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Abstract. The process algebra CSP has been studied as a modeling no-
tation for test derivation. Work has been developed using its trace and
failure semantics, and their refinement notions as conformance relations.
In this paper, we propose a procedure for online test generation for se-
lection of finite test sets for traces refinement from CSP models, based
on the notion of fault domains, that is, focusing on the set of faulty im-
plementations of interest. We investigate scenarios where the verdict of
a test campaign can be reached after a finite number of test executions.
We illustrate the usage of the procedure with a small case study.

1 Introduction

Model-based testing (MBT) has received increasing attention due to its ability
to improve productivity, by automating test planning, generation, and execu-
tion. The central artifact of an MBT technique is the model. It serves as an
abstraction of the system under test (SUT), manageable by the testing engi-
neers, and can be processed by tools to automatically derive tests. Most nota-
tions for test modeling are based on states; examples are Finite State Machines,
Labelled Transition Systems, and Input/Output Transition Systems. Many test-
generation techniques are available for them [7,11,25,21]. Other notations use
state-based machines as the underlying semantics [12, 16].

CSP [24] has been used as a modelling notation for test derivation. The
pioneering work in [20] formalises a test-automation approach based on CSP.
More recently, CSP and its model checker FDR [10] have been used to automate
test generation with ioco as a conformance relation [19]. A theory for testing for
refinement from CSP has been fully developed in [4].

Two sets of tests have been defined and proved to be exhaustive: they can
detect any SUT that is non-conforming according to traces or failures refinement.
Typically, however, these test sets are infinite. A few selection criteria have been
explored: data-flow and synchronisation coverage [5], and mutation testing [1]
for a state-rich version of CSP. The traditional approaches for test generation
from state-based models have not been studied in this context.

Even though the operational semantics of CSP defines a Labelled Transition
System (LTS), applying testing approaches based on states in this context is
challenging: i) not every process has a finite LTS, and it is not trivial to determine
when it has; ii) even if the LTS finite, in may not be deterministic; iii) for
refinement, we are not interested in equivalence of LTS; and iv) to deal with
failures, the notion of state needs to be very rich.



Here, we present a novel approach for selection of finite test sets from CSP
models by identifying scenarios where the verdict of a campaign can be reached
after a finite number of test executions. We adopt the concept of fault domain
from state-based methods to constrain the possible faults in an SUT [22]. Fault-
based testing is more general than the criteria above, since the test engineering
can embed knowledge about the possible faults of the SUT into a fault domain to
guide generation and execution [13]. We define a fault domain as a CSP process
that is assumed to be refined by the SUT. With that, we establish that some
tests are not useful, as they cannot reveal any new information about the SUT.

In addition, we propose a procedure for online generation of tests for traces
refinement. Tests are derived and applied to the SUT and, based on the verdict,
either the SUT is cast incorrect, or the fault domain is refined.

We present some scenarios where our procedure is guaranteed to provide a
verdict after a finite number of steps. A simple scenario is that of a specifi-
cation with a finite set of traces: unsurprisingly, after that set is exhaustively
explored our procedure terminates. A more interesting scenario is when the SUT
is incorrect; our procedure also always terminates in this case.

We have also investigated the scenario where the set of traces of the specifica-
tion is infinite, but that of the SUT is finite and the SUT is correct. A challenge
in establishing termination is that, while when testing using Mealy and finite
state machines every trace of the model leads to a test, this is not the case with
CSP. For example, for traces refinement, traces of the specification that lead to
states in which all possible events are accepted give rise to no tests. After such
a trace, the behavior of the SUT is unconstrained, and so does not need to be
tested. Another challenge is that most CSP fault domains are infinite.

Our approach is similar to those adopted in the traditional finite state-
machines setting, but addresses these challenges. We could, of course, change
the notion of test and add tests for all traces. A test that cannot fail, however,
is, strictly speaking, just a probe. For practical reasons, it is important to avoid
such probes, which cannot really reveal faults.

The contributions of this paper are: 1) the introduction of the notion of
fault domain in the context of a process algebra for refinement; 2) a procedure
for online testing for traces refinement validated by a prototype implementation;
and 3) the characterization of some scenarios in which the procedure terminates.

Next, in Section 2 we present background material: fault-based testing, and
CSP and its testing theory. Section 3 casts the traditional concepts of fault-based
testing in the context of CSP. Our procedure is presented in Section 4. Termi-
nation is studied in Section 5. Section 6 describes a prototype implementation
of our procedure and its use in a case study. Finally, we conclude in Section 7.

2 Preliminaries

In this section, we describe the background material to our work.



2.1 CSP: testing and refinement

CSP is distinctive as a process algebra for refinement. In CSP models, sys-
tems and components are specified as reactive processes that communicate syn-
chronously via channels. A prefixing ¢ — P is a process that is ready to commu-
nicate by engaging in the event a and then behaves like P. The external choice
operator O combines processes to give a menu of options to the environment.

Ezxzample 1. The process Counter uses events add and sub to count up to 2.

Counter = add — Counterl
Counterl = add — Counter2 O sub — Counter
Counter2 = sub — Counterl

Counterl offers a choice to increase (add) or decrease (sub) the counter. m|

Other operators combine processes in internal (nondeterministic) choice, parallel,
sequence, and so on. Nondeterminism can also be introduced by interleaving and
by hiding internal communications, for example.

There are three standard semantics for CSP: traces, failures, and failure-di-
vergences, with refinement as the notion of conformance. As usual, the testing
theory assumes that specifications and the SUT are free of divergence, which is
observed as deadlock in a test. So, tests are for traces or failures refinement.

We write P Cp @ when P is trace-refined by @; similarly, for P Cp @ and
failures-refinement. In many cases, definitions and results hold for both forms of
refinement, and we write simply P C . In all cases, P C @ requires that the
observed behaviours of @ (either its traces or failures) are all possible for P.

The CSP testing theory adopts two testability hypothesis. The first is often
used to deal with a nondeterministic SUT: there is a number k such that, if
we execute a test k times, the SUT produces all its possible behaviours. (In
the literature, it appears in [15,25,14], for example, as fairness hypothesis or
all-weather assumption.) The second testability hypothesis is that there is an
(unknown) CSP process SUT that characterises the SUT.

The notion of execution of a test T is captured by a process Ezecutiong (T
that composes the SUT and the test T in parallel, with all their common (speci-
fication) events made internal. Special events in T give the verdict: pass, fail, or
inc, for inconclusive tests that cannot be executed to the end because the SUT
does not have the trace that defines the test.

The testing theory also has a notion of successful testing experiment: a prop-
erty passesc (S, SUT, T') defines that the SUT passes the test T' for specification
S. A particular definition for passesc (S, SUT, T') typically uses the definition of
Ezecutiongyr(T), but also explains how the information arising from it is used
to achieve a verdict. For example, for traces refinement, we have the following.

passest (S, SUT, T) =V t : traces [ EvecutionSy;p(T)] o last(t) # fail

For a definition of passesc (S, SUT, T') and a test suite TS, we use the notation
passesc (S, SUT, TS) as a shorthand for VT : TS e passesc (S, SUT, T).



In general, for a given definition of passesc (S, SUT, T'), we can characterise
exhaustivity Ezhaustc (TS) of a test suite T'S as follows.

Definition 1. A test suite TS satisfies the property Exhaustc (S, TS), that is,
it is exhaustive for a specification S and a conformance relation T exactly when,
for every process P, we have S T P < passesc (S, P, TS).

Different forms of test give rise to different exhaustive sets. We use Ezhaustc(.S)
to refer to a particular exhaustive test suite for S and C.

For a trace (a1, ag,...) with events a1, ag, and so on, and one of its forbid-
den continuations a, that is, an event a not allowed by the specification after
the trace, the traces-refinement test Tr((a1, ag,...), a) is given by the process
mc — ag — inc = ay — ... = pass — a — fail. In alternation, it gives an
inc verdict and offers an event of the trace to the SUT, until all the trace is
accepted, when it gives the verdict pass, but offers the forbidden continuation.
It it is accepted, the verdict is fail. The exhaustive test set Ezhaustr(S) for
traces refinement includes all tests T'r (¢, a) formed in this way from the traces
t and forbidden continuations a of the specification.

Ezample 2. We consider the specification S; = a — b — S;. The exhaustive
test set for for S7 and traces refinement is sketched below.

{pass = b — fail - STOP,inc — a — pass — a — fail = STOP,
inc — a — inc — b — pass — b — fail - STOP, ...}

In [3], it is proven that Ezhaustc, (S, Exhaustr(S)).

2.2 Fault-based testing

The testing activity is constrained by the amount of resources available. Some
criteria is needed to select a finite subset of finite tests. Fault-based criteria con-
sider that there is a fault domain, modelling the set of all possible faulty imple-
mentations [22,13]. They restrict the set of required tests using the assumption
that the SUT is in that domain [26]. Testing has to consider the possibility that
the SUT can be any of those implementations, but no others [17].

For Finite State Machines (FSMs), many test-generation techniques assume
that the SUT may have a combination of initialisation faults (that is, the SUT
initialises in a wrong state), output faults (that is, the SUT produces a wrong
output for a given input), transfer faults (that is, a transition of the SUT leads
to the wrong states), and missing or extra states (that is, the set of states of the
SUT is increased or decreased). Therefore, for a specification with n states, it is
common that the fault domain is defined denotationally as “the set of FSMs (of
a given class) with no more than m states, for some m > n.” [9,7,11]. In this
case, all faults above are considered, except for more extra states than m — n.

Fault domains can also be used to restrict testing to parts of the specification
that the tester judges more relevant. For instance, some events of the specifica-
tion can be trivial to implement and the tester may decide to ignore them. An



approach for modelling faults of interest, considering FSMs, is to assume that
the SUT is a submachine of a given non-deterministic FSM, as in [13]. Thus,
the parts of the SUT that are assumed to be correct can be easily modelled by
a copy the specification; the faults are then modelled by adding extra transi-
tions with the intended faults. Fault domains can also be modelled by explicitly
enumerating the possible faulty implementations, known as mutants [8]. Thus,
tests can be generated targetting each of those mutants, in turn.

In the next section, we define fault domains by refinement of a CSP process.

3 Fault-based testing in CSP

For CSP, we define a fault domain as a process FFD C SUT; it characterises the
set of all processes that refine it. We use the term fault domain sometimes to
refer to the CSP process itself and sometimes to the whole collection of processes
it identifies. In the CSP testing theory, the specification and SUT are processes
over the same alphabet of events. Accordingly, here, we assume that a fault
domain F'D uses only those events as well.

The usefulness of the concept of fault domain is illustrated below.

Ezample 3. For S; in Example 2, we first take just FD; = RUN({a,b}) as a
fault domain. For any alphabet A, the process RUN(A) repeatedly offers all
events in A. So, with FD;, we add no extra information, since every process
that uses only channels a and b trace refines FD;. A more interesting example
is FDy = a — (a — FDy O b — FD,). In this case, the assumption that
FDy; C4 SUT allows us to eliminate the first and the third tests in Example 2,
because an SUT that refines FD, always passes those tests. O

In examples, we use traces refinement as the conformance relation, and assume
that we have a fixed notion of test. The concepts introduced here, however, are
relevant for testing for either traces or failures refinement.

It is traditional in the context of Mealy machines to consider a fault domain
characterised by the size of the machines, and so, finite. Here, however, if a
fault domain F'D has an infinite set of traces, it may have an infinite number of
refinements. For traces refinement, for example, for each trace ¢, a process that
performs just ¢ refines F'D. So, we do not assume that fault domains are finite.

Just like we define the notion of exhaustive test set to identify a collection
of tests of interest, we define the notion of a complete test set, which contains
the tests of interest relative to a fault domain.

Definition 2. For a specification S, and a fault domain FD, we define a test set
TS : P Ezhaustc (S) to be complete, written Completeé(TS7 FD), with respect to
FD if, and only if, for every implementation I in FD we have

~(SCI)=3T:7TS e—passesz(S,I,T)

This is a property based not on the whole of the fault domain, but just on its
faulty implementations. For traces refinement, the exhaustive test set is given
by Ezhaustr(S) and the verdict by passest (S, SUT, T) defined in Section 2.1.



If FD is the bottom of the refinement relation C, then a complete test set
TS is exhaustive. It is direct from Definition 2 the fact that a complete test set
is a subset of the exhaustive test set and, therefore, unbiased, that is, it does
not reject correct programs. We also need validity: only correct programs are
accepted. This is also fairly direct as established in the theorem below.

Theorem 1 Provided FD T SUT, we have that

3 TS : P Exhaustc (S) @ complete(TS, FD) A passesc(S,SUT, TS)
implies S C SUT.
Proof

3 TS : P Exhaustc (S) @ complete(TS, FD) A passesc (S, SUT, TS)

= 3 TS : P Ezhaustc(S) ® [Definition 2]
(- (SCSUT)=3T:TS e - passesc(S,SUT, T)) A
passesc (S, SUT, TS)

= 3 TS : P Ezhaustc(S) e [predicate calculus and definition of passes|
(passesc (S, SUT, TS) = S T SUT) A passesc (S, SUT, TS)

= (SC SUT) [predicate calculus]

O

Finally, if an unbiased test is added to a complete set, the resulting set is still
complete. Unbias follows from inclusion in the exhaustive test set.

An important set is those of the useless tests for implementations in the fault
domain. The fact that we can eliminate such tests from any given test suite has
an important practical consequence.

Definition 3.
Uselessc (S, FD) = { T : Exhaustc(S) | passesc (S, FD, T)}

Since FD passes the tests in Uselessc (S, FD), all implementations in that fault
domain also pass those tests, provided passesc (S, P, T') is monotonic on P with
respect to refinement. This is proved below.

Lemma 1. For every I in FD, and for every T : Uselessc (S, FD), we have
passesc (S, I, T), if passesc (S, P, T') is monotonic on P with respect to C.

Proof
FDC I

= passesc (S, FD, T) = passesc(S,I,T) [monotonicity of passes|
= T € Uselessc (S, FD) = passesc(S,I,T) [definition of Uselessc (S, FD)]

O



Ezample 4. We recall that the definition for passesr (S, SUT, T') is monotonic,
as shown below, where we consider processes P; and P, such that Py C1 Ps.

Ezecutiony (T) = (Py [ S ]| T)\a$ [definition of Ezecution]

= Ezecutiony (T) Cr (P2 [ S ]| T)\aS
[monotonicity of CSP operators with respect to refinement]

= Ezecutionp (T) Cr Ezecution? (T) [definition of Ezecution]
= traces [ Ezecution}, (T)] C traces [Ezecution? (T)] [definition of C 7]

= (Yt : traces [Ezecution? (T)] e last(t) # fail) = [predicate calculus]
(V¢ : traces [ Ezecutionp, (T)]  last(t) # fail)

= passest (S, P1, T) = passest(S, P2, T) [definition of passesr]

O

Typically, it is expected that the notions of passesz (S, P, T') are monotonic on
P with respect to the refinement relation C: a testing experiment that accepts
a process, also accepts its correct implementations.

It is important to note that there are tests that do become useless with a
fault-domain assumption. This is illustrated below.

Ezample 5. In Example 3, the first and third tests of the exhaustive test set are
useless as already indicated. For instance, we can show that FDy passes the first
test 77 = pass — b — fail — STOP as follows.

Executz’ongbz (T1)
= (FDy|[{a,b}] T1) \ {a, b} [definition of Ezecution]
= (pass — (FDy [{a,b}] b — fail » STOP)) \ {a, b}

[step law of parallelism]
= pass — (FDy |[{a,b}] b — fail - STOP) \ {a,b}  [step law of hiding]

= pass — STOP \ {a, b} [step law of parallelism]
= pass — STOP [step law of hiding]

So, traces [[Execution?bQ(Tl)]] = {(), (pass)}, none of which finish with fail. O

4 Generating test sets

To develop algorithms to generate tests based on a fault domain, we need to
consider particular notions of refinement, and the associated notions of test and
verdict. In this paper, we present an algorithm for traces refinement.



A particular execution of the test can result in the verdicts inc, pass or fail.
Due to nondeterminism in the SUT, the test may need to be executed multiple
times, resulting in more than one verdict. We assume that the test is executed as
many times as needed to observe all possible verdicts according to our testability
hypothesis. So, for a test T and implementation SUT, we write verdsyr(T) to
denote the set of verdicts observed when T is executed to test SUT.

If fail € verdsyr(T), the SUT is faulty (if T is in Ezhaustz (TS)). In this
case, we can stop the testing activity, since the SUT needs to be corrected.
Otherwise, we can determine additional properties of the SUT, considering the
test verdicts. The SUT is a black box, but combining the knowledge that it is
in the fault domain and has not failed a test, we can refine the fault domain.

If fail ¢ wverdsyr(T), both inc and pass bring relevant information. We
consider a test T'r(¢, a), and recall that the SUT refines the fault domain FD.
If pass € verd;(Tr(t,a)), then t € traces [SUT], but t ™ (a) & traces [SUT].
Thus, the fault domain can be updated, since we have more knowledge about the
SUT: it does not have the trace ¢ ™ (a). Otherwise, if verd;(Tr(t, a)) = {inc},
the trace ¢t was not completely executed, and hence the SUT does not implement
t. We can, therefore, update the fault domain as well.

In both cases, we include in the fault domain knowledge about traces not
implemented. Information about implemented traces is not useful: given the
definition of traces refinement, it cannot be used to reduce the fault domain.

Given a fault domain FD and a trace ¢, such that ¢ & traces [SUT], we define
a new fault domain as follows. First, we define a process NOTTRACE(t), which
tracks the execution of each event in ¢, behaving like the process RUN (X)) if the
corresponding event of the trace does not happen. If we get to the end of ¢, then
NOTTRACE(t) prevents its last event from occurring. It, however, accepts any
other event, and, at that point, also behaves like RUN (X).

NOTTRACE({(a))=0¢: X\ {a} e e - RUN(Y)
NOTTRACE({a) " t) = a - NOTTRACE(t)

O

(Oe: X\ {a} e e — RUN(X))

Formally, if the monitored trace is a singleton (a), then a is blocked by the
process NOTTRACE({a)). It offers in external choice all events except a: those
in the set X' of all events minus {a}. If a different event e happens, then (a) is
no longer possible and the monitor accepts all events. If the monitored trace is
(a) ™ t, for a non-empty ¢, then, if a happens, we monitor t. If a different event
e happens, then (a) ™ ¢ is no longer possible and the monitor accepts all events.

We notice that NOTTRACE is not defined for the empty trace, which is
a trace of every process, and that, as required, ¢ & traces [NOTTRACE(t)].
On the other hand, for any trace s that does not have ¢ as a prefix, we have
that s € traces [NOTTRACE(t)]. To obtain a refined fault domain FDU(t), we
compose FD in parallel with NOTTRACE(t).

FDU(t) = FD || X] NOTTRACE(t)



1: procedure TESTGEN(S, FDinit, SUT)

2: FD < FDijnit

3: failed < false

4: TS «+ 0

5: while = (S Cr FD) A — failed do

6 Select a shortest ¢ € (traces [F'D] N traces [S]) \ T'S
7 if initials(FD/t) \ initials(S/t) # () then

8: Select a € initials(FD/t) \ initials(S/t)

9: verd <— ApplyTest(SUT, Tr(t,a))

10: if fail € verd then

11: failed < true

12: else if pass € verd then

13: FD < FDU(FD,t " (a))

14: else > that is, verd = {inc}
15: FD + FDU(FD,t)

16: end if

17: else > that is, nitials(FD/t) \ initials(S/t) = 0
18: TS + TSU{t}

19: end if

20: end while

21: return - failed

22: end procedure

Fig. 1. Procedure for test generation

The parallelism requires synchronisation on all events and, therefore, controls
the occurrence of events as defined by NOTTRACE(t). So, the fault domain
defined by FDU (t) excludes processes that perform ¢.

Since ¢ & traces [SUT] and FD Ty SUT, then FDU (¢) Cp SUT. Thus, we
have FD T FDU(t) ¢ SUT. If the fault domain trace refines the specification
S, we have that S C FD Cp SUT; thus, we can stop testing, since S Ty SUT.

Based on these ideas, we now introduce a procedure TestGen for test gener-
ation. It is shown for a specification S, an implementation SUT, and an initial
fault domain FD;,;;. In the case that there is no special information about the
implementation, the initial fault domain can be simply RUN (X).

TestGen uses local variables failed, to record whether a fault has been found
as a result of a test whose execution gives rise to a fail verdict, and FD, to record
the current fault domain. Initially, their values are false and FD;,;;. A variable
TS records the set of traces for which tests are no longer needed, because all its
forbidden continuations, if any, have already been used for testing.

The procedure loops until it is found that the specification is refined by the
fault domain or a test fails. In each iteration, we select a trace ¢ that belongs both
to the specification and the fault domain (Step 6). A trace of the specification
that is not of the fault domain is guaranteed to lead to an inconclusive verdict,
as it is necessarily not implemented by the SUT.

Next, we check whether ¢ has a continuation that is allowed by the fault
domain FD, but is forbidden by S. If it has, we choose one of these forbidden



continuations a (Step 8). If not, ¢ is not (or no longer) useful to construct tests,
and is added to TS. A forbidden continuation a of S that is also forbidden by
FD is guaranteed to be forbidden by the SUT. So, testing for a is useless.

The resulting test T'r (¢, a) is used and the set of verdicts verd is analysed as
explained above, leading to an update of the fault domain. The value returned
by the procedure indicates whether the SUT trace refines S or not.

Ezxample 6. We consider as specification the Counter from Example 1. A few
tests for traces refinement obtained by applying Tr(¢,a) to the traces ¢ of
Counter are sketched below in order of increasing length.

Tr({), sub) = pass — sub — fail - STOP
Tr({add, sub), sub) = inc — add — inc — sub — pass — sub — fail - STOP
Tr({add, add), add) = inc — add — inc — add — pass — add — fail = STOP
Tr({add, add, sub, add), add) =

inc— add —inc— add — inc— sub — inc— add — pass — add — fail — STOP
Tr({add, add, sub, sub), sub) = ...

This is, of course, an infinite set, arising from an infinite set of traces. We note,
however, that there are no tests for a trace that has one more occurrence of add
than sub, since, in such a state, Counter has no forbidden continuations.

The verdicts depend on the particular SUT; we consider below one exam-
ple: SUT = add — add — STOP. We note that, at no point, we use our
knowledge of the SUT to select tests. That knowledge is used just to identify
the result of the tests used in our procedure.

In considering TestGen(Counter, SUT, RUN (X)), the first test we execute is
Tr({), sub), whose verdict is pass. So, we have (sub) & traces [SUT], and the up-
dated fault domain is FDy = NOTTRACE((sub)) = add — RUN (X). The par-
allelism with the fault domain RUN(X) does not change NOTTRACE ({sub)).

Counter is not refined by FD;, which after the event add has arbitrary be-
haviour. The next test is Tr({add, sub), sub), whose verdict is inc. Thus, we
have that (add, sub) ¢ traces [SUT]. Now, the fault domain is FD; below.

FD,

= FD; [ X]| NOTTRACE({add, sub))

= (add — RUN(X)) [ X]| (sub - RUN(X) O add — add — RUN (X))
= add — add — RUN(X)

The next test is Tr({add, add), add) with verdict pass. Thus, FDs is the pro-
cess add — add — sub — RUN(XY). Next, Tr({add, add, sub, add), add) gives
verdict inc, and we get FDy = add — add — sub — sub — RUN(X) when
we update the fault domain. Finally, Tr({add, add, sub, sub), sub) has verdict
inc as well. So, FDs = add — add — sub — STOP is the new domain. Since
Counter Cp FDs, the procedure terminates indicating that SUT is correct. 0O

Our procedure, however, may never terminate. We discuss below some cases
where we can prove that it does.

10



5 Generating test sets: termination

A specification that has a finite set of (finite) traces is a straightforward case,
since it suffices to test with each trace and each forbidden continuation. Our
procedure, however, can still be useful, because useless tests may be used if the
fault domain is not considered. Our procedure can reduce the number of tests.

In this scenario, our procedure terminates because, for any maximal trace
t of the specification (that is, a trace that is not a prefix of any other of its
traces), all events are forbidden continuations. Thus, once ¢ is selected and all
tests derived from the forbidden continuations are applied, either we find a fault,
or the fault domain is refined to a process that has no traces that extends t.

When all maximal traces of the specification are selected (and the corre-
sponding tests are applied), if no test returns a fail verdict, no trace of the fault
domain extends a maximal trace of the specification. Thus, if no test returns a
fail verdict, any trace of the fault domain is a trace of the specification and the
procedure stops indicating success, since, in this case, S Cp FD.

We now discuss a scenario where the specification does not have a finite set
of traces, but the SUT does. Once a trace t is selected, if the set of events, and,
therefore, forbidden continuations is finite, with the derived tests, we can deter-
mine whether or not the SUT implements any of the forbidden continuations.
Moreover, if no pass verdict is observed, ¢ itself is not implemented.

We note that if the SUT is incorrect, that is, it does not trace refine the
specification, the procedure always terminates.

Lemma 2. If = (S C¢ SUT), then TestGen(S, FDjnit, SUT) terminates (and
returns false), for any fault domain FDy; and finite SUT.

Proof By - (S Cr SUT), there exists a trace s € traces [SUT] \ traces [S].
Let ¢ be the longest prefix of s that is a trace of S, that is, the longest trace in
pref (s) N traces [S], which gives rise to the shortest test that reveals an invalid
prefix of s. Let a be such that ¢ ™ (a) € traces [SUT] \ traces [S]. We know that
a is a forbidden continuation of ¢, since ¢ € traces [S], but ¢t ™ (a) ¢ traces [S].
Moreover, since traces [SUT] C traces [FD], it follows that ¢t~ (a) € traces [FD];
hence a € initials(FD/t)\ initials(S/t). Thus, there exists a test Tr(t, a) which,
when applied to the SUT produces a fail verdict.

Since t is the longest trace in pref (s)Ntraces [S], tests generated for any pre-
fix of ¢t do not exclude ¢ from the traces of the updated fault domain. Moreover,
the event a remains in initials(FD/t) \ initials(S/t), since no tests for traces
longer than ¢ are applied before ¢. Therefore, the test Tr(¢, a) is applied (unless
a test for a trace of the same length of ¢ is applied and the verdict is fail, in
which case the result also follows). In this case, TestGen (S, FD;pit, SUT) assigns
true to the variable failed, since the verdict is fail and terminates with — failed,
that is, false. o

Now we consider the case when the SUT is correct and finite. For some
specifications, like the Counter from Example 1 the procedure terminates, but
not for all specifications as illustrated below.
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Ezample 7. We consider UNBOUNDED = a — UNBOUNDED 0O b — STOP,
the initial fault domain FD,,;; = RUN(X), where X = {a, b}, and the SUT
STOP. In TestGen(UNBOUNDED, SUT, RUN (X)), the first trace we choose is
(), for which there is no forbidden continuation, and so, no test. The next trace
is (a), for which again there is no forbidden continuation. For (b), the events a
and b are forbidden continuations; the test T7((b), a) results in an inc verdict.
Thus, the fault domain is updated to FDy = FDU(FDjy, (b)) below.

FD; = FD,y1 || 2] NOTTRACE((b))
=RUN(Y) | X]a— RUN(X)
=a— RUN(X)

As expected, (b) is not a trace of the fault domain anymore and no further tests
are generated for it: it is never again selected in Step 6.

The next trace we select is (a, a), for which there is no forbidden continuation.
Then, we select (a, b), with forbidden continuations a and b. Tr({a,b), a) is
executed with an inc verdict. The next fault domain is FDy = FDU(FD, (a, b)).

FDy = FD, [ ¥]| NOTTRACE({a, b))
=(a = RUN(X))[X]) (b - RUN(X)O a — a— RUN(XY))
=a—a— RUN(XY)

In fact, the refined fault domains are always of the form

a—a—..—a— RUN(X)

This is because there is no test generated for a trace (a)k, for k > 0. So, the pro-
cedure does not terminate. This happens for any correct SUT with respect to the
specification UNBOUNDED. For an incorrect SUT, the procedure terminates.
O

Ezxample 8. We now consider Counter and why our procedure stops for its
correct finite implementations. First, we note that our procedure uses traces
of increasing length for deriving and applying tests, and for a finite SUT,
there is a k such that all traces of the SUT are shorter than k. We con-
sider a trace ¢t € traces[Counter] of length k. There are three possibilities
for Counter/t. If Counter/t = Counter or Counter/t = Counter2, we have
initials(Counter/t) # X and, thus, there is a test Tr(t, a) for a forbidden sub
or add. The verdict for this test is inc because the SUT has no trace of the
length of ¢ and the fault domain is updated, removing ¢ as a trace of the fault
domain and, thus, as a possible trace of the SUT. If Counter/t = Counterl, we
have that initials(Counter/t) = X and no test can be derived from t. However,
for each trace s, such that ¢t ~ s € traces [Counter], s starts with either add or
sub. In either case, a test will be generated, since Counter/t ™ (add) = Counter2
and Counter/t ™ (sub) = Counterl, for which there are tests, as seen before.
For those tests, the verdict is inc, the fault domain is similarly updated, and
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the traces t 7 (add) and t 7 (sub) are removed. The fact that ¢ for which
Counter/t = Counterl cannot be arbitrarily extended just to traces without
tests is the key property required for the procedure to terminate.

For some specifications, like UNBOUNDED), there may be no tests for an
unboundedly long trace. In this case, a correct SUT does not fail and, in spite
of this, no test is applied that prunes the fault domain. O

To characterise the above termination scenario, we introduce some notation.

Given traces r and ¢, we say that r is a prefix of ¢, denoted r < ¢ if there
exists s, such that r ™ s = ¢. A prefix is proper, denoted r < ¢, if s # (). We
say that ¢ is a (proper) suffix of r if, and only if, r is a (proper) prefix of ¢. We
denote by pref(t) all prefixes of ¢, that is, pref(t) = {s : X* | s < t}, and by
ppref (t), all proper prefixes of t, that is, ppref (t) = pref(t) \ {¢}. Similarly, we
denote by suff (t) the set of all suffixes of ¢.

For a process S and k > 0, we define the set traces[S], of the traces
of S of length k. Formally, traces[S], = {t : traces[S] | #t = k}. An-
other subset hfc(S, FD) of traces of S includes those for which there is at least
a forbidden continuation that takes into account the fault domain. Formally,
hfc(S, FD) = {t : traces [S] | initials(FD/t) \ initials(S/t) # 0}. Importantly,
for each t € hfc(S, FD), there exists at least one test Tr(t, a) for a forbidden
continuation @ that is allowed by the fault domain. Finally, given a set of traces
@, we denote by minimals(Q) the set of traces of @ that are not a proper prefix
of another trace in Q. Formally, minimals(Q) ={t: Q |~ Js: Q @ t < s}.

We use hfc(S, FD) to define conditions for termination of the procedure.

Lemma 3. For a specification S and a fault domain FD;,, if for any finite set
of traces P C traces [S], there exists a k > 0, such that, for each r € traces [S],,
we have that there is a prefix of r that is not in P and has a forbidden continua-
tion, that is, ((pref(r)\ P)Nhfc(S, FDinit)) # 0, then TestGen(S, FDjnit, SUT)
terminates for any finite SUT.

Proof If = (S Cr SUT), by Lemma 2, the procedure terminates.

We, therefore, assume that S T¢ SUT, and so traces [SUT| C traces [S].
Finiteness of the SUT means that traces [SUT] is finite. Let £ > 0 be such that,
for each r € traces [S],,, we have ((pref(r) \ traces [SUT]) N hfc(S, FDinit)) # 0.
This k is larger than the size of the largest trace of SUT, since otherwise
pref(r) \ traces [SUT] is empty, and it exists because traces [SUT] is finite.

Let now Q = (pref(traces[S],) \ traces [SUT]) N hfc(S, FDjni) and let
M = minimals(Q). Let p € traces [SUT]. Let r € traces[S], be such that
p < r. There is at least an s € pref(r), such that p < s and s € hfe(S, FD;pnt)
because ((pref(r) \ traces [SUT]) N hfc(S, FDinst)) # 0. Without loss of gener-
ality, assume that s is the shortest such a trace. Thus, s € M and p € pref (M),
since p < s. It follows that traces [SUT] C pref (M) since p is arbitrary.

For each ¢ € M, there exists a € initials(FDyn;/t) \ initials(S/t), since
t € hfc(S, FDnit) and from the definition of hfe(S, FD;pt). Then, if the test
Tr(t, a) is applied to the SUT, the verdict is inc, since ¢ & traces [SUT] because
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te€M C Q and QNtraces [SUT] = 0. In this case, the fault domain is updated
so that t is not a trace of the fault domain anymore.

Thus, if all tests derived for each ¢ € M are applied, we obtain a
fault domain FD such hat traces [FD] C pref(M). As all traces in M have
length at most k, eventually, all traces in M are selected (unless the pro-
cedure has already terminated) and the tests derived for those traces are
applied. As pref(M) C Q@ C hfe(S,FDinit) C traces[S], it follows that
traces [FD] C traces[S], that is, S ©p SUT. TestGen(S, FDjnit, SUT) then
terminates, with failed = false, and the result is true.

O
One scenario where the conditions in Lemma 3 hold is if there is an event in
the alphabet which is not used in the model. In this case, that event is always a
forbidden continuation and thus a test is generated for all traces. Even though
this can be rarely the case for a specification at hand, the alphabet can be
augmented with a special event for the purpose, guaranteeing that the procedure
terminates. Such an event would act as a probe event. As said before, in practice,
it is best to avoid probes since the tests that they induce can reveal no faults.

6 Tool support and case studies

We have developed a prototype tool that implements our procedure. The tasks
related to the manipulation of the CSP model, such as checking refinement,
computing forbidden continuations, determining verdicts, and so on, are handled
by FDR. The tool is implemented in Ruby. It submits queries (assert clauses) to
FDR and parses FDR’s results in order to perform the computations required
by the procedure. Specifically, FDR is used in two points:

1. for checking whether the specification refines the fault domain (Line 5). It
is a straightforward refinement check in FDR;

2. for computing initials and forbidden continuations (Lines 7 and 8). For in-
stance, to compute the complement of initials(S/t), we invoke FDR to check
S Cr TTHENANY (t), where S is compared to the process TTHENANY (t)
that performs ¢ and then any event e from Y. It is defined as follows.

TTHENANY (()) =Oe: X o ¢ — STOP
TTHENANY ((a) ™ t) = a — TTHENANY (t)

If ¢ is a trace of S, counterexamples to this refinement check provide traces
t ™ (e), where e is not in the set initials(S/t). Thus, we obtain initials(S/t)
by considering the events in X for which no such counterexample exists.

Currently, our prototype calls FDR many times from scratch. As a future opti-
mization, we will incorporate the caching of the internal results of the FDR, to
speed up posterior invocations with the same model.

We have used our prototype to carry out two case studies, the Transputer-
based sensor for autonomous vehicles in [23], and the Emergency Response Sys-
tem (ERS) in [2]. The sensor is part of an architecture where each sensor is
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associated with a Transputer for local processing and can be part of a network
of sensors. The ERS allows members of the public to identify incidents requir-
ing emergency response; it is a system of operationally independent systems (a
Phone System, a Call Center, an Emergency Response Unit, and so on). The
ERS ensures that every call is sent to the correct target. It is used in [18] to
assess the deadlock detection of a prototype model checker for Circus.

For each case study, we have randomly generated 1000 finite SUTs with the
same event alphabet. The experimental results confirm what we expected from
the lemmas of the previous section. Namely, all incorrect SUT's are identified and
the procedure terminates for all finite SUTs identified in Lemma 3. The proto-
type tool and the CSP model for the sensor, the ERS and other examples are in
http://www.github.com/adenilso/CSP-FD-TGen. The data for the SUTs used
in this case study is also available.

7 Conclusions

In this paper, we have investigated how fault domains can be used to guide test
generation from CSP models. We have cast core notions of fault-domain testing
in the context of the CSP testing theory. For testing for traces refinement, we
have presented a procedure which, given a specification and a fault domain, it
tests whether an SUT trace refines the fault domain. If the SUT is incorrect, the
procedure selects a test that can reveal the fault. In the case of a correct SUT,
we have stated conditions that guarantee that the procedure terminates.

There are specifications for which the procedure does not terminate. We
postulate that for those specifications, there is no finite set of tests that is able
to demonstrate the correctness of the SUT. Finiteness requires extra assumptions
about the SUT. We plan to investigate this point further in future work.

The CSP testing theory also includes tests for conf, a conformance relation
that deals with forbidden deadlocks; together, tests for conf and traces refine-
ment can be used to establish failures refinement. Another interesting failures-
based conformance relation for testing from CSP models takes into account the
asymmetry of controllability of inputs and outputs in the interaction with the
SUT [6]. It is worth investigating how fault domains can be used to generate
finite test sets for these notions of conformance.

Acknowledgements

The authors would like to thank the partial financial support of the following
entities: Royal Society (Grant: N1150186), FAPESP (Grant: 2013/07375-0). The
authors also are thankful to Marie-Claude Gaudel, for the useful discussion in
an early version of this paper.

References

1. A. Alberto, A. L. C. Cavalcanti, M.-C. Gaudel, and A. Simao. Formal mutation
testing for Circus. IST, 81:131-153, 2017.

15



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Z. Andrews et al. Model-based development of fault tolerant systems of systems.

In SysCon, pages 356-363, April 2013.

A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in CSP. In 9th
ICFEM, volume 4789 of LNCS, pages 151-170. Springer, 2007.

A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in Circus. Acta
Informatica, 48(2):97-147, 2011.

A. L. C. Cavalcanti and M.-C. Gaudel. Data Flow coverage for Circus-based testing.
In FASE, volume 8441 of LNCS, pages 415-429, 2014.

A. L. C. Cavalcanti and R. Hierons. Testing with Inputs and Outputs in CSP. In
FASE, pages, 359-374, 2013.

T. S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3):178-187, 1978.

KA El-Fakih et al. FSM-based testing from user defined faults adapted to incre-
mental and mutation testing. Programming and Computer Software, 38(4):201—
209, 2012.

S. Fujiwara and G. von Bochmann. Testing non-deterministic state machines with
fault coverage. In FORTE, pages 267—280. North-Holland, 1991.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 A
Modern Refinement Checker for CSP. In TACAS, pages 187201, 2014.

R. M. Hierons and H. Ural. Optimizing the length of checking sequences. IEEE
TC, 55(5):618-629, 2006.

W.-L Huang and J. Peleska. Exhaustive model-based equivalence class testing. In
ICTSS, pages 4964, 2013.

I. Koufareva, A. Petrenko and N. Yevtushenko Test Generation Driven by User-
defined Fault Models. In TestCom, pages 215-236, 1999.

G. Luo et al. Test selection based on communicating nondeterministic finite-state
machines using a generalized Wp-method. IEEE TSE, 20(2):149-162, 1994.

A. J. R. G. Milner. A Calculus of Communicating Systems, volume 92. Springer
Verlag, 1980.

A. Moraes et al. A family of test selection criteria for timed input-output symbolic
transition system models. SCP, 126:52-72, 2016.

L. J. Morell. A theory of fault-based testing. IEEE TSEg, 16(8):844-857, Aug
1990.

A. Mota et al. Rapid prototyping of a semantically well founded Circus model
checker. In SEFM, volume 8702 of LNCS, pages 235-249. Springer, 2014.

S. Nogueira, A. C. A. Sampaio, and A. C. Mota. Test generation from state based
use case models. FACJ, 26(3):441-490, 2014.

J. Peleska and M. Siegel. Test automation of safety-critical reactive systems. In
FM, volume 1051 of LNCS, 1996.

A. Petrenko and N. Yevtushenko. Testing from partial deterministic FSM specifi-
cations. IEEE TC, 54(9), 2005.

A. Petrenko et al. On fault coverage of tests for finite state specifications. Computer
Networks and ISDN Systems, 29(1):81-106, 1996.

P. J. Probert, D. Djian, and H. Hu. Transputer architectures for sensing in a robot
controller: Formal methods for design. Concurrency: Practice and Ezperience,
3(4):283-292, 1991.

A. W. Roscoe. Understanding Concurrent Systems. Springer, 2011.

J. Tretmans. Test generation with inputs, outputs, and quiescence. In TACAS’96,
volume 1055 of LNCS, pages 127-146. Springer, 1996.

Y. T. Yuand M. F. Lau. Fault-based test suite prioritization for specification-based
testing. Information and Software Technology, 54(2):179-202, 2012.

16



