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Abstract. Safety-Critical Java (SCJ) is a version of Java for real-time
programming that facilitates certification of implementations of safety-
critical systems. It is the result of an international effort involving indus-
try and academia. What we provide here is, as far as we know, the first
formalisation of the SCJ model of memory regions. We use the Unifying
Theories of Programming (UTP) to enable the integration of our the-
ory with refinement models for object-orientation and concurrency. In
developing the SCJ theory, we also make a contribution to the UTP by
providing a general theory of invariants (of which the SCJ theory is an in-
stance). Our results are a first essential ingredient to formalise the novel
programming paradigm embedded in SCJ, and enable the justification
and development of reasoning techniques based on refinement.
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1 Introduction

Two language (subsets) have dominated high-integrity real-time engineering.
Ada [2], which provides good support through its Spark [1] and Ravenscar sub-
sets [4] and the Spark Examiner Toolset, has a limited community. Safe(r) sub-
sets of C/C++ are often the choice, but lack support for formal development. In
both cases, various modern programming features found useful in other sectors
of the software industry are left out on the grounds of safety.

An international effort has produced a high-integrity real-time version of
Java: Safety-Critical Java (SCJ) [13]. It achieves a compromise between the
safety of Ada and the popularity of C/C++, and provides an ambitious novel
take on the combined safe use of object orientation and real-time programming.
SCJ lacks, however, a formal underpinning for its programming models. In this
paper, we provide a formalisation for its memory management model.

SCJ is based on a subset of Java augmented by the Real-Time Specification
for Java (RTSJ) [19]. To understand the full implications of the SCJ memory
model, it is necessary to appreciate the run-time data structures maintained by a
Java Virtual Machine. The main concern is the heap and the stacks. All objects
are placed on the heap, which is scanned by a garbage collector to remove any
that are unreachable. Variables that are local to methods are stored in a stack;
each thread of control has an associated stack. Variables and object fields can
be of a primitive type (int, short, and so on) or of a reference type. We ignore
here all issues associated with native methods.



The RTSJ supplements Java’s garbage-collected heap memory model with
support for memory regions [18] called memory areas. As with the Java heap,
these regions are used to store dynamically created objects.

SCJ restricts the RTSJ memory model to prohibit use of the heap. The
RTSJ and SCJ introduce two new memory areas: scoped and immortal memory.
Objects allocated in a scoped memory have a lifetime that is determined by the
number of threads that are currently using that scoped memory area. When there
are no such threads, all the objects are collected. In contrast, objects created in
immortal memory have a lifetime equal to that of the program. A program can
have many scoped memory areas, but only a single instance of immortal memory.
To avoid dangling references, there are rules that must be obeyed by reference
assignments. Violation of these rules results in runtime exceptions. SCJ defines
a fixed structure for the use of scoped memories.

In Java, programmers need not be concerned with memory management. In
contrast, in SCJ (and the RTSJ), a programmer must consider in which area to
create objects according to their anticipated lifetime. Tools and techniques are
needed to ensure efficient use of memory and absence of run-time errors.

SCJ includes annotations that can be used to document programs, and en-
able static verification of properties including memory safety. The work in [17]
presents rules for use of the annotations, and a tool that checks statically that
these rules are followed. It is not trivial to convince ourselves that the rules pro-
posed achieve the level of memory safety claimed. While we do not necessarily
expect to find any problems, the formalisation of the memory model is essential
for the justification of the soundness of such techniques.

Our first contribution is an informal description of the SCJ memory model
that explains the rationale for its design. (For a discussion of the design of
the concurrency model, we refer to [20].) As a second contribution, we provide
a relational semantics for this model; it is based on Hoare and He’s Unifying
Theories of Programming (UTP) [10]. Finally, we present a general UTP theory
for operation and state invariants, which we instantiate to capture in an elegant
and concise way the properties of the SCJ structure of memory areas.

The UTP is a relational framework that supports refinement-based reasoning
about a variety of paradigms. It covers models for concurrent, functional and
logic programming, for instance. It has also been used to define constructs related
to object-orientation [15] and time [16]. By casting the SCJ memory model in
the UTP, we pave the way for its integration with these theories, that cater for
other, also very important, aspects of an SCJ program.

Next, we present informally the SCJ memory model; an introduction to the
UTP is provided in Section 3. Section 4 presents a UTP theory for program
invariants. In Section 5, we use those results to formalise the SCJ memory model.
We draw our conclusions, and discuss related and future work in Section 6.

2 Safety-Critical Java memory model

SCJ recognises that safety-critical software varies considerably in complexity.
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Fig. 1. Safety Critical Mission Phases (taken from [13])

At one end of the spectrum, the application consists of a single thread execut-
ing a single function on a single processor with a simple timing constraint. At
the other end, it is multithreaded executing in multiple modes on multiple pro-
cessors. Consequently, there are three compliance levels for SCJ programs and
implementations. In this work, we are concerned with Level 1, which, roughly,
corresponds in complexity to the Ravenscar profile for Ada.

The SCJ programming model is based on the notion of missions, which are
managed by a mission sequencer (see Figure 1). At Level 1, missions may be
composed into sequences, but nested missions are prohibited. A Level 1 mission
consists of a bounded set of asynchronous event handlers (ASEH). Here, these
can be considered as being equivalent to real-time threads. Both periodic and
aperiodic threads are supported. Each thread executes a sequence of releases that
are either time triggered (periodic) or event triggered (aperiodic). Consequently,
an SCJ program is a concurrent program with threads of control for the main
program, the mission sequencer, and one for each of the ASEHs.

The main goal of the SCJ memory model is to support dynamic memory
management. Traditionally, safety-critical systems do not allocate memory dur-
ing the execution of a mission due to (a) the error-prone nature of manual allo-
cation and deallocation schemes (typified by malloc and free in C), and (b) the
complexity of automatic deallocation schemes based on garbage collection.

The region-based approach of the RT'SJ provides safer and more predictable
support for dynamic memory management, but the overall model is still complex.
SCJ, consequently, constrains the use of its features: garbage collection is not
supported, and only a restricted version of the scoped memory model is provided.

Basically, the structure of the memory areas is fixed as shown in Figure 2.
Every thread of control in an SCJ program has a default memory allocation
context. This is the area in which created objects are placed. The main program’s
thread of control has immortal memory as its default allocation context. It is
this thread that, for instance, creates the mission sequencer and any objects that
should exist throughout the lifetime of the program.

The mission sequencer’s thread of control is started with immortal memory
as its default allocation context. It creates the mission memory, a scoped area
that becomes the default allocation context for a mission. There is no thread
of control associated with a mission. Instead, the mission sequencer’s thread
performs the mission initialisation, during which the ASEHs are created. The
mission memory is cleared at the end of each mission. Any objects that must
remain across missions must be stored in immortal memory.
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Fig. 2. SCJ memory model

Each ASEH has an associated per-release memory area: the default memory
allocation context for its releases. It is cleared at the end of each release, for
reuse in the next release. Any object that is required to live across releases must
be placed in mission memory. An ASEH can create a temporary private scoped
memory area and change its default allocation context to the newly created area.
More than one of these can be created and they are used in a LIFO manner. The
stack of private temporary memory areas arises from nested calls to a create
method. As the inner calls are finished, memory areas are popped off.

In the example shown in Figure 2 there are, therefore, six thread-of-control
stacks: one for the main program, one for the mission sequencer, and one for
each ASEH; a single immortal memory — accessible by all threads of control; a
single mission memory — accessible by the ASEHs and the mission sequencer;
one private per-release memory area for each ASEH — accessible only by the
associated ASEH; and a stack of temporary private scoped memory area for
each ASEH — accessible only by the associated ASEH.

The aim of this restricted model is to ensure that dangling references cannot
occur, and that programs are amenable to static analysis techniques that can
determine the absence of run-time errors, such as illegal-assignment errors. A
tool is provided in [17]. Section 5 formalises this model in the UTP.

3 Unifying theories of programming

In the UTP, relations are defined by predicates over an alphabet (set) of obser-



vational variables that record information about the behaviour of a program. In
the theory of general relations, these include the programming variables v, and
their dashed counterparts v’, with v used to refer to an initial observation of
the value of v, and v’ to a later observation. The set of undecorated (unprimed)
variables in the alphabet P of a predicate P is called its input alphabet inaP,
and the set of dashed variables is its output alphabet outaP. A condition is a
predicate whose alphabet includes only input variables.

Theories are characterised by an alphabet and by healthiness conditions de-
fined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with an alphabet A are all the predicates on A which are
fixed points of the healthiness conditions. As an example, we consider designs.

The general theory of relations does not distinguish between terminating
and nonterminating programs. This is achieved in the theory of designs, which
includes two extra boolean observational variables to record the start and the
termination of a program: ok and ok’. The monotonic idempotents used to spec-
ify the healthiness conditions for designs can be defined as follows.

H1 P=ok=P
H2 P =P;J, where J = (ok=ok')ANv =v

If P is H1-healthy, then it makes no restrictions on the final value of variables
before it starts. If P is H2-healthy, then termination must be a possible outcome
from every initial state. The functional composition of H1 and H2 is named H.

Every design D can be written in the form P - @, where P is its precondition,
and @ its postcondition; P - @ is defined as ok A P = ok’ A Q. Precisely, every
design D can be written as = Df - D?, where f is the boolean false, ¢ is true,
and DY is the predicate D[b/ok'] obtained by substituting b for ok’ in D.

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. A conditional is written as P<1br> Q; its behaviour is (described
by) P if the condition b holds, else it is defined by Q.

P<abr>Q=(bAP)V(-bAQ), where a(b) C a(P) = a(Q).
Sequence is relational composition.
P; @ =3Jwy e Plug/w'] A Q[wp/w], where outa(P) = ina(Q) = w’

The relation P; @ is defined by a quantification that relates the intermediate
values of the variables. It is required that outa(P) is equal to ina(Q)’, which is
named w’. The sets w, w’, and wy are used as lists that enumerate the variables
of w and the corresponding decorated variables in the same order.

A central concern of the UTP is refinement. A program P is refined by a
program @, written P C @, if, and only if, P <= @, for all possible values of the
variables of the alphabet. The set of alphabetised predicates form a complete
lattice with this ordering. Recursion is modelled by weakest fixed points.



The design that models skip, the program that terminates without chang-
ing any variable, is I = (¢rue b v = v), where v is the list of programming
variables in the alphabet. Interestingly, II is the left identity of sequential compo-
sition, but not necessarily the right identity. This requires that the precondition
does not contain dashed variables, a property not adequate, for instance, in the
theory of reactive designs used as a concurrency model (for CSP).

A theory needs to be closed with respect to the programming operators: they
need to take healthy predicates to healthy predicates, so that they can be used
to define models compositionally. In the next section, we provide some general
results for the healthiness conditions of a theory of designs with invariants.

4 Invariants in the UTP

In [10], designs are used to construct more general relations to model, for ex-
ample, reactive programs. For these, even in the presence of divergence, some
properties hold. In [9], we take this approach in a theory for objects and sharing
as available in Java. Our theory, in that case, captures physical properties of
sharing; for instance, variables that share a location have the same value.

On the other hand, when an SCJ program aborts, there is no guarantee
that its restrictions on memory areas are maintained. We, therefore, present
our theory as a subset of the theory of designs. Other examples of subtheories
of designs are presented in the line of work established in [12], which provides
UTP theories for BPEL-like languages, with new forms of nontermination to
handle exceptions. Here, we provide a general account of design subtheories
characterised by invariants and with the standard notion of termination.

It is in the spirit of the UTP to define theories for particular programming
features, and combine them to capture more complex paradigms. In this line,
it could be conceivable to treat the memory structure of SCJ programs and
termination separately. We would characterise a subtheory of relations using a
healthiness condition HSCJ, for instance, and then use H to embed it in the
theory of designs. For an HSCJ-healthy predicate P whose alphabet does not
include ok and ok’, however, the design H(P) is = P F false. Its precondition
considers the possibility of HSCJ not holding (even in an non-abortive state),
and, in this case, it is miraculous. What we need instead is a theory that allows
for the memory restrictions to be violated just in the case of nontermination.

In what follows, subtheories of designs are defined by healthiness conditions
that either capture operation invariants or invariants of a single state observa-
tion. In both cases, invariants are only broken by nontermination.

4.1 Operation invariants

For an operation invariant defined by a predicate ¥, the subtheory of designs
that satisfy this invariant is characterised by the healthiness condition OIH.

OIH(¥) D =D A (ok A= Df = W)
An OIH(¥)-healthy design ensures that, when its precondition holds, so does ¥.



Theorem 1. OIH(¥) is a monotonic idempotent function on designs.
Proof. First, we show that OIH(¥)(D) is a design.

OIH(¥)(D)

= (= D' = DY A (ok A= Df = W)

[property of designs and definition of OIH(¥)]
= (ok A= DI = ok' A D*) A (ok A = DI = ¥) [definition]
=-DIFDt AW [propositional calculus and definition of designs]

Since ok A = (= Df = D* A W)f = ok A = Df, then OIH(¥) is idempotent.

Finally, to establish monotonicity, we consider designs D; and D, such that
Dy = D,. That OIH(¥)(D;) = OIH(¥)(D,), follows from — Df =~ Df. O

We define the healthy identity o (W) = OIH(¥)(II). For reflexive ¥, that is,
for those such that ¥[v/v'], we have that oy (¥) is the sequence left unit.

Theorem 2. If ¥ is reflexive, Ior(¥); D = D, for every OIH(¥)-healthy D.
Proof.

Ior(¥); D
=OIH(Y)(1I); OIH(W)(D) [definition of ITp; and D is OIH(¥)-healthy]
= (true v = v AW); (- DI - Dt AW) [Theorem 1]

= ok A = (¥[v/v'] A DI) = ok’ ANW[v/v'] A Dt AW

[definition of sequence and design, and predicate calculus]
=0k AN-Df = ok’ A\D' NW [ is reflexive]
=D [definition of design, Theorem 1, and D is OIH(¥)-healthy]

O

I o7 (¥) is not necessarily the right unit. Like in the theory of general designs,
this requires that the precondition refers to no dashed variables. Proofs of this
and other results mentioned below can be found in [6].

OIH(?) is closed with respect to conjunction, disjunction (which models
nondeterminism) and conditional. For closedness with respect to sequence, we
need ¥ to be transitive, that is, (¥; ¥) = ¥. The set of OIH(¥)-healthy designs
is a complete lattice, since it is the image of a monotonic idempotent healthiness
condition [10]. So, recursion can still be defined using weakest fixed points. The
bottom and top of the lattice are the same as that for the lattice of designs: abort,
that is, the design (false b true), and magic, (true b false).

4.2 State invariants

For a state invariant defined by a condition ), the subtheory of designs whose
input variables satisfy 1 is characterised by the following healthiness condition.

ISH(y)) D= DV (ok A= DI ANip= ok' A D?)
The invariant ¢ is part of the precondition of ISH(%)-healthy D.



Theorem 3. ISH(y) is an idempotent function on designs.

Proof. First, we show that ISH(¢))(D) is a design.

ISH(4)(D)
= (= D' DY V (ok A= Df A= ok’ A DY)

[property of designs and definition of ISH(¥)]
= (ok A= DI = ok' A D*)V (ok A = D Atp = ok’ A DY) [definition]
=-0kVDfV-yVok'AD? [propositional calculus]
=D/ Ay Dt [propositional calculus and definition of designs]

The arguments for idempotence and monotonicity are similar to those used in
Theorem 1. a

We define the healthy identity I;s(¢p) = ISH(¢)(I). It is indeed the left-unit of
sequence; this is a simple consequence of the definitions of IIjs (1)) and sequence,
and Theorem 3 above. Again, right unit does not hold in all cases.

ISH(¢)) is closed with respect to conjunction, disjunction, conditional, and
sequence. The bottom of the lattice that it defines is abort, but the top is
(¥ F false). This is miraculous only when ¢ holds.

The subtheory of designs whose output variables satisfy ¢’ is characterised
by the following healthiness condition. The predicate 1)’ is that obtained by
substituting all output alphabet variables for their input counterparts in .

OSH(y)) D =DA (ok A= Df ANp =)

We observe that OSH (%)) can be defined as OIH(y) = '), and that ¢ = ¢’ is
reflexive and transitive. So, it satisfies all the properties discussed in the previous
section. Most importantly, as shown below, ISH()) and OSH(v¢)) commute.

Theorem 4. ISH(¢)) and OSH(v)) commute.
Proof.

OSH() o ISH(y)(D)
= OSH(¥))(= ok vV Df v =4 v ok’ A D?)
[function composition, Theorem 3, and propositional calculus]
== (=0kV DI VoY)l (=0kV D v=i Vv DH)A @R =1)
[Theorem 1 and propositional calculus]
=D/ ANyt ok A= DI = (Dt A (¢ =)
[propositional calculus and definition of designs]
== (=0kVDYAYF=o0kVv DI v DA (h =)
[propositional calculus and definition of designs]
=ISH(= ok vV D/ v ok’ A Dt A (¢ = "))

[propositional calculus, definition of designs, and Theorem 3]



=ISH(= D/ - D* A (¢ = ¢")) [definition of designs]
= ISH(¢)) o OSH(¢))(D) [Theorem 1 and function composition]

O

As shown above, an ISH(¢)) and OSH(%))-healthy design D can be written as
(= Df Ay Dt A9'), so that 1 is assumed and established. Since ISH(1)) and
OSH(¢)) are idempotent, by Theorem 4, so is SIH(v)) = ISH(v)) o OSH(v) [10];
this is our healthiness condition for a theory with state invariant .

When healthiness functions C1 and C2 commute, then every predicate that is
(C1 o C2)-healthy is also C1 and C2-healthy. From this and the theorems above
and in Section 4.1, we can conclude that SIH(v)) distributes through conjunction,
disjunction, conditional, and sequence.

Finally, for operation and state invariants ¥; and 1o, OIH(¥1) and SIH(y)2)
commute. So, using an argument similar to that above, we can conclude that
a theory characterised by IH(¥1,12) = OIH(¥;) o SIH(3)2) is closed with re-
spect to conjunction, disjunction, conditional, and sequence. The same applies
to theories characterised by two operation invariants ¥; and Wo; OIH(¥;) and
OIH(¥;) commute, and define a theory with invariant ¥3 A W. A similar result
holds for state invariants ¥; and ;. The UTP theory for the SCJ memory model
presented in the next section combines several operation and state invariants.

5 A theory for the Safety-Critical Java memory model

In this section, we consider first a theory that captures the structure of memory
areas in SCJ. Afterwards, we extend it to take into account the values of the
variables stored in the memory areas.

Type definitions The elements of the stacks (for the program, mission sequencer,
and handlers) are frames, which define a context of execution for a method. To
provide a model for a frame, we introduce the notion of a variable name as an
element of the unspecified set VName, and of a reference: from a set Ref. We
also define the set of values as Value = PValue U Ref, where PValue is the
unspecified set of primitive values and the special value null. With these, we
can define Frame = VName -+ Value, so that a frame is a partial function
associating the names of the variables in scope to their values.

A function refsin : Frame — F Ref defines the finite set of references (to
objects in a memory area) in the stack. It is defined as refsIn f = ran(f > Ref),
using the range restriction operator >.

We identify a memory area with its contents; we do not capture issues related
to size. Concretely, we define the set MAreaC = Ref + OValue of memory con-
tents, where OValue is the set of record (object) values: functions that associate
fields to their values, that is, OValue = VName + Value.

We also define two functions refsRes, refsin : MAreaC' — F Ref. For a mem-
ory area ma, the set refsRes ma contains the references that identify objects
that reside in ma. The references used in these objects (to refer to other ob-
jects in the same or in other memory areas) are those in refsIn ma. Precisely,



refsRes ma = dom ma, and refsIn ma = |J(ran( (- > Ref)( ranma ) )). For a
memory area ma (or more precisely, for the contents ma of a memory area),
ran ma gives its objects. By using relational image _( — ) to apply the operator
(- > Ref) to all of them, we project out all their fields with a primitive or null
value. The ranges of these objects are the references used in ma; distributed
union provides a single set containing all of them.

In order to identify the handlers of a mission, we consider the set HName. It
contains valid handler identifiers, or names.

The alphabet of our theory includes eight extra observational variables de-
fined below, and their dashed counterparts, in addition to ok, ok’, and the pro-
gramming variables (and their dashed counterparts). We have nine healthiness
conditions, which are also specified and discussed in the sequel.

Alphabet First, we have the stacks pStack, msStack : stack Frame for the pro-
gram and the mission sequencer. The set handlers : F HName records the han-
dlers of the current mission, and the variable hStack : handlers — stack Frame
groups their stacks as a total function associating each handler to its stack.

To record the memory areas, we have first immortal, mission : MAreaC.
The per-release memory areas are grouped in perR : handlers — MAreaC. The
temporary private memory areas are organised in a stack as recorded in the
alphabet variable ¢Priv : handlers — stack MAreaC'. A simple model for a stack
is, of course, a sequence, whose last element is the top of the stack.

A stacked temporary private memory area is called a parent in relation to
all those areas of the same handler that are stacked afterwards. More generally,
the immortal memory area is the parent of the mission memory area, which is
a parent of all per-release memory areas. Additionally, the per-release memory
area of a handler is a parent of all its stacked temporary private memory areas.

Healthiness conditions We can only add object values to the immortal area. This
is an operation invariant, and gives rise to our first healthiness condition HSCJ1.
To define it, we introduce a function profile : MAreaC — (Ref + F VName).
For a memory area ma, the function profile ma associates each reference residing
in ma with the set of fields of the object that it identifies in ma. This is the
domain of the function (in OValue) that defines that object. Formally, we have
profile ma = {r : dom ma e r — dom(ma r) }. Our healthiness condition HSCJ1
requires that the immortal memory is changed only by adding new references to
its profile. Existing references remain, and the structure of the objects to which
they point (as captured by their sets of field names) is preserved.

HSCJ1 = OIH(profile immortal C profile immortal’)

The operation invariant for HSCJ1 is reflexive and transitive, because C is.
The references in the program stack can only target objects in the immortal
memory. This is specified by the healthiness condition HSCJ2, which uses a
lifted version of refsIn : stack Frame — F Ref that applies to stacks of frames
sf (instead of frames or memory areas). We can define it in terms of the version

10



of refsIn for frames as refsin sf = | J(refsIn( ran sf )). The range of sf is a set of
frames; we use relational image to apply refsIn to all of them. The distributed
union collects together all references occurring in all frames of sf.

HSCJ2 = SIH(refsIn pStack C refsRes immortal)

Analogously, the references in the immortal memory can only target objects in
the immortal memory itself. This is the state invariant specified below.

HSCJ3 = SIH(refsIn immortal C refsRes immortal)

Similarly, the references in the mission-sequencer stack and in the mission mem-
ory area are for objects either in the immortal or in the mission memory areas.
To capture this healthiness condition, we define refsRes : F MAreaC' — T Ref,
for a set of memory areas mas as refsRes mas = | J(refsRes( mas ). It collects
the references in each of the memory areas in mas.

HSCJ4
HSCJ5

SIH(refsIn msStack C refsRes {immortal, mission})
SIH(refsIn mission C refsRes {immortal, mission})

~
~

For each handler, the references in its stack are for objects in its own temporary
private areas, in its own per-release area, or in the mission or immortal memory.

YV h : handlers o
HSCJ6 = SIH refsIn (hStack h) C
refsRes ({immortal, mission, perR h} U ran(tPriv h))

For each handler, the references in its per-release memory area are for objects
in that same area, or in the mission or immortal memory areas.

HSCJ7 = SIH (Vh : handlers o )

refsin (perR h) C refsRes{immortal, mission, perR h}

Finally, in a temporary private memory area of any handler, the references target
objects that can be in the immortal memory, in the mission memory, in the
associated per-release memory for the same handler, in a parent stacked area,
or in that same temporary private memory area.

HSCJ8 =
Vh: handlers; i:1..#(tPrivh) e
SIH refsIn (tPriv hi) C
refsRes({immortal, mission,perRh} U{j:1..7i ® tPrivhj})

We use #s to denote the size of the sequence (or stack) s.
Finally, the memory areas are disjoint in their use of the reference space.

HSCJ9 =
SIH(disjoint (refsRes immortal, refsRes mission) — seqPR perR ™ seqTP tPriv)

We use seqPR perR and seqTP tPriv to denote the sequences of sets of references
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residing in the per-release and temporary private memory areas in perR and
tPriv. We omit the formal definition of these functions.

Our theory contains the fixed points of the healthiness conditions above.
They are the fixed points of HSCJ, which we define as the composition of all
the healthiness functions. With the results in Section 4, we conclude that HSCJ
is closed with respect to conjunction, disjunction, conditional, and sequence.

The healthiness conditions HSCJ2 to HSCJ8 are enough to ensure that every
SCJ program makes a safe use of memory, in the sense that, at no point, it has
a variable in a stack whose value is a dangling reference or can be used to reach
a dangling reference. HSCJ10 justifies the treatment of the separate memory
areas as a single global memory. We take advantage of that in the sequel, when
we consider the value of the variables in the stacks.

What we have not captured is the fact that during the lifetime of a mission,
we can only add objects to the mission memory. Similarly, objects can only
be added to each of the per-release and temporary private memory areas until
they are cleared. For the immortal memory, we have HSCJ1. It is not the case,
however, that profile mission C profile mission’, for example, is an invariant of
our theory. Since the mission area can be cleared, and later reused when a new
mission is started, then there is no guarantee that mission’ is at all related to
mission in every pair of observations of an SCJ program. The same comments
apply to the per-release and private temporary memory areas in perR and tPriv
in relation to the handler releases and the calls to the create method.

To establish the required properties, we need to keep a record of the sequence
of missions that have been executed. Additionally, to restrict the use of the per-
release and temporary private memory areas, during the execution of a mission,
we need to keep the history of releases and calls to the create method for
each ASEH. Details of how history can be added to our theory can be found
in [6]. For instance, we keep a sequence of identifiers for the missions that have
been executed, with a special identifier used to indicate that there is no mission
currently executing. This approach is similar to that adopted in [16, 5] to cater
for passage of time in the UTP theories for timed and synchronous processes.

Programming variables and their values Programming variables in the alphabet
can be specification or allocated variables. Specification variables are used to
write abstract definitions of the behaviour of programs; they model, for instance,
inputs and outputs. Allocated variables are included in one of the stacks.

Our next three healthiness conditions require that the value of every allocated
variable in the alphabet is in accordance with what is recorded in the stacks. To
define them, we use a function vars : stack Frame — F VName that characterises
the set of active variables in a given stack: those in the domains of the frames;
formally, vars sf = |Jdom( ran sf ), provided there are no redeclarations, that
is, disjoint {7 : 1.. #sf e i — dom(sf 7)}. (As usual, we assume that variable
names are not reused to avoid handling stacks of values for alphabet variables.)

The value of a variable vn (according to a stack sf and its associated memory
areas mas) is characterised by a set A of sequences of variable names, and a
function V that associates some of these sequences to primitive values. If the

12



value associated with vn in sf is primitive or null, then (vn) is the only sequence
in A. If; on the other hand, the value of vn is a reference (to an object), then
we also have all the (possibly infinite) extensions of (vn) that identify a field of
that object, or a field of one of its fields, and so on. The function V associates
the sequences of variable names that identify a variable or an object field with a
primitive or null value to this value. This characterisation of values is the same
used in [9], where we have defined a UTP theory for the Java memory model
that captures the structure of objects and sharing.

Formally, we define the value !(vn, sf, mas) using a dereferencing function
I_: VName x stack Frame x F MAreaC — P SName x (SName -+ PValue),
specified as !(vn, sf, mas) = (A(vn, sf, mas), V(vn, sf, mas)). Here, SName is
the set of possibly infinite sequences of variable names (from VName). The set
SName + PValue is that of the finite partial functions from SName to PValue.

The set A(vn, sf, mas) is defined as shown below.

A(vn, sf, mas) =
sn : SName |
head sn = vn A
let u == sval(vn, sf) e
u € PValue A tail sn = () V path(tail sn,|J mas, u)

Here sval(vn,sf) = (J(ran sf)) vn is the value of vn as recorded in sf. The
fact that there are no variable redeclarations guarantees that (| J(ran sf)) is a
function. The condition path(sn, ma, r) requires that the sequence of variable
names sn identifies a path in the memory area ma starting from the reference r.
We use it above to make sure that the extensions of (vn) are in accordance with
the information in the memory areas mas. With the assumption that they are
disjoint, we consider | J mas. The starting reference is the value u of vn in sf.
The formal definition of path(sn, ma, r) is as follows. We require the existence
of a (possibly infinite) sequence sr of references that can be traversed using the
sequence of names sn. The last value of sn, if any, might be a primitive value,
rather than a reference, so the type of sr is SVal, the set of sequences of values.

path(sn, ma,r) &
head sr =1 A
YV i:domsn e
For: SVal e (sri) € domma A (sni) € dom(ma (sr14)) A
sr(i+ 1) =ma(sri)(sni)

For each name sn i in sn, the corresponding value sr ¢ in sr must be a reference
in ma to an object ma (sr i) with a field named sn i. Additionally, the next value
sr (14 1) in sr must be the value ma (sri) (sn i) of that field.
The definition of V (vn, sf, mas) is in many ways similar, and we omit it here.
The condition HV1 requires that the value of every variable v in the program
stack is given by pStack itself and its associated immortal area.

HV1 = SIH(A v : vars(pStack) ¢ v =!(v, pStack, {immortal}))

The healthiness conditions HV2 and HV3 are similar. The former considers the
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mission-sequencer stack, and the latter the handlers stacks.

HV2 = SIH(A v : vars(msStack) e v =!(v, msStack, {immortal, mission}))

HV3
SIH YV h : handlers o () v : vars(hStack h) e
v =!(v, hStack h, {immortal, mission, perR h} Uran (tPriv h)))

[

Implicitly, these conditions require that all variables v in the stacks are in the
alphabet, since they are in the alphabet of the conjunctions.
We define HV as the composition of the functions HV1-HV3.

6 Conclusions

To the best of our knowledge, we have presented here the only formal character-
isation of the SCJ memory model available so far. This is an essential ingredient
to justify the soundness of assertion-based static checking techniques (like that
in [17]). As a UTP theory, our model is also adequate for unification with existing
models of concurrency, object orientation, and timing.

We reuse the ideas of an existing UTP model for objects and sharing [9] to
address the relationship between the structure established by the references in
the memory areas and the values of the programming variables and attribute
accesses. What we do not cover are features of models like [11,7]; these do not
consider the issue of variable values, but provide support for reasoning about
the memory graph structure. For SCJ, we will need to build on such techniques
to take advantage of the separation enforced by the memory areas.

Another assertion-based technique proposed for SCJ is SafeJML [8]. Tt ex-
tends the well-established JML [3] to cover functionality and timing properties.
The focus is on annotations that allow the use of existing technology for worst-
case execution-time analysis to reason about SCJ programs.

Another contribution of this paper is a general characterisation of subset
theories of designs. With this, we have given an elegant definition for the SCJ
theory. Our general results are useful for all theories for programs that do not
exhibit special forms of termination, and do not provide guarantees on abortion.

Our model does not capture the flow of control of an SCJ program, as par-
tially depicted in Figure 1. This is the subject of ongoing work, which formalises
the SCJ programming model in Circus [14], a refinement language based on Z
and CSP. The semantic model of Circus is based on the UTP, and it is our plan
to use the theory presented here as basis for the design of an extension of Cir-
cus that is appropriate to reason about SCJ programs. The intended model of
a complete SCJ program will a predicate of the stateless CSP theory, just like
that of a complete Circus program. So, it will have the form shown below, where
the alphabet variables representing the memory structure are local.

var immortal, mission . ..; P; endimmortal, mission ...

In this case, P will be a predicate in the theory resulting from the embedding
of the SCJ model presented here in the Circus theory of reactive designs. In the
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long run, we plan to provide a reasoning framework for SCJ programs that can
cater for concurrency, object-orientation, time, and sharing.
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