} | {}K

(inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip)






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−→



w0 ∈ Z ∧ w1 = 2 | x := w1
|=


(inpA?y→ int!y→ out!(y− x)→ Skip)
J{x} | {| int |} | {}K

(inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip)







var xl,xr:=x,x
=⇒ [Rule 12]




w0 ∈ Z ∧ w1 = 2 | x := w1; var xl, xr := x, x
|=


(spar x | xl | xr | x := xl • inpA?y→ int!y→ out!(y− xl)→ Skip)
J{| int |}K(

spar x | xr | xl | Skip •
inpB?z1 → int?z2 → z1 > z2 N out!(z1 − xr)→ Skip

)







The second parallel action has write control over no variables, so we write the
assignment to the empty list of variables as Skip. 2

In this work, from the semantics of the new spar construct, we only need the
transition rules that allow silent independent evolutions of the parallel actions.
The rule that considers evolution of the first parallel action is presented below.

(c | s; end v, y |= A1)
ǫ

−→ (c3 | s3 |= A3)




c | s
|=


(spar v | x | y | x1 := z1 • A1)

JcsK
(spar v | y | x | x2 := z2 • A2)








ǫ

−→





c | s3 ∧ s; end x
|=


(spar v | x | y | x1 := z1 • A3)

JcsK
(spar v | y | x | x2 := z2 • A2)









(13)

The action A1 is evaluated in the state s after the original global variables v and
the local variables y of A2 are undeclared. The updated state of the parallelism is
characterised by the conjunction of the state s3 reached by A1, with the original
state s, after the local variables x of A1 are eliminated. It is important to observe
that the input variables of s3 and s; endx are the same, but their sets of output
variables are disjoint, so that conjunction captures the effect of the parallelism.
This is akin to the construct for parallelism of designs considered in [18].

Going back to the specification-oriented transition system, independent evo-
lution of the left-hand parallel action A1 is covered by the following rule. A similar
rule caters for evolution of A2. Like in the operational semantics, the state for A1
is the global state s, with the global variables v and the local variables y of A2
undeclared. To compose the new state we conjoin the after state s3 of A1, with
the original state s followed by the undeclaration of y.
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Variables declared in the scope of A1, as flagged by the label l, are made
global, and so they need to be mentioned in the set of variables under the control
of A1 in both parallel actions. Similarly, if the scope of a variable is closed, then
it needs to be removed from the set of variables under the control of A1.

(c | s; end v, y |= A1)
l

=⇒L (c3 | s3 |= A3) chan l = ǫ ∨ chan l 6∈ cs

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))

l
=⇒L





c3 | s3 ∧ s; end x
|=


(spar v | x ↾ (end l), (var l) | y | x1 := z1 • A3)

JcsK
(spar v | y | x ↾ (end l), (var l) | x2 := z2 • A2)









(14)

The function end l gives the variables whose scope are closed in the label l.
For example, end(end x) = x. The function var l, on the other hand, gives the
variables declared in l. For example, var(var x) = x and var(d?x) = x. Both
end and var are syntactic functions that can be defined by induction on the
structure of the actions used in labels in the obvious way. The syntactic function
x ↾ y removes from the list of variables x the variables in the list y.

Example 12. Proceeding with the previous example, we have the following se-
quence of transitions if the left-hand action evolves first.

inpA?y
=⇒ [Rules (7) and (14)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z | x := w1; var xl, xr := x, x; vary := w2
|=


(spar x | xl, y | xr | x := xl • (let y • int!y→ out!(y− xl)→ Skip))
J{| int |}K(

spar x | xr | xl, y | Skip •
inpB?z1 → int?z2 → z1 > z2 N out!(z1 − xr)→ Skip

)







Above and in what follows, for conciseness, instead of the text actually generated
by the application of the transition rules to describe the new state, we give a
semantically equivalent, but simpler, description.

inpB?z1
=⇒ [Rule (7) and Rule similar to (14)]



w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z

| x := w1; var xl, xr := x, x; var y := w2; var z1 := w3
|=


(spar x | xl, y | xr, z1 | x := xl•(let y • int!y→ out!(y− xl)→ Skip))
J{| int |}K(

spar x | xr, z1 | xl, y | Skip •
(let z1 • int?z2 → z1 > z2 N out!(z1 − xr)→ Skip)

)







2
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The rule for synchronisation of an input d?a with an output d!e is as follows.

(c | s; end v, y |= A1)
(g1,d?a,LA1)
=⇒L (c3 | s3 |= A3)

(c | s; end v, x |= A2)
(g2,d!e,LA2)
=⇒L (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ ∃w0 • (s3; (w0 = x)) ⇔ (s4; (w0 = e))

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))

(g1∧g2,d!e,var a:=e; LA1; LA2)
=⇒L





c3 ∧ c4 ∧ ∃ w0 • (s3; (w0 = x)) ⇔ (s4; (w0 = e)) | s3 ∧ s4 ∧ s; end x, y
|=


(spar v | x ↾ (end LA1), a, (var LA1) | y ↾ (end LA2), (var LA2) | x1 := z1 • A3)

JcsK
(spar v | y ↾ (end LA2), (var LA2) | x ↾ (end LA1), a, (var LA1) | x2 := z1 • A4)









(15)

For the parallelism to progress, both guards in the labels have to be satisfied
jointly. As a result of the parallelism, we actually have an output d!e: this is
what is observed by the environment of the parallelism. In addition, the input
variable a is declared, and its value is initialized to that of e.

The constraint ∃w0 • s3; (w0 = x ) ⇔ s4; (w0 = e) requires that there is a
value w0 that is both the value of a in the after state s3 of A1, and the value of
e in the after state s4 of A2. In fact, the value of the expression could be taken
in the original state s but an output does not change the state.

The new state is the conjunction of the after states s3 and s4 of the parallel
actions, and the original state s where the local versions x and y of the original
global variables are all undeclared. This is necessary because neither s3 nor s4
includes the original global variables. On the other hand, in s; endx, y, these
are the only output variables in scope. So, the conjunction is between predicates
with the same input variables, but disjoint sets of output variables.

As for the previous transition rule, variables declared or undeclared, as stated
in the labels, are recorded in the appropriate sets of variables of the parallel
actions. These include the implicit declaration of the input variable a, and the
variables declared or undeclared in the actions LA1 and LA2 of the labels.

We omit the similar rules for synchronisation of an output and an input, two
inputs, or two outputs. For two inputs d?a and d?b, one of the input variables a
is implicitly declared by the input event, and the other b is declared explicitly,
and initialised to a. In the case of two outputs d!e and d!f, there are no variable
declarations. The output value is that of e, and the guard guarantees that e = f.
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Example 13. Proceeding with our example, we have the synchronisation.

(int!y,var z2:=y)
=⇒ [Rules (6), (10), (7), and similar to (15)]




w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧ w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5
| x := w1; var xl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=


(spar x | xl, y | xr, z1, z2 | x := xl • (let y • out!(y− xl)→ Skip))
J{| int |}K(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • z1 > z2 N out!(z1 − xr)→ Skip)

)







Again, the parallel actions can both evolve independently. We consider below
one order of evolution: the first action evolves first.

out!(y−xl)
=⇒ [Rules (6), (10), and (14)]




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1

)

| x := w1; var xl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=


(spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))
J{| int |}K(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • z1 > z2 N out!(z1 − xr)→ Skip)

)







z1>z2=⇒ [Rules (5), (10), and similar to (14)]



(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5

)

| x := w1; var xl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=


(spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))
J{| int |}K(

spar x | xr, z1, z2 | xl, y | Skip •
(let z1, z2 • out!(z1 − xr)→ Skip)

)







out!(z1−xr)
=⇒ [Rules (6), (10), and similar to (14)]




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

| x := w1; var xl, xr := x, x; var y, z1, z2 := w2, w3, w5
|=


(spar x | xl, y | xr, z1, z2 | x := xl • (let y • Skip))
J{| int |}K

(spar x | xr, z1, z2 | xl, y | Skip • (let z1, z2 • Skip))






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end y
=⇒ [Rules (10) and (14)]



(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

| x := w1; var xl, xr := x, x; var y, z1, z2 := w2, w3, w5; end y
|=


(spar x | xl | xr, z1, z2 | x := xl • Skip)
J{| int |}K

(spar x | xr, z1, z2 | xl | Skip • (let z1, z2 • Skip))







end z1,z2
=⇒ [Rules (10) and similar to (14)]




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

|

(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; end z1, z2

)

|=
(spar x | xl | xr | x := xl • Skip) J{| int |}K (spar x | xr | xl | Skip • Skip)




2

The rule that applies when both parallel actions terminate is as follows. The
label records the changes to the state.

c




c | s
|=


(spar v | x, z1 | y, z2 | x1 := z1 • Skip)

JcsK
(spar v | y, z2 | x, z1 | x2 := z2 • Skip)









x1,x2:=z1,z2; end x,z1,y,z2
=⇒L

(c | s; x1, x2 := z1, z2; end x, z1, y, z2 |= Skip)

(16)

In the final state of the parallelism, the local versions x and y of the global
variables are undeclared after they are used to update the global variables.

Example 14. We can now conclude our running example.

x:=xl; end xl,xr
=⇒ [Rule (16)]




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

|

(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; endz1, z2; x := xl; end xl, xr

)

|=
Skip




It is not difficult to prove that the final state of the parallelism is equivalent to
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x := w1; its alphabet includes only x (and x ′). 2

The rules for external choice are not given here.

Hiding There are two rules for hiding. The first allows evolution of the action to
which the hiding is applied to lead to evolution of the hiding. This occurs when
the evolution is not via a communication through a hidden channel.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2) chan l 6∈ cs

(c1 | s1 |= A1 \ cs)
l

=⇒L (c2 | s2 |= A2 \ cs)
(17)

The second rule is for when the communication is through a hidden channel.
In this case, the communication disappears. The evolution, therefore, is only
possible if the guard is not True and the action is not Skip. In this case, we do
not have the possibility of introducing a silent transition.

(c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2)

(g 6= True ∨ A 6= Skip) ∧ (chan e = ǫ ∨ chan e ∈ cs)

(c1 | s1 |= A1 \ cs)
(g,ǫ,A)
=⇒L (c2 | s2 |= A2 \ cs)

(18)

Transitions of the operational semantics that are truly silent in the sense of the
=⇒L relation, so that they do not entail any guards, communications, or state
changes, are considered in the next section.

3.3 Silent transitions

As already explained, the specification-oriented transition system has no silent
transitions. In the previous section, we have defined a transition relation =⇒L

which indeed has no silent transitions, but is not defined for some configurations
for which there is a transition in the operational semantics. For instance, in Ex-
ample 7, the second transition and a few others are transitions of the operational
semantics. There are no corresponding transitions for =⇒L.

We proceed with the definition of the specification-oriented transition system

by introducing a new transition relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2). It

associates a configuration (c1 | s1 |= A1) to a configuration (c2 | s2 |= A2) if, by
starting from (c1 | s1 |= A1), following a transition from =⇒L, and then as many

silent transitions
ǫ

−→ as possible, we reach (c2 | s2 |= A2).
By considering as many silent transitions as possible, we ensure that a config-

uration (c1 | s1 |= A1) is related only to those configurations (c2 | s2 |= A2) that
can be reached after as much internal progress as possible has been made. For
testing, extra transitions that represent partial internal progress are of no value.
They would give rise to useless tests, and are avoided here.

To define the new relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2), we consider

first the transitive closure −→ǫ∗ of the transition relation −→ of the operational
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semantics when restricted to silent transitions with no corresponding transition
in =⇒L. It is defined by the two transition rules in the sequel.

(c1 | s1 |= A1)
ǫ

−→ (c2 | s2 |= A2) (c1 | s1 |= A1) ;L (c2 | s2 |= A2)

(c1 | s1 |= A1) −→
ǫ∗ (c2 | s2 |= A2)

(19)

In the above rule, we write (c1 | s1 |= A1) ;L (c2 | s2 |= A2) as an abbrevia-

tion for ¬ ∃ l • (c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2). We require that there is
no specification-oriented transition from (c1 | s1 |= A1) to (c2 | s2 |= A2) because
many of the silent transitions of the operational semantics correspond to (non-
silent) transitions of the specification-oriented system. For instance, the tran-
sitions for assignment are silent in the operational semantics, but not in the
specification-oriented system. What we want is to ignore transitions that gen-
uinely provide no information is terms of guards, events, or action execution.
Examples are the transitions for internal choice (see Rules (11) in Appendix A).

The second transition rule allows the composition of silent transitions.

(c1 | s1 |= A1) −→
ǫ∗ (c2 | s2 |= A2)

(c2 | s2 |= A2)
ǫ

−→ (c3 | s3 |= A3) (c2 | s2 |= A2) ;L (c3 | s3 |= A3)

(c1 | s1 |= A1) −→
ǫ∗ (c3 | s3 |= A3)

(20)

We again check that the transitions composed are truly silent.

Example 15. In the context of our example action E , we have the following.



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x N out!(y− x)→ Skip ⊓ inp?z→ Stop); x := y




−→ǫ∗



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y




This corresponds to choosing the first action of the internal choice. For a choice
of the second action, we have the transition below.



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
Skip; (y > x N out!(y− x)→ Skip ⊓ inp?z→ Stop); x := y




−→ǫ∗



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y



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We also have the transition below.


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
Skip; x := y




−→ǫ∗



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y




This corresponds to a single silent transition of the operational semantics. 2

The new relation (c1 | s1 |= A1)
(g,e,A)
=⇒SR (c2 | s2 |= A2) is defined below.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2)
(c2 | s2 |= A2) −→

ǫ∗ (c3 | s3 |= A3) (c3 | s3 |= A3) 9
ǫ∗

(c1 | s1 |= A1)
l

=⇒SR (c3 | s3 |= A3)

(21)

We write (c1 | s1 |= A1) 9
ǫ∗ when (c1 | s1 |= A1) is a stuck configuration with

respect to −→ǫ∗, that is, when ¬ ∃ c2, s2, A2 • (c1 | s1 |= A1) −→
ǫ∗ (c2 | s2 |= A2).

Since the configurations of the specification-oriented transition system are the
same as those of the Circus operational semantics, we can combine their transition
relations in a simple way. This has already been indicated in Example 7, where
we consider the two transition relations for a single example.

It is possible that a =⇒L transition is followed by no −→ǫ∗ transitions. In
this case the =⇒L transition corresponds to a =⇒SR transition.

(c1 | s1 |= A1)
l

=⇒L (c2 | s2 |= A2) (c2 | s2 |= A2) 9
ǫ∗

(c1 | s1 |= A1)
l

=⇒SR (c2 | s2 |= A2)
(22)

Example 16. Following from Examples 7 and 15, we can use the rules above to
justify the following transitions for our example action E . Again, we present
separately the two paths arising from the internal choice.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

x:=2
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y




y>x
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 | x, y := w2, w1
|=
(out!(y− x)→ Skip); x := y




33



out!(y−x)
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 | x, y := w2, w1
|=
x := y




x:=y
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip




For the second option of the internal choice, we proceed as follows.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

x:=2
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y




inp?z
=⇒SR

w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
(let z • Stop); x := y




From here, we cannot proceed once again. 2

If the behaviour of an action as described by the operational semantics starts
with (truly) silent transitions, then =⇒SR cannot give a complete account of its
execution, because it does not consider leading silent transitions.

Example 17. We consider the transitions below.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 ⊓ x := 1; y := 1) ⊓ x := 1)

−→

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 0 ⊓ x := 1; y := 1)

−→

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 1; y := 1)

x:=1
=⇒L [Rules (11) and (4)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= Skip; y := 1)

−→

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)

y:=1
=⇒L [Rule (4)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)
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This justifies the following.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 ⊓ x := 1; y := 1) ⊓ x := 1)

−→

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 0 ⊓ x := 1; y := 1)

−→

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 1; y := 1)

x:=1
=⇒SR [Rules (21) and (19)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)

y:=1
=⇒SR [Rule (22)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)

We cannot, however, relate the initial configuration to any other configuration
using =⇒SR. 2

We define a new transition rule that allows initial silent transitions.

(c1 | s1 |= A1) −→
ǫ∗ (c2 | s2 |= A2) (c2 | s2 |= A2)

l
=⇒SR (c3 | s3 |= A3)

(c1 | s1 |= A1)
l

=⇒SR (c3 | s3 |= A3)
(23)

Example 18. Now, with Rule (23), we can proceed with Example 17 to infer the
following transitions.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= (x := 0 ⊓ x := 1; y := 1) ⊓ x := 1)

x:=1
=⇒SR [Rules (23),(21) and (19)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 | x, y := w2, w1 |= y := 1)

y:=1
=⇒SR [Rule (22)]

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 1 ∧ w3 = 1 | x, y := w2, w3 |= Skip)

Once the starting configuration is defined, we have a unique =⇒SR transition.

2

3.4 Composing labels

Transitions with labels without an event cannot be (easily) observed during the
execution of a system in a testing experiment. A well known solution for this
issue of observability is the use of characterising traces, which identify the current
state of an SUT . We, however, want to minimise the number of such transitions,
and therefore we compose transitions whenever possible.

The possibility of combination of transitions is characterised by the syntactic
function ⊕ that combines labels; it is defined below.

(g, e, A1)⊕ A2 = (g, e, A1; A2)

An action can lead to a change of state, so when there is an action (different
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from Skip) in a label, we cannot move forward any of the later guards or events.
Therefore, we can only compose (g, e, A1) with a label A2.

A guard potentially blocks an associated event, so if there is a guard (different
from True) and associated event in an label, we cannot move forward any later
guards. Additionally, we do not combine two labels that have events (different
from ǫ). Each transition should correspond to at most one observable event. So,
(g2, e, A) can only be composed with a previous label if it has only a guard g1.

g1 ⊕ (g2, e, A) = (g1 ∧ g2, e, A)

In conclusion, the domain of ⊕ includes exactly the pairs of labels where either
the second label contains only an action, or the first label contains only a guard.

To define a system whose transitions are maximal in terms of label compo-
sition as defined by ⊕, we first consider a transitive closure for =⇒SR based
on label composition. Afterwards, we define the definitive specification-oriented
relation =⇒ as that for which no further label compositions are possible.

We define closure of =⇒SR in the standard way. The first rule allows a single
=⇒SR transition to be included in the closure.

(c1 | s1 |= A1)
l

=⇒SR (c2 | s2 |= A2)

(c1 | s1 |= A1)
l

=⇒∗
SR (c2 | s2 |= A2)

(24)

The second rule allows proper composition when there are two consecutive tran-
sitions with labels that can be combined according to ⊕.

(c1 | s1 |= A1)
l1

=⇒∗
SR (c2 | s2 |= A2) (c2 | s2 |= A2)

l2=⇒SR (c3 | s3 |= A3)
(l1, l2) ∈ dom⊕

(c1 | s1 |= A1)
l1⊕l2

=⇒∗
SR (c3 | s3 |= A3)

(25)

Our last rule defines that a =⇒ transition exists when there is a corresponding
=⇒∗

SR
, and it is (right) maximal, in the sense that there is no further =⇒SR

transition from the target configuration.

(c1 | s1 |= A1)
l

=⇒∗
SR (c2 | s2 |= A2) (c2 | s2 |= A2) ;SR

(c1 | s1 |= A1)
l

=⇒ (c2 | s2 |= A2)
(26)

We use (c1 | s1 |= A1) ;SR as an abbreviation for

¬ ∃ c2, s2, A2, l • (c1 | s1 |= A1)
l

=⇒SR (c2 | s2 |= A2)

Example 19. Following from Example 16, we can use the rules above to justify
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the following transitions for our example action E . Again, we present separately
the two paths arising from the internal choice.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

x:=2
=⇒


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y




(y>x,out!(y−x),x:=y)
=⇒



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip




For the second option of the internal choice, we do not have opportunities for
composition.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= E)

x:=2
=⇒


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(inp?z→ Stop); x := y




inp?z
=⇒


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w3 ∈ Z | x, y := w2, w1; var z := w3
|=
(let z • Stop); x := y




From here, we cannot proceed once again. 2

All the transition relations above can be defined in the UTP Circus theory, so
that the soundness of the transitions rules that we have defined can be for-
mally justified. Before discussing soundness, however, we illustrate how the new
transition system can be useful in practical testing techniques.

4 Test-selection criteria based on the new transition

system: examples

We perceive two approaches for selection of finite test sets from a Circus specifi-
cation. The first defines subsets of the exhaustive test sets as defined in [6] (see
Section 2.3), and the second is guided by the text of the Circus specification. The
first one is directly based on the operational semantics of Circus. The second one
is the main motivation for the definition of the specification-oriented transition
system presented above. This is what we consider in the sequel.
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The selection approaches based on the structure of the tests in the exhaustive
test set does not take into account the structure of the specification and the
internal state changes that may occur during some unlabelled transitions of the
operational semantics. The symbolic exhaustive test sets cover by construction
the constrained symbolic traces of the specification. Introducing selection criteria
among the constrained symbolic traces to characterise a finite subset has the
merit of simplicity and of closeness to the underlying semantic model of Circus.
However, it is the coverage of this model that is considered, and the coverage of
the original specification is not taken into account.

For instance, coming back to action E of Example 1, we can note that there
is no mention of the variable x and of its definition in the constrained symbolic
traces. Thus, a selection criteria based on such traces cannot take into account
the coverage of, for example, variable definitions and their uses.

It is the same when an operation specified by a Z schema is used in the
specification: from Rule (3) of the operational semantics (see Appendix A), we
can see that the associated symbolic traces does not mention the operation,
and it is impossible to know which case has been covered or not by a symbolic
test. Since the labels of the specification-oriented transition system contain parts
of the text of the specification and record changes of state (see, for instance,
Rules (3) and (4) in Section 3.2), it becomes possible to select traces (of the
specification-oriented transition system, with these new labels) on the basis of
the structure of the specification. For illustration, we sketch how we can use the
new transition system to define data-flow-oriented test selection methods.

In the early nineties, some approaches have been proposed for generating test
cases from specifications written in languages including processes interactions
and data types, such as Full LOTOS, SDL, or more generally EFSM (Extended
Finite State Machines). Several of these works have considered data-flow-oriented
selection criteria [34, 30, 31, 27] like we do here.

Briefly, data-flow coverage criteria were originally developed for sequential
imperative languages, with the coverage of definition-use associations as moti-
vation [13]. In a data-flow graph, a definition-use association is a triple 〈d , u, v〉
where d is a node in which the variable v is defined, u is a node in which the
value of v is used, and there is a definition-clear path with respect to v from d to
u. The strongest data-flow criterion, all definition-use paths, requires that, for
each variable, every definition-clear path (with at most one iteration by loop)
is executed by a test. In order to reduce the number of paths required, weaker
strategies such as all-definitions and all-uses have been defined.

When using these criteria, is is assumed that the data-flow graph has unique
start and end nodes, and that there is no data-flow anomaly, that is, every path
from the start node to a use of v passes through a node with a definition of v .
Thus data-flow analysis is required both for checking the absence of anomalies
and constructing the set of definition-use associations. (Such analysis always pro-
vide an over-approximation of data-flow dependencies due to feasibility issues).

The transposition of these criteria to the specification-oriented transition
system of Circus requires a few adjustments. Since the relevant information is
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carried by the labels of the transitions, the definition-use associations are defined
as triples of two transitions and one variable. In the first transition label, the
variable is defined by an assignment, or an input, or its declaration, or a Z
operation where it is an output, or a specification statement in which it is in the
frame. In the second transition label, it is used in a guard, or in the right-hand
side of an assignment, or in an output, or in a Z operation where it is an input,
or in a specification statement where it is used without decoration (in the pre
or postcondition). The notion of trace is used instead of path.

Example 20. In the case of our example action E , we have a definition-use as-
sociation for x whose first component is the following transition.

(w0 ∈ Z ∧ w1 ∈ Z | x, y := w0, w1 |= x := 2)

x:=2
=⇒

(w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1 |= Skip)

Indeed, x is defined in the label of this transition by an assignment. The second
transition of the association is as follows.


w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 | x, y := w2, w1
|=
(y > x N out!(y− x)→ Skip); x := y




(y>x,out!(y−x),x:=y)
=⇒



w0 ∈ Z ∧ w1 ∈ Z ∧ w2 = 2 ∧ w1 > w2 ∧ w3 = w1 − w2 ∧ w4 = w2 | x, y := w4, w1
|=
Skip




The variable x is used (twice) in this second transition, and there is an empty
trace between the two transitions that is obviously definition clear with respect
to x . The third component of the association is just x itself. 2

Since the association in the above example is the only definition-use association
for x in the simple action E , it means that it is sufficient to cover its two
transitions to satisfy the criterion “all definition-use traces” for x . We note that
the second definition of x in this example, namely x := y, does not need to be
covered. It comes from the fact that it is not associated to any use. It is not a
problem: since it has no effect, it would be useless to test it.

Example 21. Among the definition-use associations of action PA in Example 2,
with respect to the local variable xl corresponding to the program variable x ,
there is one whose first transition is as follows (cf. Examples 11 and 14).



w0 ∈ Z ∧ w1 = 2 | x := w1
|=


(inpA?y→ int!y→ out!(y− x)→ Skip)
J{x} | {| int |} | {}K

(inpB?z1 → int?z2 → z1 > z2 N out!(z1 − x)→ Skip)






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var xl,xr:=x,x
=⇒




w0 ∈ Z ∧ w1 = 2 | x := w1; var xl, xr := x, x
|=


(spar x | xl | xr | x := xl • inpA?y→ int!y→ out!(y− xl)→ Skip)
J{| int |}K(

spar x | xr | xl | Skip •
inpB?z1 → int?z2 → z1 > z2 N out!(z1 − xr)→ Skip

)







The second transition is as follows.




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

|

(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; end z1, z2

)

|=
(spar x | xl | xr | x := xl • Skip) J{| int |}K (spar x | xr | xl | Skip • Skip)




x:=xl; end xl,xr
=⇒




(
w0 ∈ Z ∧ w1 = 2 ∧ w2 ∈ Z ∧ w3 ∈ Z ∧
w4 = w2 ∧ w5 ∈ Z ∧ w2 = w5 ∧ w6 = w2 − w1 ∧ w3 > w5 ∧ w7 = w3 − w1

)

|

(
x := w1; varxl, xr := x, x;
vary, z1, z2 := w2, w3, w5; end y; endz1, z2; x := xl; end xl, xr

)

|=
Skip




The third component is, of course, xl . 2

The definition-use association above forces, if the selection criterion used is “all
definition-use traces” for xl , the coverage all the interleavings of the parallel
actions. In the case where the weaker criterion“all definitions” is used, following
the pattern in [13], one interleaving only is required.

There are various conditions for applying data-flow testing methods to se-
quential programs that must be revisited for applying them to Circus. The ex-
istence of a unique end node can be relaxed using the observation in [26] that,
in a reactive program, reaching again a start node is analogous to reaching the
end node of a sequential program. Following variants of this principle, some al-
gorithms for symbolic analysis of control dependencies are given in [26, 19] and
used for data-flow analysis when there are several or no end nodes.

Data-flow analysis in presence of concurrency has been studied intensively.
Of special interest in the context of Circus is the work in [19] for IOSTS (Input-
Output Symbolic Transition Systems), where the main difference to Circus is that
the state is not hidden, and there are no shared variables between concurrent
processes. Another work of interest is the slicing algorithm for Promela in [21],
where both shared variables and communications are taken into account.
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5 Soundness

In the UTP, the transition rules of an operational semantics can be defined as
theorems of the theory that characterises the corresponding relational model.
For that, we define the transition relation in terms of the constructs of the
theory (and refinement). This establishes the soundness of the operational se-
mantics. It has been carried out for designs and CSP [18], and for Circus [36].

For the Circus operational semantics, it is defined that the transition relation
(c1 | s1 |= A1)

ǫ
−→ (c2 | s2 |= A2) holds if (a) there exists a valuation of the sym-

bolic variables used in c1 and c2 such that c1 and c2 hold, and (b) for every such
valuation, execution of A1 in the state s1 is refined by the execution of A2 in
s2 [36]. By requiring that c1 and c2 hold, we avoid configurations with unsatisfi-
able state specifications. Refinement is required, not equality, since a transition
reflects one, among the possibly many, available steps in the execution of A1.
As an example, we have the Rules 11 for internal choice in Appendix A: each
transition captures just one of the possible choices.

For a labelled transition (c1 | s1 |= A1)
d.w0−→ (c2 | s2 |= A2), it is required that

execution of A1 in s1 is refined by an external choice between d .w0 →A2 in the
state s2, and A1 itself in the state s1. This establishes that d .w0 →A2 (in s2) is
one of the possible behaviours of A1. The external choice captures the fact that
d .w0 may or may not be available, as the choice may be taken away by other
behaviours of A1. For example, if A1 may also terminate, make some internal
progress, or provide another external choice, these are all taken into account.

For the new specification-oriented transition system, we define the transition
relations in terms of the constructs of the original UTP Circus theory, and also
the −→ relation of the operational semantics. For example, in the new transition
system, we do not want to relate configurations that cannot be related by the
Circus operational semantics. As already explained, it is not the objective of the
new system to introduce transitions, but to remove and to annotate.

The definition for a transition (c1 | s1 |= A1)
(g,e,A)
=⇒L (c2 | s2 |= A2) requires

(a) g 6= True, or e 6= ǫ, or A 6= Skip.
(b) if e is a communication over a channel d, there is a symbolic variable w0 such

that (c1 | s1 |= A1)
d.w0−→ (c2 | s2 |= A2);

(c) if e is ǫ, then (c1 | s1 |= A1)
ǫ

−→ (c2 | s2 |= A2) holds;
(d) for all valuations of the symbolic variables that satisfy c1 and c2, the following

properties hold:
(d1) A1 in s1 is refined by the external choice between A1 in s1 itself, and

(g N e → A; A2) also in s1; and, finally
(d2) g N var var(e); A in s1 is refined by the state s2 guarded by g in the

state s1.

With (a), we guarantee that there are no silent transitions. The inequalities there
are all syntactic, and this trivially holds for all transitions in Section 3.2. With
(b) and (c), we check that, for all valuations that satisfy the constraints, there
is a corresponding transition of the operational semantics. The condition (d1)

41



is similar to that used in the definition of labelled transitions of the operational
semantics, which was explained above. The difference is that instead of consider-
ing the prefixing in the new state s2, we use the label to construct the new state
for A2. That s2 is indeed the appropriate next state is guaranteed by (d2), which
requires that guarding A with g and declaring any variable implicitly declared
by e is refined by s2, guarded by g, all in s1. If e is ǫ, then var(e) is ǫ itself. We
define that, in this case, the variable declaration is Skip, and so can be omitted.

In establishing the soundness of the transition rules, we also need to show
that s2 is a total assignment. In most cases, this is trivial. We leave a complete
account of the soundness of our transition rules for another paper.

6 Conclusions and future work

In this paper, we have presented a novel transition system for a state-rich process
algebra, Circus. Its existing operational semantics takes forwards the UTP ideas
for an operational semantics for CSP by using symbolic variables to capture
nondeterminism in the state. It is the basis of a testing theory for Circus. What
we now present is an alternative characterisation of the evolutions of the Circus

models that records information about the way in which data is defined and
used. It is what we call a specification-oriented transition system for Circus.

We have briefly discussed how this new transition system can be used to
specify selection criteria based on the use of data. Once the traces of the new
transition system are selected, they are mapped to traces of the operational
semantics, and in this way to tests for traces refinement and conf .

We have also sketched the soundness argument of the transition system. It
is based on the UTP theory for Circus. A detailed account is going to be the
subject of another paper.

In the new transition system, we still do not record in labels the internal and
external choices, or parallelisms. They are recorded, of course, in the actions of
the configurations. We, therefore, based solely on traces, cannot have coverage
criteria that requires, for instance, covering all actions in a parallelism. For that,
we will need to take into account the actions in the configurations themselves.
Internal choice is covered by the use of acceptance sets in tests for conf .

A first piece of future work is related to completeness. We need to prove that
we have the appropriate number of transitions to cater for all possible behaviours.
This can be achieved by taking the transition rules as the definition of the
transition relation, and recovering the denotational semantics using them. The
technique applied in the UTP requires us to use the transition relation to define
a semantic function that associates programs to relations of the UTP Circus

theory. If we can prove that the relations are those defined in the denotational
semantics, we have characterised the way in which concepts of the operational
and denotational semantics are related in a complete and consistent way.

In the case of the our specification-based transition system, we have restricted
ourselves to divergence-free processes. The completeness result, therefore, neces-
sarily has to be qualified. The specification-oriented system is not proposed as a
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replacement for the Circus operational semantics. For =⇒L, proof of complete-
ness can rely on the corresponding result for the operational semantics.

The most exciting plans that we have for the future, however, are the im-
plementation of the new transition system (using a theorem prover), and the
definition and application of a variety of selection criteria.
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A Operational semantics: table of selected transition

rules

c ∧ (s; p) ∧ (∃ v′ • s; Q)

(c | s |= p⊢ Q)
ǫ

−→ (c ∧ (s; Q [w0/v
′]) | s; v := w0 |= Skip)

v
′ = outαs (1)

c

(c | s |= v := e)
ǫ

−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)
(2)

c ∧ (s; preOp)

(c | s |= Op)
ǫ

−→ (c ∧ (s; Op [w0/v
′]) | s; v := w0 |= Skip)

v
′ = outαs (3)

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(4)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(5)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A)
ǫ

−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)
(6)
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(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l

−→ (c2 | s2 |= let x • A2)
(7)

c

(c | s |= let x • Skip)
ǫ

−→ (c | s; end x |= Skip)
(8)

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

−→ (c2 | s2 |= A2; B)
(9)

c

(c | s |= Skip; A)
ǫ

−→ (c | s |= A)
(10)

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A1)

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A2)
(11)

c ∧ (s; g)

(c | s |= g N A)
ǫ

−→ (c ∧ (s; g) | s |= A)
(12)

c

(c | s |= A1 J x1 | cs | x2 K A2)
ǫ

−→




c | s
|=
(par s | x1 • A1) J cs K (par s | x2 • A2)



 (13)

c




c | s
|=


(par s1 | x1 • Skip)

JcsK
(par s2 | x2 • Skip)








ǫ

−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)
(14)
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(c | s1 |= A1)
l

−→ (c3 | s3 |= A3) l = ǫ ∨ chan l 6∈ cs




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








l

−→





c3 | s
|=


(par s3 | x1 • A3)

JcsK
(par s2 | x2 • A2)









(15)

(c | s2 |= A2)
l

−→ (c3 | s3 |= A3) l = ǫ ∨ chan l 6∈ cs




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








l

−→





c3 | s
|=


(par s1 | x1 • A1)

JcsK
(par s3 | x2 • A3)









(16)





(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)





d ∈ cs c3 ∧ c4 ∧ w1 = w2




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








d!w2−→





c3 ∧ c4 ∧ w1 = w2 | s
|=


(par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)









(17)

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2




c | s
|=


(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)








d?w2−→





c3 ∧ c4 ∧ w1 = w2 | s
|=


(par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)









(18)
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(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2) l 6= ǫ chan l 6∈ cs

(c1 | s1 |= A1 \ cs)
l

−→ (c2 | s2 |= A2 \ cs)
(19)

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2) l = ǫ ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs)
ǫ

−→ (c2 | s2 |= A2 \ cs)
(20)

c

(c | s |= Skip \ cs)
ǫ

−→ (c | s |= Skip)
(21)
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