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Abstract. We present a theory of pointers and records that provides a
representation for objects and sharing in languages like Java and C++.
Our approach to pointers is based on Paige’s entity groups, which give an
abstract view of storage as equivalence classes of variables that share the
same memory location. We first define our theory as a restriction of the
general theory of relations, and, as a consequence, it does not distinguish
between terminating and non-terminating programs. Therefore, we link
it with the theory of designs, providing a foundation for reasoning about
total correctness of pointer-based sequential programs. Our work is a step
towards the semantics of an object-oriented language that also integrates
constructs for specifying state-rich and concurrent systems.
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1 Introduction

Interest in reasoning about pointer programs is not recent [3], and has been
renewed by the importance of sharing in object-oriented languages [1, 11]. Most
semantic models of pointers use indexes to represent memory locations or embed
a heap [8, 15]. Modern object-oriented languages, however, do not encourage or
directly support manipulation of the memory.

In this paper, we present a theory for pointers based on the model of entity
groups presented in [13] to formalise rules of a refinement calculus for Eiffel [10].
In that work, the complications of an explicit model of the memory are avoided;
instead, each entity (variable) is associated with the set of variables that share
its location (entity group). Using this model, the Eiffel semantics for object
creation, reference assignment, and call is formalised.

Our long-term goal is to provide a pointer semantics for an object-oriented
language for refinement that supports the development of state-rich, concurrent
programs. In particular, we are interested in the language OhCircus presented
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in [4]; it is a combination of Z [20] and CSP [16], with object-oriented constructs
in the style of Java, including inheritance, subtyping, and null values. Since
OhCircus combines constructs from several programming theories, the UTP is a
very appropriate choice for its semantic model.

Following the UTP style, we are concentrating on the individual aspects of
the OhCircus semantics separately. The theory that we present here provides a
reference semantics for a language with variables whose values are objects: re-
cursive records. It will be integrated to the copy semantics of OhCircus.

The program in Figure 1 illustrates the sort of concepts in which we are
interested. This program compacts a list l , by sharing references to equal values.
The type List of l can be defined as: List ::= (label : Z; next : List). This is
a recursive labelled record with two fields: label and next . The assignments in
Figure 1 are pointer assignments, and the equalities are value equalities. In this
example we use a reasonably standard programming notation involving while
and if commands, but in our theory we use the notation adopted in the UTP.

var p • p := l ;
while p 6= null do

var q • q := p.next ;
while q 6= null do

if q .label = p.label then q .label := p.label fi;
q := q .next

od;
p := p.next

od

Fig. 1. Compacting a list l

We assume that all values, including primitive values, have a location; vari-
ables are names of locations. We are not interested in the particular locations of
variables and values, but on whether two (or more) variables are different names
for the same location or not. A healthiness condition guarantees that variables
that denote the same location have the same value.

In the next section we present our theory: its alphabet and its healthiness
conditions. Section 3 revisits the semantics of assignment and variable blocks,
and establishes the closedness of our theory. In Section 4 we explore the link
to the theory of designs; the combined theory supports reasoning about total
correctness of pointer programs. Finally, in Section 5 we summarise our results,
and consider some related and future work.

2 Relational pointer theory

In our work, we consider recursive data types di defined by a set of recursive
equations of the form di = 〈〈f1 : d1, ...., fn : dn〉〉 | null or di = s , where s is
a simple set and the fj ’s are field names. We define the predicate field(f , di) to
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mean that f is a field of the data type di . In our example, the definition of List

is a shorthand for List = 〈〈label : Z ; next : List〉〉 | null . These recursive records
are enough to model object values in a language like Java.

As with the general theory of relations of the UTP, the alphabet of our
theory of pointer relations includes the programming variables and their dashed
counterparts. Their values, however, are elements of recursive data types.

If the value of a variable x is a record with a field called y, we can use the
name x .y to refer to the value of this field: the dot notation is a field selector.
If x .y is again a record, we can refer to its z field as x .y.z , and so on. We refer
to both simple names (of programming variables) and such compound names
formed using the field selector, as paths; the set Path contains all paths.

Our theory also includes two extra variables pg and pg ′; they are path
groups: sets of groups (sets) of paths. Two paths that share the same location
are in the same group. Path groups correspond to the entity groups in [13].

In the next section, we introduce additional notation related to paths. Later
on, in Section 2.2, we define the healthiness conditions of our theory.

2.1 Paths

Given an observational variable x , we use ′x to refer to its name. References to
x itself are interpreted to stand for the value of x , as usual in the UTP.

We use meta variables p and q to refer to paths; we use subscripts if we need
extra variables. Given a path p, its root is p itself, if p is a simple name, or ′x , if
it is of the form ′x .q. In this latter case, q is called the extension of p. We refer
to these as root(p) and ext(p). The extension of a variable is empty.

In general, for paths p and q, we call p.q an extension of p by q. The path
p.q is said to be a descendant of p. For any two paths p and q, we write p ≺ q

when p is a descendant of q. Given a set of paths π we define the set of its
descendants as follows.

desc(π) =̂ { p | ∃ q : π • p ≺ q }

We introduce two meta functions: θ and δ. The function θ is inspired by the Z
θ-notation. Given an alphabet A, and a path p, θA(p) gives the value of p, if its
root ′x is in A and p is an appropriate reference to a field of x .

θA(′x ) = x , provided ′x ∈ A

θA(p.f ) = v .f , provided θA(p) = v ∧ v ∈ di ∧ field(f , di)

We also introduce decorated versions of θ. For example θ′A is defined as follows.

θ′A(′x ) = x ′, provided ′x ∈ A

θA(p.f ) = v .f , provided θ′A(p) = v ∧ v ∈ di ∧ field(f , di)

Other decorations can also be used. The important point is that the domain
of θ is always a set of undecorated variable names, along with some of their
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descendants, whether θ is decorated or not. If we decorate θ, however, these
paths are associated to the value of the similarly decorated path. Of course, the
decoration of a path is reflected in its root; for example (x .y)′ = x ′.y.

The set δA,i(p) includes all paths for p with i extra field selectors. A path
for another path p is either p itself or a descendant of p, and, most importantly,
it has a value, as defined by θ.

δA,0(p) = { p }, provided p ∈ dom θ.

δA,n+1(p) = { q.f | q ∈ δA,n(p) ∧ θA(q) ∈ di ∧ field(f , di) }

In general, δA(x ) is the set of all paths for x .

δA(x ) =
⋃

i δA,i(x )

Given a set π of paths, ∆(π) is the set of paths for the paths in π.

∆A(π) = { p | ∃ x : π • p ∈ δA(x ) }

In summary, the descendants of a variable x are all path names that can be
built using ′x as a root. The paths for x , on the other hand, are x itself, and all
descendants that can be meaningfully used to access a component of the record
value of x , if any. Both notions generalise to paths in general.

Generally, we will drop the alphabet subscript from the above functions when
they can be inferred from context.

2.2 Healthiness conditions

We need healthiness conditions to establish the relationship between the values
of the variables and the path groups in pg and pg ′. First of all, we have a
healthiness condition HP1 to guarantee that the path group pg partitions all
paths of the variables of the program.

HP1 P = P ∧ pg partition ∆(varαP)

In the UTP, the set inαP includes all the undashed variables in the alphabet of
P . We define varαP = inαP \{ pg } to include all the undecorated programming
variables in the alphabet of P .

We use HP1 to name the function HP1(P) =̂ P ∧ pg partition ∆(varαP)
as well. The HP1-healthy relations are the fixed points of HP1. As usual in the
UTP, we adopt the same sort of convention in relation to the definitions of the
other healthiness conditions in the sequel.

The second property we require is that the path group is well structured,
so that if any group contains a pair of paths p1 and p2, then if these paths are
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extended in the same way, there is a group containing both extensions.

HP2 P = P ∧ ∀ g1 : pg; p1, p2 : g1; p : Path | { p1.p, p2.p } ⊆ ∆(varαP) •
(∃ g2 : pg • { p1.p, p2.p } ⊆ g2)

This reflects the fact that if p1 and p2 are different names for the same location,
then accesses to their components are also accesses to the same location.

Finally, all paths in the same group must have the same value.

HP3 P = P ∧ ∀ g : pg; p1, p2 : g • θvarαP p1 = θvarαP p2

We use the θ function to determine the values of the paths p1 and p2. The θ
function is partial: it is only defined for valid applications of the field selector
operator. For example, θ(x .f ) is not defined if the value of x is null . Therefore,
by requiring that p1 and p2 have the same image under θ, we not only require
that they have the same value, but also that they are valid paths.

The healthiness conditions HP1, HP2 and HP3 impose conditions on the input
path group pg; HP4, HP5, and HP6 below impose the same conditions on the
output path group pg ′.

HP4 P = P ∧ pg ′ partition ∆(varαP)

It is a consequence of HP4 that pg ′, in the same way as pg, includes only un-
decorated variable names. This is important to avoid the need to change the
definition of a sequence P ; Q to match the value of pg ′ defined by P to the
value of pg used by Q .

HP5 P = P ∧ ∀ g1 : pg ′; p1, p2 : g1; p : Path | { p1.p, p2.p } ⊆ ∆(varαP) •
(∃ g2 : pg ′ • { p1.p, p2.p } ⊆ g2)

HP6 P = P ∧ ∀ g : pg ′; p1, p2 : g • θ′
αP p1 = θ′

αP p2

In the definition of HP6, we use a decorated version of θ. The paths in pg ′ are
not decorated, but θ′ gives the values of the primed variables.

The set of healthiness conditions can be simplified by noting that conditions
HP3-6 can be replaced by the condition below.

HP7 P ; IIp = P

The program IIp is the HP1-3-healthy identity relation, which we denote by II r

to avoid confusion.

IIp =̂ HP1 ◦ HP2 ◦ HP3(II r )

The theorems below establish that the two sets of healthiness conditions are
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indeed interchangeable.

Theorem 1. Every relation R that is HP1-3-healthy and HP7-healthy is also

HP4-6-healthy.

Theorem 2. Every relation R that is HP1-6-healthy is also HP7-healthy.

A yet more concise way of characterising the healthy pointer relations is justified
by the following theorem. It establishes that we can use just the healthiness
condition below.

HP8 P = IIp ; P ; IIp

Theorem 3. A pointer relation R is healthy if, and only if, it is HP8-healthy.

This result is a consequence of the fact that our healthiness conditions are re-
strictions on the initial and after state of a relation, but not on the transitions
that they describe.

This also allows us to prove a further useful theorem.

Theorem 4. For any pointer relation P, HP8(P) is the weakest healthy pointer

relation characterised by P: P v IIp ; P ; IIp, and for every healthy Q such that

P v Q, we have IIp ; P ; IIp v Q.

Proof.

P v Q monotonicity of sequence

⇒ IIp ; P ; IIp v IIp ; Q ; IIp healthiness of Q

= IIp ; P ; IIp v Q 2

This justifies the specification of pointer relations by defining unhealthy relations
and using HP8 to make it healthy.

3 Programming constructs

In this section, we revisit the semantics of (value) assignment already in the
UTP, and introduce a new form of assignment: pointer assignment. For each
form of assignment, there is a corresponding notion of equality.

3.1 Equality

Our two notions of equality are standard equality =p and pointer equality
== . Standard equality equates values and pointer equality equates storage

locations.
Value equality is defined in terms of the θ function.

p1 =p p2 =̂ θ(p1) = θ(p2)

The paths p1 and p2 are required to be valid, that is, in the domain of θ, and
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have the same value.
Pointer equality is defined with respect to the path group which models

storage.

p1 ==pg p2 =̂ ∃ g : pg • { p1, p2 } ⊆ g

These two equalities reflect the same distinction found in Lisp, where EQUAL
compares values and EQ compares pointers. On the other hand, this is slightly
in contrast with Java, where == compare values, but the values of objects
are locations. In our language, every value has a location, and we assume that
literal values have fresh locations. To write the Java expression e1 == e2 in our
language, we have to determine the type(s) of e1 (and e2). If they have primitive
types, we write e1 = e2; if not, we keep the == .

In our theory, if either of x or y is a primed name, then x == y is going to
be false, whether the extra parameter is pg or pg ′. This is because, as already
mentioned, they only hold undashed names.

3.2 Assignment

The first form of assignment p1 := p2 that we consider is that already available
in the UTP, which assigns the value of p2 to p1, and, consequently, to all other
paths in its group. The second is p1 :== p2, which makes p1 to become another
name for the location of p2; in our context, this assignment alters the storage
model by merging the path groups containing p1 and p2.

Both assignments are alphabetised; they take a set A of programming vari-
ables as a parameter.

α(p1 :=A p2) = α(p1 :=A p2) = A ∪ A′ ∪ { pg, pg ′ }

Alphabets are left implicit whenever convenient.

Value assignment As already said, the value assignment p1 := p2 has the side
effect of altering the value of all paths that share the storage location of p1. As a
consequence, the value of all their descendants are also changed. No other paths
have their value changed.

In terms of memory usage, there are two issues. Firstly, if a component x .f
of x shares location with a path p, and we assign a new value p2 to x , then x .f
takes on a new value as well, that of p2.f , if this is well defined. Therefore, x .f
and p cease to share their location. This means that all the descendants of x

have to be eliminated from the path groups in which they are.
Secondly, a value assignment duplicates a value and potentially requires extra

storage. For example, the assignment x .f := y makes the value of x .f , and of
all the paths that share its location, to become that of y; the locations of x .f
and y, however, are not changed. Moreover, if the value of y is itself a record,
with a field g, then x .f .g and y.g have the same value, but different locations. If
the location x .f .g did not exist before, because, for example, x .f had value null

before the assignment, a new location is created.
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We define this behavior by defining a general notion of assignment and then
making it healthy using HP8.

assignV(p1, p2,A) =̂
∀ q : group(p1, pg) • update(root(q), root(q)′, ext(q), p2) ∧
∀n : A | (¬ ∃ p : group(p1, pg) • n =n root(p)) • n ′ = n ∧
pg ′ = remove(pg, group(p1, pg))∪

{ q1 : ∆(p2); q2 : Path | q1 =n p2.q2 • { q3 : group(p1, pg) • q3.q2 } }

The function group(x , pg) selects the path group of pg that contains x .

group(x , pg) =̂ ι g : pg | x ∈ g

The ι expression ι o : S | p(o) gives a definite description of an object o of a set
S that satisfies a constraint p(o); it is defined only when o exists and is unique.
It is identical to the Z µ operator; we do not use µ to avoid confusion with the
least fixed point operator of the UTP.

The first conjunct in the definition of assignV(p1, p2,A) defines the new value
of all the paths in the group of p1. For each of them, including p1 itself, we change
the value of the variable at its root. This is because, changing the value of x .f
really corresponds to changing the value of x : its f field takes on a new value,
and all the others keep the same value.

The operator update(x , y, p, q) defines the value of y as the result of updating
the value of x to change the value of its component x .p to be that of the path
q. All the other components of y have the same value of the corresponding
component of x .

update(x , y, p, q) =̂
∀ p1 : ∆(x ) • (p1 =n x .p ⇒ y.p =p q) ∧

((p1 6=n x .p ∧ ¬ (p1 ≺ x .p)) ⇒ y.ext(p1) =p p1)

To define update(x , y, p, q), we consider each of the descendant paths p1 of x .
For the descendant x .p, the corresponding value of y.p is that of q. For the other
descendants p1, if they are not descendants of x .p, the value of the corresponding
component of y is that of p1 itself, which is a component of x . If they are a
descendant of x .p, by defining y.p, we have already defined its value.

The equality operator =n compares paths for syntactic equality. In the
case of simple names, it compares the names of the variables, instead of their
values.

The second conjunct in the definition of assignV(p1, p2,A) defines the value
of the variables that are not affected by the assignment: those that are not roots
of paths in the group of p1. As already said, the value of the paths in the group
of p1 is defined by the update function. In doing so, we also determine the value
of all the descendants of the roots of those paths, as explained above.

The third conjunct in the definition of assignV(p1, p2,A) defines the value
of pg ′. The function remove(pg, π) defines the set of path groups obtained by
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removing all descendants of the paths in π from the groups in pg. If a group of
pg contains only descendants of π, it becomes empty, and should be excluded.

remove(pg, π) =̂ { g : pg | ¬ g ⊆ desc(π) • g \ desc(π) }

The use of remove(pg, group(p1, pg)) accounts for the first issue discussed above
in relation to memory usage in the behaviour of the assignment p1 := p2; namely,
the sharing information about all the descendants of the assigned path changes.
The duplication of the assigned value is taken into account by requiring that pg ′

includes new path groups { q3 : group(p1, pg) • q3.q2 }, for each extension q2 of
the descendants of p2.

Finally, the definition of assignment is as follows.

p1 :=A p2 =̂ HP8(assignV (p1, p2,A))

An interesting observation is that we only need to compose IIp on the left of
assignV (p1, p2,A) to make it healthy.

Theorem 5. p1 :=A p2 = IIp ; assignV (p1, p2,A)

This is because the path group pg ′ defined by assignV satisfies the requirements
of our healthiness conditions. What it does not enforce is that pg is suitable.

Pointer assignment The second form of assignment, p1 :==A p2, makes p1 to
share the location of p2. As a consequence, the value of p1 is also changed to
that of p2. Moreover, by changing the location of p1 to that of p2, we implicitly
change the location of all descendants of p1, and their values. In our model,
we remove them all from their current path groups, and, for each well defined
descendant of p2, we insert a corresponding descendant of p1 in its group. We
use the same style of construction as for value assignment, using HP8 to ensure
healthiness.

p1 :==A p2 =̂ H8(p′

1 =p p2 ∧ (∀ p :
⋃

pg ′ | pg /∈ ∆(p1) • p′ =p p) ∧
pg ′ = add(p1, p2, purge(p1, pg)))

The first conjunct of this definition determines the new value of p1, and implicitly
that of all its descendants. It also establishes that the value of all other paths
are not changed.

The second conjunct of the above definition determines the new value of
pg. We use a strengthened remove operator to state that both p1 and all its
descendants need to be removed from the original path groups.

purge(p, pg) =̂ { g : pg | ¬ g ⊆ (desc(p) ∪ { p }) • g \ (desc(p) ∪ { p }) }

Next, we use a function add to define that p1 itself and its descendants need to
be inserted back into the corresponding groups of p2 and its descendants.

add(p1, p2, pg) =̂
{ g : pg • g ∪ { p : g; q : Path | p =n p2.q • p1.q } ∪ { p : g | p =n p2 • p1 } }

Again, our use of HP8 in the definition of p1 :==A p2 is required only to enforce
that assignments are only defined for healthy path groups pg.
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3.3 Variable blocks

The declaration of a variable requires its inclusion in the set of path groups: new
singleton groups containing the new variable and its descendants should be de-
fined. Also, ending the scope of a variable entails in removing it and its descen-
dants from the path groups. Therefore, we redefine var x and end x .

varA x =̂ HP8(∀ n : A • n ′ =p n ∧ pg ′ = pg ∪ { p : ∆(′x ) • { p } })

The alphabet of the variable declaration includes the new variable.

α(varA x ) = A ∪ A′ ∪ { x ′ } ∪ { pg, pg ′ }

This is just as in the UTP definition for the alphabet of var, except for the extra
observational variables pg and pg ′.

To define end x , we use the function purge introduced in the previous section.

endA x =̂ HP8(∀ n : A • n ′ =p n ∧ pg ′ = purge(x , pg))

The alphabet definition is similar to that of var x .

α(endA x ) = A ∪ { x } ∪ A′ ∪ { pg, pg ′ }

The proof of laws is in our agenda for future work.

3.4 Closure properties

In this section, we prove that the programming operators are closed. In other
words, when applied to healthy relations, they result in healthy relations.

Theorem 6. If the relations P and Q are healthy, then so is P ; Q.

Proof.

IIp ; P ; Q ; IIp P and Q are healthy

= IIp ; IIp ; P ; IIp ; IIp ; Q ; IIp ; IIp IIp ; IIp = IIp

= P ; Q 2

Theorem 7. If the relations P and Q are healthy, then so is P ∨ Q.

Proof.

IIp ; (P ∨ Q); IIp property of sequence and ∨

= IIp ; P ; IIp ∨ IIp ; Q ; IIp P and Q are healthy

= P ∨ Q 2
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Theorem 8. If the relations P and Q are healthy, then so is P ∧ Q.

Proof.

IIp ; (P ∧ Q); IIp property of IIp

= IIp ; P ; IIp ∧ IIp ; Q ; IIp P and Q are healthy

= P ∧ Q 2

Theorem 9. If relations P and Q are healthy, then so is P C b B Q.

Proof.

Essentially the same. 2

The set of healthy pointer relations is a complete lattice, since it is the image of
monotonic and idempotent healthiness conditions [7].

Theorem 10. If F is built out of conjunctions, disjunctions, and sequences

applied to healthy pointer relations, then

µp X • F (X ) = HP8(µ X • F (X ))

where µp X • F (X ) is the least fixed point of F in the lattice of healthy pointer

relations.

Proof. Follows from the closure theorems above, and from the fact that HP8 is
a monotonic idempotent that semi-commutes with the programming construc-
tors [7]. 2

This result states that a recursion is a healthy pointer relation, if its body is
built out of pointer relations itself.

4 Pointer Designs

The theory of pointer relations does not distinguish between terminating and
non-terminating programs. This distinction is made in the UTP by defining de-

signs, a subclass of relations that satisfy two healthiness conditions (H1 and H2).
All design relations can be split into precondition/postcondition pairs, making
them similar to specification statements in the refinement calculus.

In this section, we combine the theories of designs and pointers, thereby pro-
viding a foundation for a theory of total correctness for pointer-based sequential
programs. First, we reproduce the definitions of the design theory that we need,
then we define a Galois connection between our theory and designs. Finally, we
introduce an extra healthiness condition of the combined theory.
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4.1 Designs

The theory of designs include two extra boolean observational variables to record
the start and the termination of a program: ok and ok ′. The monotonic idem-
potents used to define the healthiness conditions for designs can be defined as
follows, where P is a relation with alphabet {ok , ok ′, v , v ′}.

H1(P) =̂ ok ⇒ P

H2(P) =̂ P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v

The variable ok records the observation that the program has been started; the
variable ok ′ records the observation that the program terminated. If P is H1-
healthy, then it makes no restrictions on the final value of variables before it
starts. If P is H2-healthy, then termination must be a possible outcome from
every initial state. The composition of H1 and H2 is named H.

The above formulation of H2 is different from that in [7], but in [19], we
prove that it is equivalent.

4.2 Pointer relations and designs

The theory of pointer relations is stronger than the theory of designs. This is
because on abortion, a design provides no guarantees; however, a pointer relation
still requires the properties of pg to hold. This seems to be compatible with the
reality of pointer programs: the information held in pg (and pg ′) is related to the
physical constraints over variables that share locations, and these constraints
are not suspended when the program aborts. In this case, the final values of the
variables are arbitrary, but those that share the same location will still have the
same value, for instance.

Therefore, to combine the theories of pointers and designs, we follow the ap-
proach used to combine the theory of reactive processes and designs. We take
HP8 as a link that maps a design to a pointer relation; the range of HP8 charac-
terises a subset of pointer relations: pointer designs. This is our proposed theory
for total correctness of pointer programs.

First of all, for insight, we consider HP8(¬ ok); this program is strictly
stronger than ¬ ok , which is the top of the lattice of designs. This property
prevents H1 from commuting exactly with HP8. In general, we have the follow-
ing result.

HP8 ◦ H1(P) H1

= HP8(ok ⇒ P) propositional calculus, HP8 disjunctive

= HP8(¬ ok) ∨ HP8(P) HP8(¬ ok) 6= ¬ ok

6= ¬ ok ∨ HP8(P) H1

= H1 ◦ HP8(P) 2

For this reason, the theory of pointer relations is disjoint from the theory of
designs: a pointer relation cannot be a design, and vice versa. Instead, there is
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an approximate relationship between the two theories:

HP8 ◦ H(P) v P

for pointer relation P . This relationship is a property of a Galois connection
that translates between the two theories. In particular, it allows us to embed the
theory of designs and its refinement calculus in the world of pointers.

Galois connection Let S and T both be partial orders; let L be a function from S
to T; and let R be a function from T to S. The pair (L,R) is a Galois connection

if, for all X ∈ S and Y ∈ T

Y v L(X ) iff R(Y ) v X

L and R are known as the left and right adjoints, respectively.
Our proof of the existence of a Galois connection relies on two simple lemmas

about our healthiness conditions and refinement. First, a lemma concerning H1.

Lemma 1 (H1-refinement). For any two relations P and Q with ok and ok ′

in their alphabets,

H1(P) v H1(Q) iff H1(P) v Q

Proof.

H1(P) v H1(Q) refinement

= [H1(Q) ⇒ H1(P) ] H1

= [ (ok ⇒ Q) ⇒ (ok ⇒ P) ] propositional calculus

= [Q ⇒ (ok ⇒ P) ] H1

= [Q ⇒ H1(P) ] refinement

= H1(P) v Q 2

This lemma lets us cancel an application of H1 on the right-hand side of the
refinement relation. This works because H1(P) is a disjunction, and the cancela-
tion strengths the implementation. Something similar can be done with HP8, but
since HP8(P) is a conjunction, the cancelation takes place on the specification
side.

Lemma 2 (HP8-refinement). For any two relations P and Q with pg and pg ′

in their alphabets,

P v HP8(Q) iff HP8(P) v HP8(Q)

Proof.

P v HP8(Q) refinement

= [HP8(Q) ⇒ P ] HP8
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= [ IIP ; Q ; IIP ⇒ P ] sequence

= [ (∃ v0, v1 • IIP [v0/v
′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]) ⇒ P ]

predicate calculus

= [ IIP [v0/v
′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ] ⇒ P ] predicate calculus

= [ IIP [v0/v
′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]

⇒ IIP [v0/v
′] ∧ P ∧ IIP [v1/v ] ]

IIP , Leibnitz

= [ IIP [v0/v
′] ∧ Q [v0, v1/v , v ′] ∧ IIP [v1/v ]

⇒ IIP [v0/v
′] ∧ P [v0, v1/v , v ′] ∧ IIP [v1/v ] ]

sequence

= [ IIP ; Q ; IIP ⇒ IIP ; P ; IIP ] HP8

= [HP8(Q) ⇒ HP8(P) ] refinement

= HP8(P) v HP8(Q) 2

Applications of the above lemmas justify the main result of this section.

Theorem 11. There is a Galois connection between designs and pointer rela-

tions, where HP8 is the right adjoint and H is the left one.

D v H(P) iff HP8(D) v P

Here, D is a design whose alphabet contains pg and pg ′; and P is a pointer

relation whose alphabet contains ok and ok ′.

Proof

D v H1(P) H1-refinement

= D v P P is HP8

= D v HP8(P) HP8-refinement

= HP8(D) v HP8(P) P is HP8

= HP8(D) v P 2

Proof of closedness of the programming operators in this new theory is simple.

4.3 Healthy pointer designs

The variables ok and ok ′ describe observations about initiation and termination
of designs; they are certainly not program variables, and so must never be men-
tioned in program texts. In order to avoid confusion, a pointer design should
isolate ok in its own partition in pg and pg ′. This is a healthiness condition of
our combined theory.

HD P = P ∧ #group(ok , pg) = 1 ∧ #group(ok , pg ′) = 1

Further exploration of the laws of this theory is left as future work.
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5 Conclusions

We have presented a UTP theory for programs involving variables whose record
values and their components may share locations. With this theory, we capture
an abstract memory model of a modern object-oriented language.

In this work, we do not consider, for instance, the issues of classes and visibil-
ity in object-oriented languages, because our aim is the isolation of programming
concepts. On the other hand, we do not have an explicit memory model that
allows the definition of allocation and deallocation operations, because these are
not needed to reason about object-oriented programs.

In order to reason about total correctness, we have investigated the theory
that combines pointer relations and UTP designs. We established a formal link
to translate between the two theories.

Recursive records have also been considered by Naumann in the context of
higher-order imperative programs and a weakest precondition semantics [12]. In
that work, many of the concerns are related to record types, and the possibility
of their extension, as achieved by class inheritance in object-oriented languages.
Here, we are only concerned with record values. We propose to handle the issue
of inheritance separately, in a theory of classes with a copy semantics [17].

Hoare & He present a theory of pointers and objects using an analogy with
process algebras [6]. They use a model of graphs based on a traces semantics [5],
where a graph describes a snapshot of the entire heap during the execution of an
object-oriented program. The heap is represented by a set of sets of traces: each
set of traces describing the paths that may be used to access a particular object;
this corresponds to our path groups. The main operator for updating the heap
is known as pointer swing, and it updates the target of a pointer; this corre-
sponds to our pointer assignment. In our work, we consider a model of pointers
in the unified context of programming language models. We also handle the cor-
respondence between the values of record variables and the sharing structure of
these variables and their components. To manage complexity, we use healthiness
conditions to factor out basic properties from definitions.

The idea of avoiding the use of locations to model pointers and sharing
was first considered in [2] for an Algol-like language. The motivation was the
definition of a fully abstract semantics, which does not distinguish programs
that allocate variables to different positions in memory. In that work, groups
are represented by functions in which each variable is associated with the set of
variables that share its location. A healthiness condition ensures that variables
in the same location have the same value: this corresponds to our HP3. A stack
of functions is used in [2] to handle nested variable blocks and redeclaration. We
do not consider the scope issues of redeclaration, but we handle the presence of
record variables, and sharing between record components, not only variables.

The refinement calculus for object systems (rCOS) [9] is based on a UTP
semantics for a relational object-oriented programming language that contains
sub-typing, type casting, visibility, inheritance, dynamic binding, and polymor-
phism. Values in the language are drawn from primitive types or an infinite set
of object references, augmented by information essential to the resolution of dy-
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namic typing. By using object identities, the model refers explicitly to storage
in an implementation-oriented way, and as a result is not fully abstract.

A UTP reference semantics for an object-oriented language has also been
considered in [14]. In this case, we have a language that combines Object-Z [18],
CSP, and timing constructs. Again, object values have identities which are ab-
stract records of their location in memory.

For the kind of language in which we are interested, we believe that these
identities are not needed, and the simpler model of the theory of path groups is
enough. As already mentioned, our long-term goal is the definition of a reference
semantics for OhCircus: an object-oriented language that also combines Z and
CSP. Our approach, however, is based on the combination of models of isolated
features of this rather rich language.

In the short term, we plan to investigate refinement laws of our theory, and
explore its power to reason about pointer programs in general, and data struc-
tures and algorithms typically used in object-oriented languages in particular.
After that, we want to go a step further in our combination of theories and
consider a theory of reactive designs with pointers.
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