Refinement Algebra for Formal Bytecode
Generation

Adolfo Duran, Ana Cavalcanti and Augusto Sampaio

Centro de Informaética
Universidade Federal de Pernambuco
Po Box 7851 50740-540 Recife PE Brazil
Fax: +55 81 32718438, e-mail:{aad,alcc,acas}@cin.ufpe.br

Abstract. In this paper we propose an strategy for the design of compil-
ers correct by construction for object-oriented languages. The process is
formalized within a single and uniform semantic framework of an object-
oriented language based on a subset of sequential Java and its algebraic
laws. The strategy is to reduce an arbitrary source program to a par-
ticular normal form which describes the behavior of the target machine.
This behavior is defined by an interpreter written in the same language.
From the interpreter we can capture the sequence of generated byte-
codes of the target machine. The normal form reduction is formalized as
algebraic transformations where the central notion is refinement of pro-
grams. Thus, compilation is reduced to program refinement. This avoids
translations between semantics as the product of the compilation is a
program in the same language.

Keywords: algebraic transformation; refinement calculus; compiler cor-
rectness; object-orientation.

1 Introduction

In the literature one can find several approaches that have been used to gen-
erate correct compilers for imperative languages [5, 6,10]. The design of correct
compilers for procedural languages is already understood; our main challenge is
the development of an approach to deal with object-oriented features.

We propose an algebraic approach to construct a provably correct compiler
for an object-oriented language called ROOL (for Refinement Object-oriented
Language)[1, 3], which is similar to sequential Java and C++ [9]. This language
includes classes, inheritance, dynamic binding, recursion, type casts and tests,
and class-based visibility.

We carry out compilation by a series of refinement steps identified with the
reduction of an arbitrary source program to a program in a particular normal
form: an interpreter executing target code. From the normal form program,
we can capture the sequence of bytecodes for a ROOL Virtual Machine (RVM),
which is a subset of the Java Virtual Machine (JVM). The immediate correctness
criterion is to require that the source program is refined by the interpreter.Thus,
the compilation task is reduced to program refinement.

This approach was originally described in [4] and has been further devel-
oped in [7]. It characterizes the compilation process within a uniform frame-
work, where comparisons and translations between semantics are avoided. This
constitutes the main advantage of our approach since it results in simplicity.

In this paper, we illustrate how compilation is carried out using compila-
tion rules. The compilation process is split into three phases: simplification of
expressions, data refinement, and control elimination. Only the code generation
phase of a compiler is addressed. We assume that there are no name clashing for
variables and attributes in the input program.

This paper is organized as follows. We first give an overview of ROOL,
including some of its basic laws. Afterwards we explain the ROOL interpreter
structure. Subsequently, we explain how we compile with compilation rules; we
present an example to illustrate how the lemmas and basic laws are used to
prove the compilation rules. Finally, we summarize the results achieved so far,
and consider related work and topics for further research.

2 The ROOL Language and Its Laws

A program in ROOL consists of a sequence of class declarations, followed by a
main command (CDS e ¢). A class declaration has the form

class N; extends N>

{priz; : T1; }* //private attributes
{prot z; : Ts; }* //protected attributes
{pub z3: T3; }* //public attributes
{meth m £ (pds o S) end}” //public methods
{new L= end}” // Initializers

end

The clause extends determines the immediate superclass of N;. If omitted, the
built-in class object is regarded as the superclass. The visibility mechanism
is similar to that of Java: the qualifiers pri, prot, and pub are used for pri-
vate, protected, and public attributes. The clause meth declares a method. For
simplicity, all methods are considered to be public. The list of parameters of a
method is separated from its body by the symbol ‘e’. The new clause declares
initializers: methods called after creating an object of the class.

Data types T are the types of attributes, method parameters, local variables,
and expressions. They are either primitive (like boolean or integer) or class
names N. For variable identifiers, we use z, whereas f stands for a literal or
buit-in function; we also use b for boolean expressions and X for a recursive
block identifier. Subscripts are used to extend the set of metavariables. Table 1
describes the rules to generate expressions.

The self and super references are similar to the this and super of Java. An
update expression has the form (e;; z : e2) and denotes a fresh object copied
from e, but with attribute z mapped to a copy of es. The expressions that can
appear as targets of assignments, method calls, and as result and value-result
arguments are called left expressions (le).

e € Ezp :=self | super special ’references’

| null null ’reference’
| new N object creation
z e variable, built-in application
) PP

| eis N | (N)e type test, type cast
| ez | (e; z: e) attribute selection, update expression

Table 1. Grammar for expressions

c € Comu=le := e assignment
| e1; e sequential composition
| z: [pre, post] specification statement
| if [Ji< i < ») ® bi = ¢ fi conditional
| rec X e cend | X recursion, recursive call
| varz: T e ¢ end local variable block
| pc(e) parameterized command application

Table 2. Grammar for commands

In addition to method calls, the main command, the body of methods, and
the initializers may have imperative constructs. Table 2 describes the imperative
constructs of ROOL based on Dijkstra’s language of guarded commands. The
specification statement z : [pre, post] describes a program that, when executed
in a state that satisfies the precondition pre, terminates in a state that satisfies
the postcondition post, modifying only variables in z. We call z a frame and it
stands for a finite sequence of variables identifiers.

The conditional command is composed by guarded commands of the form
b; — c¢;. At least one guard b; must be true, otherwise the execution aborts.
More than one guard can be true at the same time; in this case one of them is
non-deterministically chosen and its command is executed.

Methods are seen as parameterized commands, which can be applied to a
list of arguments to yield a command. A parameterized command can have the
formval z : T o ¢, resz : T e ¢, or vres z : T o ¢, corresponding to
the conventions of parameter passing known as call-by-value, call-by-result, and
call-by-value-result. Table 3 describes the syntax of parameterized commands. In
[3] we have further details of ROOL and its formal semantics based on weakest
preconditions.

The laws of ROOL are an algebraic semantics for this language and establish a
sound basis for the design of correct compilers. In [1] many laws have been proved
correct with respect to the weakest precondition of ROOL. Here we introduce a
subset of the basic laws we use later on. We say that CDS, z: T, N > ¢; = ¢3,
when the commands ¢; and ¢y are equal, in the context of a sequence of class
declarations CDS, visible attributes, parameters, and local variables z : T, and
class N. In what follows, we remove the context, when it is not relevant for the
law.

pc € PCom ::= pds e ¢ parameterization

| leem | m method calls
pds € Pds ==& | pd | pd; pds parameter declarations
pd € Pd =z=valz:T | resz:T | vresz: T

Table 3. Grammar for parameterized commands

We use the abbreviation skip for the command that does nothing; its ex-
ecution always terminates and leaves the state unchanged. This command can
be defined as: [true, true]. To precede or follow a command by skip does not
change its effect.

Law 1 (skip; ¢) = ¢ = (c; skip)
The assignment of a variable to itself does not change anything.
Law 2 (v := v) = skip

If exactly one of the guards of a conditional is true, the corresponding com-
mand is selected for execution.

Law 3 If i and j range over 1..n and — (b; A b;) with (i # j), then
[b;; if o< i <ny) bi = i i = [b]; ¢

The expression [b;] above is an assertion. Whenever the flow of control reaches
an assertion, it is checked: if false, the program behaves like miracle; if true,
execution continues normally. The command miracle can serve any purpose; it
has the most refined behavior: It is infeasible and cannot be implemented, but
constitutes a useful theoretical concept for reasoning.

Although the while statement does not appear in the ROOL grammar, we
use it in our interpreter. This is merely a syntactic sugar to improve readability;
while is easily defined using recursion and conditional statements, as follows.

Definition 1 (While Statement)
whileb o cend “ rec X o ifb — (¢; X)[]7b — skip; fi end

A while can be eliminated if an assertion before it implies that its condition
does not hold initially.

Law 4 If (b = —bs), then [b1]; while by o cend = [b]

If, on the contrary, the assertion before the while implies that its condition
holds, it behaves like ¢ followed by the whole iteration.

Law 5 If (by = by), then [b;]; while by e cend = [b1]; ¢; while by o ¢ end

The symbol C denotes the refinement ordering on programs: ¢ C r means
that r is at least as good as ¢ in the sense that the substitution of r for ¢ in any
context is an improvement or will leave things unchanged.

An assertion [b] refines skip, as it behaves like miracle if b does not hold.

Law 6 skip LC [0]

If a declared variable is never used, its declaration has no effect.
Law 7 If z is not free in ¢, then varz: T e cend = ¢

Assigning to a variable just before the end of its scope is irrelevant.
Law 8 (varz: Tec; z:=eend) = (varz: T e ¢ end)

Invoking a method is insignificant if the affected variables are just before the
end of their scope.

Law 9 var y: Ty, z: T» ® p; y.m(z); end=var y: Ty, z: T» o p end

This is only a small fragment of the algebraic laws of ROOL. See [1] for a
comprehensive set of laws.

3 Interpreter Structure

The RVM is characterized by a normal form, which is an interpreter-like program
modeling a cyclic mechanism that executes one bytecode instruction at a time
(Figure 1). More specifically, it describes the behavior of our virtual machine
executing a stored program, in an iterated execution of a sequence of bytecodes
stored in the global variable Cprog, which represents the compiled program.
Another global variable named Memory stores the initial value of the program
variables. At the end of execution, the final values are copied back to Memory.
Therefore, from the point of view of the interpreter execution, the observable
data space is Memory. This represents the concrete counterpart of the variables
of the source program.

As a valid program in ROOL, the normal form consists of a sequence of
class declarations (CDSgvy) followed by a main command named Igypy. It is
basically a single flat loop, where every cycle fetches the next instruction to be
executed and then invokes an associated method to simulate its effect on the
internal data structures of the virtual machine.

More specifically, Iryy is a var block declaration that introduces three local
variables. The main variable is rvm; the other two, op and ¢, are auxiliary: they
are used to obtain the control information stored in rvm in order to guide the
execution flow of the interpreter. The op variable is an integer whose value is the
operation code that indicates the next bytecode instruction to be executed. The
¢ variable is an instance of the Control class declared in CDSgyy; its attributes
are the value of the pc register, initial and final. The last two attributes denote

CDSgvy ® var op, ¢, rvm : Int, Control, RoolVM .

rom := new RoolVM,

rum.SetClasses(Cprog); rum.SetVariables(Memory);

rum.GetControl(c);

while c.pc > c.initial A c.pc < c.final .
rum. GetNextBytecode(op);
if [Jio< i < ny 0p = ¢ — rum.inst; fi
rvm. GetControl(c);

end;

rvm. Get Variables(Memory);

end

Fig. 1. The ROOL Interpreter (CDSRVM . IRVM)

the interval comprising the bytecode stream of the current executing method.
We assume that the value of initial is always 1. The value of final depends on
the size of the bytecode stream.

The while statement is executed until the program counter reaches a value
beyond the interval that comprises the current executing bytecode stream. In
the body of the while statement, first the operation code (op) of the next in-
struction to be executed is determined and then a conditional statement selects
the corresponding method that implements that instruction. The instructions
available for the interpreter are implemented as methods defined in the class
RoolVM. All instructions modify the program counter; even the initial and final
can be modified when instructions that handle method calls are executed. The
last statement in the while body is necessary to retrieve the current program
counter and the current bytecode interval to be tested in the next while iteration.

As already said, the internal data structure of the interpreter is represented
by the local variable rvm, an instance of the class RoolVM. This structure is
basically a sequence of instances of Framelnfo implementing a stack of frames.
This stack is named F' and records the order in which the called methods were
invoked. When a method is invoked, the virtual machine creates a new frame
onto that stack. When the method completes, the frame is discarded.

An instance of Framelnfo (Figure 2) holds the state of one ROOL method
invocation. It includes its own pc register; its operand stack s; its current class
cl, which is an instance of ClassInfo; its currently executing method mitd; and
its list of local variables v. When the ROOL interpreter starts running, the pc
value in the initial frame points to the first bytecode of the main command.

An instance of ClassInfo contains the following attributes: name, the class
name; super, its superclass; mtds, a reference to the list of methods declared
in the class; fds, a reference to the list of attributes declared in the class; cp,
a reference to the constant pool. This last attribute is an heterogeneous list of
references, and provides much of the essential information needed by a class.
It contains entries for the names of referenced classes, methods and attributes,

Next
Frame
pc - Program Counter
s - Operand Stack
Current
cl- Current Class Frame
mtd - Current Method
v - Local variables
Previous
Frame

Fig. 2. A frame in the ROOL Virtual Machine

and for the integer constants. From the constant pool, the interpreter can reach
instances of ClassInfo bound to any class referenced by the current class.

The computation in the virtual machine is centralized on the operand stack
(Figure 2). Because the virtual machine has no registers for storing arbitrary
values, everything must be pushed onto the stack before it can be used in a
calculation.

Most of the data structures used to implement our interpreter employs se-
quences of objects. We assume the following operators to deal with sequences:
Y 7 X, the concatenation of sequence Y with sequence Z; head y, the leftmost
element of sequence Y; last Y, the rightmost element of sequence Y; front Y,
the sequence without the last element of Y; tail Y, the sequence without the
head element of Y; #Y, the number of elements of Y.

In order to refer to some components of our interpreter, we adopt the follow-
ing abbreviations.

Definition 2 (Target Machine Components)

S e (last rom.F).s
Vn] = (last rvm.F).v[n]
rc (last rvm.F).pc
CP[n] et (last rom.F).cp[n]

We denote by S the operand stack in the current frame; V[n] designates the
local variable whose location is 7 in the current frame, PC represents the current
program counter; finally CP[n] stands for the object stored in the constant pool
of the current class, whose entry is given by the index n.

We now introduce abbreviations for update expressions over the operand
stack.

Definition 3 (Abbreviations over the operand stack)
(rom; F: (front F) " {(last F; S: S " (e))))
(rom; F: (front F) "™ ((last F; S : front S)))
(last rom.F).(last S)
Suop wf (rom; F: (front F) "™ ((last F; S : (front S) ™
((new Datalnt; Info : uop (last S).Info)))))
(rom; F : (front F) ™ ((last F; S : front(front S) ™
((new Datalnt; Info : (last (front S)).Info bop (last S).Info)))))

The abbreviation S 1 [e] stands for an update expression in which e is pushed
onto S. Similarly, S | represents the update expression in which a value from
the top of S is popped; S|| depicts a copy of the value on the top of the stack;
Suop represents the update expression in which one integer value is popped from
the top of the stack, the unary operator uop is applied to it, and the result is
pushed back onto S. Finally, Sy, handles binary operators bop.

Below, we give examples of how the instructions of our virtual machine are
defined as commands on RVM.

Definition 4 (Instructions definition)
def

nop = PC:=PC+1
ldei " rom:= §1[C.CPli]}; PC:= PC +2
load n “? rom = § t[V[n]l; PC:= PC +2

store n % Vin]:= S||; rom:= S|; PC:= PC+?2

uop C rom = Suop; PC:= PC+1
bop def rom := Spop; PC:= PC+1
def

goto k = PC:= PC+k

new j “ var o ObjectInfo e
o := new ObjectInfo; o.create(CP[j]);
rom := S 1 [o]; PC := PC +2
end

The instruction with opcode nop (no operation) has no effect, except for the
program counter (PC) increment. The instruction with opcode lde (load con-
stant) has one argument (i) and pushes an integer constant onto the operand
stack (S). Its argument ¢ follows the opcode ldc in the bytecode stream and
represents a constant pool index to the location where the constant is stored.

Pushing a local variable onto the operand stack is done by the instruction
load, and involves moving a value from the local variables list to the operand
stack. All local variables are instances of the class object, as well as the elements
of the operand stack. So they can hold any object reference, including an object
that encapsulates values, the integer or any other primitive type. To pop a value
of any type from the the stack to a local variable, the virtual machine uses the
instruction store. The argument n is a index to a local variable.

To deal with operators, we group them so that uop and bop stand for arbi-
trary unary and binary operators, respectively. The instruction with goto opcode
always branches: the offset k can be a positive or negative integer value.

The instruction new builds an instance of ObjectInfo to hold the RVM’s
representation of an object whose type is indicated by the argument j. The
J is an index to a class entry in the constant pool. The call o.create(CPJj])
traverses the representation of the source program class hierarchy, determining
and recording in o the attributes of the class indicated by j. The resulting object
o0 is pushed into the operand stack S.

4 Compiling with Theorems

The compilation process consists in reducing by algebraic transformation an ar-
bitrary program to the above normal form. The reduction theorems (stated here
as rules), which justify the compilation process, can be proved correct from the
basic algebraic laws of ROOL. The correctness of the compiler follows from the
correctness of each compilation rule. It is sufficient to show how each primitive
command can be written in the normal form and, by structural induction, how
each operator of the language, when applied to operands in the normal form,
yields a result expressible in the normal form.

The compilation process involves three phases: simplification of expressions,
data refinement, and control elimination, in this order. The data refinement
converts the abstract space of the source program to the concrete space of the
RVM. A permutation in the order of the phases may require to repeat a phase
already accomplished.

In this section we give an overview of our approach to compilation. Moreover,
we list the compilation rules to give an idea of how we can compile methods,
classes, and imperative control structures.

4.1 Simplification of Expressions

The first task of the compilation process is the elimination of nested expressions.
The expected outcome of this phase is a program formed of a sequence of as-
signments where each assignment operates through the operand stack. To do so,
we need to refer to the variable rvm, which contains the data structure of our
interpreter.

Basically, the task of eliminating nested expressions in a source program in-
volves the rewriting of assignments. The outcome is a program involving assign-
ments of the form described by the following patterns. They are closely related
to those used to define bytecode instructions of our stack-based machine.

Definition 5 (Patterns for the operand stack)

loads, (7) “ rom =S 1 [(new Datalnt; Info : i)]

N d .
storese (1) = S||.Info; rvm:= S|
def
UOPse = rom = Suop
d
bopse lef rom = Spop

load, (0) C rym =8 1 [o]

store,(0) = Sll; rom:= S|

The pattern loadse pushes an integer value onto the operand stack, whereas
storese pops an integer value from the operand stack and assigns it to an integer
variable. Since the operand stack consists of a sequence of objects, it is necessary
to encapsulate integer values using instances of Datalnt. The pattens uops. and
bops. represent a group of patterns that implement the effect of the unary and
binary operators, respectively. The patterns load,(0) and store,(o) are similar
to those for integer values, except for the type of its arguments: objects, instead
of integers or primitive types.

The following rules rely on the context in which they will be applied. We use
the form bellow to present the compilation rules.

We recall that we use the notation CDSgryu, rvm : RoolVM,N > ¢ C ¢’ to
mean that the refinement step ¢ C ¢’ holds in the context of class declarations
CDSgryy and local variable rom : RoolVM. Furthermore, the command ¢ is
assumed to be inside the class N which denotes the main command or a class
in the sequence of class declaration (CDS) of the source program.

An exhaustive application of the following rules simplifies arbitrarily nested
expressions. The next rule deals with the simplification of an assignment to an
integer variable. The assignment is refined to a sequence of patterns that operates
primarily over the operand stack S.

Rule 1 (Assignment of an integer variable)
CDSrym,rom : RoolVM ,N > (z:=¢€) L loads.(e); stores.(z);

The expression e above may be arbitrarily nested; we need to further simplify
it to achieve a simpler form. We must proceed until the resulting expressions
consist only of a single variable or constant. For simplicity, we omit the context
in the following rules.

The next rule handles a pattern whose argument is an application of binary
operators.

Rule 2 (Binary operator) If S does not occur in e or f
loadse(e bop f) T loadse(e); loadse(f); bopse
where bop represents an arbitrary binary operator.

The nested expression in loads. (e bop f) is replaced with a sequence of patterns
which first load e, then load f, and finally perform the bop operation.

The boolean expressions appearing in while and if commands may also
be arbitrarily nested, and therefore need to be simplified. The following rule
considers the while command.

Rule 3 (Condition of while) If x does not occur in b nor in p;

while b ¢ pend LC var z: boolean e
z:= b;
while z e p; z:= b end;
end

The condition becomes a single variable whose value is given by the assignment.
The expression b can now be simplified using the rules related to assignment.
Object creation is just another instance of assignment.

Rule 4 (Object Creation - Simplification)
z = new C L load,(new C); store,(z);

The expression new C gives rise to a new object of type C. In this case we need
to use pattern load, (new C) to push this object onto the operand stack. Observe
that load,(new C') does not need to be simplified anymore; the simplification
here takes only one step.

4.2 Data Refinement

Data refinement is the replacement of the abstract space of the source program
by the concrete state of the target machine. This means that all references to
variables, methods, attributes, and classes declared in the source program must
be replaced with the corresponding ones in the interpreter.

The function ¥ is the symbol table which maps each variable of the source
program to addresses in the local variables sequence, in such a way that V[¥,]
holds the value of z. Similarly, we assume that & is the class table, which holds
all instances of ClassInfo corresponding to the compiled class declarations. From
these tables, we can build the function ¥& which carries out the data refinement
on commands.

The treatment of class declarations is handled by the function @, which asso-
ciates a class declaration with an instance of ClassInfo recording the declarations
of attributes and methods occurring in the class. The representation resulting
from the compilation by @ is incorporated in the class table @ by the function
¥, The rather lengthy definition of @ is by the induction on sequences of class
declarations, and on the structure of classes.

We present below our main rule which states the correctness of the compila-
tion process for a program CDS e c.

Rule 5 (Compilation Process)
CDSgryy CDS e Wd(c) T CDSgrym e WU w(CDS)(c)

Since the above rule is a refinement between programs, it is valid in any
context. The source program CDS e ¢ operates on a data space different from
the data space of our normal form. Therefore, it does not make sense to compare
them directly: U@ performs the necessary change of data representation. Observe
that @U w(CDS) incorporates the compiled class declarations CDS in &. The
symbol table ¥ includes the global variables and is extended by local variables
declarations.

The function ¥ acts only over the class declarations belonging to the source
program (CDS). RVM’s class declarations (CDSgyum) are not reduced. Similarly,
the function ¥$ does not affect the variables declared in our interpreter.

In order to carry out the change of class references and data representation
in a systematic way, we need to use the distributivity properties of the function
¥$. Commands which have no reference to variables or classes are not affected
by the function ¥®. For instance, the skip command is not affected.

Rule 6 ¥d(skip) LC skip

In the following, we introduce simple patterns over the operand stack intro-
duced by the data refinement phase.

Definition 6 (Patterns introduced by the data refinement phase)

loady- (V) ©f om =8 1 V]
storeq, () wf Vg, := S|l; rom:= S|

lea, (B0) ™ rom := S 1[C.CP[,]]

new,(®¢c) “ var o : ObjectInfo e
o := new ObjectInfo; o.create(CP[®c]);
rom := S 1 [o];
end

These patterns have no reference to variables or constants of the source program.
The pattern loady, (¥,) pushes onto the stack S the local variable whose location
is given by ¥,. Similarly, the method storeg,(¥;) pops a value from S and stores
it in the local variable indicated by the index ¥,. The pattern ldeg,(®,) pushes
the constant a onto S; @, indicates the location of the object holding a in
the constant pool (CP) of the current class. The pattern new,(®¢) creates an
object which is a representation of an instance of the class C; the new object
is pushed onto S; @ indicates the location in the constant pool of an instance
of ClassInfo which represents the class C'. The patterns above have the same
behavior as the instructions presented in the Definition 4, except for the absence
of the PC increment.

The next rules deal with patterns possibly introduced in the previous phase.
The rule below shows how we deal with object creation.

Rule 7 (Object Creation - Data Refinement)
Ud(load,(new C)) LC new,(Pc)

After the simplification phase, all object creations are refined to a pattern
load,(new ('), which retains a reference to C, a class of the source program.
The function P& eliminates this reference, introducing another pattern whose
parameter is an index @ to an entry in the constant pool CP, corresponding
to the type C.

The following rule deals with the loading of an integer variable.

Rule 8 (Load Integer - Data Refinement)
UP(loadse(z)) LT loadg (¥;)

The pattern loadg. (¥,) uses ¥, to refer to location that holds the value of z in
V. In other words, V[¥,] is an object holding the value of z.
The next rule shows the effect of @ over the pattern stores.(x).

Rule 9 (store Integer - Data Refinement)
Ud(storese(r)) T storeqs (V)

Again ¥® removes the source reference to the variable z. The ¥, refers to the
location allocated in V to store the object popped from the operand stack.
The next rule addresses the pattern used to push a constant onto S.

Rule 10 (Load Constant - Data Refinement)
Ud(loadse(a)) LT ldegy(P,)

When ¥ is applied, the constant a is placed in an entry of the constant pool
whose location is indicated by @,.
The following rule deals with the pattern store, (o).

Rule 11 (Store object - Data Refinement)
Ud(store,(0)) LT storeq (¥,)

Note that ¥ eliminates the source reference to the variable o. In this case, ¥,
has the same role of ¥, in the last rule.

In the case of sequential composition of commands p and ¢, ¥@ distributes
over each command.

Rule 12 (Sequential Composition)
d(p; q) T Ye(p); ¥o(q)

In the next section we tackle the control elimination phase of the compilation
process.

4.3 Control Elimination

Control elimination consists of reducing the nested control structure of the source
program to a single flat iteration. The outcome is a program in our normal form.

Recall that each frame instance of our interpreter is equipped with the pro-
gram counter PC' used for scheduling and selection of bytecode instructions.
More precisely, PC' is the pointer which indicates the location in the bytecode
stream of the next instruction to be executed. The addresses of the bytecodes is
implicit in the sequence we generate here. We introduce the following abbrevia-
tion.

Definition 7 (Compiled Program)
Cprog (0,5, s) = (new ClassInfo; CP : pg; mitds :
((new MethodInfo; bytecode : f3; size : s)))

This is an instance of ClassInfo, which contains only one MethodInfo that holds

the bytecode stream (. The parameter s is the size of the bytecode stream.

Moreover, there is the symbol table ¢ which is the constant pool possibly refer-

enced by the bytecode instructions in 8. We also use Ig";ﬁg(g’ﬁ’s) to refer to the

ROOL interpreter executing the compiled program stored in Cprog(o, 3,).
The reduction of skip states that its only effect is the PC increment.

Rule 13 (Skip)
skip C 155;;9(97/378)
where f = [nop], s=1, and o =&

The above 8 holds the bytecode stream containing the singleton operation nop.
To illustrate the proofs of the compilation rules, the proof of the above rule is
presented in Section 4.6.

The next rules deal with patterns introduced in the previous phases. The
following rule considers the pattern that stores an integer variable.

Rule 14 (Store Integer)
storegr(F,) T I}g‘z/);;g(gﬁvs)
where = [store,¥,], s=2, and p =&

The first bytecode in g is the instruction store, followed by the index ¥,, repre-
senting the location of z in V.
The following rule deals with object creation.

Rule 15 (Object Creation)
newqr(Pc) L I}g",’ﬁg(g’ﬁ’s)

where 8 = [new,®c], s=2, and p = {Pc — $.C}

The first bytecode is the instruction new, followed by the argument, the index
in the constant pool of the class.

The reduction of sequential composition assumes that both arguments are
already in the normal form. The resulting normal form combines the original
bytecode streams.

Rule 16 (Sequential composition — p; q)

Icprog(gpvﬁpvsp)_ ICPTUQ(ququsq) C ICprog(g,ﬁ,S)
RVM v Arvm = lpyym

where =08y " Bq, =5+ 5, and o = gp U g,

We concatenate the bytecode streams of p and ¢ given by 3, and 3, respectively.
We also join the symbol tables (g, U gq).

In the next section, two examples illustrate how the rules presented so far
can be used effectively to carry out the compilation process.

4.4 The Approach through an Example
To illustrate the compilation process, we present the following example.

Ezample 1. Consider the simplification of the assignment ¥®(z := new C),
where z is a variable of type C.
Using Rule 4, we can transform the above assignment into

C ¥®(load,(new C); store,(x));

At this point, observe that we have a hybrid data space including the abstract
space of the source program and the concrete state of the target machine. We
need to replace the source references by the corresponding ones in the RVM.
Using the distributive properties of the simulation function & results in

C ¥®(load,(new C)); Ud(store,(z));

Applying Rules 7 and 11, it becomes

C newo(Pc); storeq (¥y);

Applying the Rule 15 to the pattern new,(®¢) we obtain

Cprog(e1,[new,cl,2)
C [RV

new,(P¢) M

The remaining pattern storegq,(¥,) is then transformed by Rule 14, yielding

storeqy (Uy) C I}g‘p;gzg(gm[stom%] ,2)

Using the Rule 16 for sequential composition, we combine these simple forms.

C ICpTog(ngg Jnew,® ¢, store,W,],4)
RVM

The resulting Cprog has 2 instructions in its bytecode stream. The first creates
an object based on the RVM’s internal representation of class C'. The second
stores this object in the local variable list, in the location corresponding to the
variable x.

4.5 Lemmas

The basic rules of ROOL and the following lemmas are necessary to prove the
compilation rules above. The introduction of assertions reveals the effect of the
execution of a command, making explicit the the contents of the internal data
structure of our ROOL interpreter.

For convenience, we use < PC : n; ¢l : p; mtd : m; V : 1 > as an
abbreviation for the following update expression:

(new RoolVM; (last F) : (new Framelnfo; PC :n; cl:p; mtd:m; V :1))

The above update expression denotes an object of class RoolVM whose top frame
is an instance of Framelnfo; its program count PC has the value n; p represents
the current class cl; m depicts the current executing method mtd; [is the list of
local variables V.

The following lemma is related to the initialization of the rum variable with
the compiled program stored in Cprog.

Lemma 1 (Initializing the local variable rvm)
rum := new RoolVM; rvm.SetClasses(Cprog)

rum := new RoolVM; rvm.SetClasses(Cprog);
[rvm =< PC : 1; cl : Cprog; mtd : (head Cprog.mtds); V : null >|

The assertion introduced here makes explicit the value of the attributes in the
rum’s initial frame.
The next lemma shows the effect of the method call rvm.Set Variables(Memory).

Lemma 2 (Loading Initial Memory)
[rvm =< PC : i; cl: Cprog; mid : (head Cprog.mtds); V : null >];
rum.SetVariables(Memory)

[rom =< PC :i; cl: Cprog; mtd : (head Cprog.mtds); V : null >];
rum.SetVariables(Memory);
[rom =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >>]

The last assertion shows the value of the list of local variables (V) as a copy of
the global variable Memory.

The following lemma makes explicit the effect of the method call rvm. GetControl(c)
over the auxiliary variable c.

Lemma 3 (Loading Control)

[rom =< PC :i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >>|;
rum. GetControl(c)

[rvm =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >|;
rum. GetControl(c);

[rom =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >|;
[c.pc = 1; c.Initial = v1; c.Final = vy; |

Where vy = 1 and vy = (v; + (head Cprog.mtds).Size).

The assertion introduced here shows that the value of the variable ¢ is updated
with the current program counter, and the interval denoted by v; and wv».

The next lemma makes clear the value of the operation code of the next
instruction to be executed.

Lemma 4 (Getting Operation Code)
[rvm =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >|;

rvm. GetNextBytecode(op)

[rom =< PC :i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >>|;
rum.GetNextBytecode(op);

[rom =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >]; [op = n]
Where n denotes the operation code of the next instruction to be executed.

The last assertion makes explicit the value of the opcode.
The following lemma shows the effect of the nop instruction.

Lemma 5 (Nop Effect)

[rum =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >]; rvm.nop
[rom =< PC :i; cl: Cprog; mtd : (head Cprog.mtds); V : Memory >|; rvm.nop;
[rom =< PC : i +1; Cl: Cprog; mtd : (head Cprog.mtds); V : Memory >>]

When rvm.nop is executed, the program counter is incremented by 1.

The next lemma replaces the method call rvm.GetVariables(Memory) by an
assignment corresponding to its effect.

Lemma 6 (Getvariables Effect)
[rom =< PC : i; cl: Cprog; mtd : (head Cprog.mtds); V : M >|;
rum. Get Variables(Memory)

Memory := M

Memory receives the list of local variables stored in the attribute V.

4.6 Proof Example

As an example of a proof of a compilation rule, we show how the lemmas and
the basic laws are used to prove the Rule 13. We start from I52r29(Z-m:1) the
right hand side (RHS) of the rule inequation. First, the Lemma 1 is applied to
show the effect of initializing the variable rvm with the compiled program stored
in Cprog. Then, the Lemma 2 is applied to evidence the result of copying the
global variable Memory into the rvm’s current frame. After that, the Lemma 3
shows the values of the variables used in the while condition. Since the assertion
before the while implies the satisfaction of the while condition, it can be unfold.
Then, the Lemma 4 can be used to make explicit the value of the operation code
of the current executing instruction.

RHS = {Lemma 1} {Lemma 2} {Lemma 3} {Law 2.5} {Lemma 4.1.4}

var op, ¢, rum: Int, Control, RoolVM .
rom := new RoolVM; rvm.SetClasses(Cprog);
[rom =< PC :1; cl : Cprog; mtd : (head cprog.mtds); V : null >];
rum.SetVariables(Memory);
[rom =< PC : 1; cl : Cprog; mtd : (head cprog.mtds); V : Memory >
rum.GetControl(c); [c.pc = 1; c.Initial = 1; c.Final = 2; |;
[rom =< PC :1; cl: Cprog; mtd : (head cprog.mtds); V : Memory >>|;
rum.GetNextBytecode(op);
[rom =< PC : 1; cl: Cprog; mtd : (head cprog.mtds); V : Memory >>|;
[op = 0];
if [Jio< i < ny 0p = @ = rum.inst; fi rum.GetControl(c);
while c.pc > c.Initial A c.pc < c.Final ®

rum. GetNeatBytecode(op); if [Jo< i < ny 0p = 1 = rum.inst; fi; rvm.GetControl(c);

end;
rum.GetVariables(Memory);

end

The assertion introduced just before the first if statement allows the selection
of one command (Law 3); in this case, rvm.nop. Then, in order to show the effect
of the rvm.nop, the Lemma 5 is used. Then, the Lemma 3 makes explicit the
effect of the rvm.GetControl(c), by showing the updated value of the variable c.
At this point, the assertion before the while does not satisfy the while condition.
Using the Law 4, we can eliminate the while. The Lemma 6 shows that the effect
of the method call rvm.GetVariables(Memory) is just the useless assignment of
the global variable Memory to itself, which can be eliminated (Law 2).

= {Law 3} {Lemma 5} {Lemma 3} {Law 4} {Lemma 6} {Law 2}

var op, ¢, rum: Int, Control, RoolVM .
rom := newRoolVM; rvm.SetClasses(Cprog);
[rom =< PC : 1; cl: Cprog; mtd : (head cprog.mtds); V : null >|;
rum.SetVariables(Memory);
[rom =< PC : 1; cl: Cprog; mtd : (head cprog.mtds); V : Memory >>|;
rom.GetControl(c); [e.pc = 1; c.Initial = 1; ¢.Final = 2; |;
[rom =< PC :1; cl: Cprog; mtd : (head cprog.mtds); V : Memory >>|;
rom.GetNextBytecode(op);
[rom =< PC : 1; cl : Cprog; mtd : (head cprog.mtds); V : Memory >>;
TUM.NOP;
[rom =< PC : 2; cl : Cprog; mtd : (head cprog.mtds); V : Memory >>;
rum. GetControl(c);

end

Repeatedly applying the following laws we can eliminate every command that
appears just before the end of the var block.

J {Law 6} {Law 8} {Law 9} var op, ¢, rvm : Int, Control, RoolVM e end
Using the Law 7 we can eliminate an empty var block.

= {Law 7} skip
This concludes our proof.

5 Conclusions

We have presented a framework that can be used to build a correct compiler for
a Java-like language extending the approach described in [7]. Both the source
(ROOL) and the target (a subset of JVM bytecodes) languages adopted here
are far more complex than those described in [7].

We illustrate how compilation is carried out using compilation rules in order
to generate bytecodes for an RVM, which can be viewed as a sequential subset of
JVM. Each transformation performed by the compilation rules brings the source
program closer to our particular normal form, from which we can capture the
sequence of generated bytecodes of the target machine.

Our strategy of proof based on assertions allows us to keep the object-oriented
design of the interpreter. We carry out the proof of the rules at a more abstract
level, without needing to expand the definition of the interpreter and its associ-
ated methods. This is necessary only when proving the lemmas.

In the literature, one can find several approaches related to the design of
correct compilers. The majority deals with procedural languages, as the alge-
braic approach described in [5]. In [2], using Abstract State Machines (ASMs),
a compilation scheme of Java programs to JVM code is presented; this is a case
study for mechanical verification of a compiler correctness proof. Recently, in
[8] a description of the ASM models of Java and JVM are given and properties
of JVM verification and execution of compiled Java programs are proved. The
approach is based on verification instead of on calculation, as here.

A further topic for investigation is the mechanization of our approach. Due to
its algebraic nature, a term rewrite system can be used to verify the compilation
rules (reduction theorems). Furthermore, the compilation rules can be taken as
rewrite rules to carry out compilation automatically. In this way, a prototype
compiler can be obtained as a by-product of its own proof of correctness.

Acknowledgments

The research reported in this paper benefitted from discussions with our col-
laborators David Naumann and Paulo Borba. The authors are partly supported
by CAPES and CNPq, grants 520763/98-0 (Ana Cavalcanti), 521039/95-9 (Au-
gusto Sampaio), 680032/99-1 (CO-OP project, jointly funded by PROTEM-CC
and the National Science Foundation), and PICDT/UFBa (Adolfo Duran).

References

1. Paulo Borba and Augusto Sampaio. Basic laws of rool: an object-oriented language.
Revista de Informdtica Tedrica e Aplicada, 7(1):49-68, 2000.

2. E. Borger and W. Schulte. Defining the java virtual machine as platform for prov-
ably correct java compilation. In MFCS’98., number 1450, pages 17-35. Springer
LNCS, 1998.

10.

Ana Cavalcanti and David Naumann. A weakest precondition semantics for refine-
ment of object-oriented programs. IEEE Transactions on Software Enginnering,
26(08):713-728, 2000.

C. A. R. Hoare, J. He, and A. Sampaio. Normal form approach to compiler design.
Acta Informatica, 30:701-739, 1993.

M. Miiller-Olm. Modular Compiler Verification: A Refinement-Algebraic Approach
Advocating Stepwise Abstraction, volume 1283 of LNCS. Springer-Verlag, Heidel-
berg, Germany, 1997.

W. Polak. Compiler Specification and Verification, volume 124 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

Augusto Sampaio. An Algebraic Approach to Compiler Design, volume 4 of
AMAST Series in Computing. World Scientific, 1997.

R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine - Defini-
tion, Verification, Validation. Springer-Verlag, 2001.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2nd edi-
tion, 1991.

J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuring
compilers and proving them correct. Theoretical Computer Science, (15):223-249,
1981.

