Automatic Translation from Circus to Java

Angela Freitas and Ana Cavalcanti

Department of Computer Science
University of York, UK

Abstract. Circusis a combination of Z and CSP that supports the devel-
opment of state-rich reactive systems based on refinement. In this paper
we present JCircus, a tool that automatically translates Circus programs
into Java, for the purpose of animation and simulation. It is based on
a translation strategy that uses the JCSP library to implement some
of the CSP constructs of Circus. The tool generates a simple graphical
interface; we present a simple example to demonstrate the translation
strategy, and the execution of the resulting program. We discuss the
class GeneralChannel, which we designed to support the implementa-
tion of multi-synchronisation. We also discuss our improvements to the
translation strategy, some limitations of the tool, and our approach to
prove the correctness of the multi-synchronisation protocol.

1 Introduction

Circus [1] is a combination of the Z notation [2], the process algebra CSP [3],
and Djikstra’s language of guarded commands. It is a unified language for speci-
fication and design of state-rich reactive systems. In general terms, data require-
ments are expressed with Z schemas, and behavioural aspects are expressed
using Z, CSP and the guarded commands. Circus also includes a refinement cal-
culus, which allows stepwise development of programs. The semantics of Circus
is based on the Unifying Theories of Programming [4], a relational model that
unifies programming theories across many different paradigms.

Circus supports specifications of systems at various levels of abstraction.
In [5], a complete development strategy supported by Circus is presented. Start-
ing from an abstract Circus specification, refinement laws are gradually applied
in order to reach a concurrent implementation in which all schemas used to
describe operations are refined to commands and CSP actions. Afterwards, a
translation strategy is applied to generate a Java implementation. The JCSP
library [6] is used for implementation of some CSP primitives in Java.

Unlike the refinement calculus, which requires human expertise to be applied,
the translation strategy can be automated. Tool support is important to save
effort and avoid human errors that are typical of the activity of writing code.

This paper describes JCircus, a tool that implements the translation strat-
egy from Circus to Java. It receives as input a Circus program written in KTEX

markup based on that adopted for the Z Standard [7], and produces a Java
program that implements the program. JCircus translates concrete Circus pro-
grams, that is, those in which specification statements and Z schemas are not
used in action definitions. The strategy covers a large subset of concrete Circus,
including generic processes and some CSP replicated operators. Due to limita-
tions in the JCSP library, however, the protocols and data structures used in
the implementation impose restrictions on the input programs.

JCSP does not implement multi-synchronisation, that is, synchronisation in-
volving three or more processes. As Circus includes this feature, the translation
strategy makes use of a protocol that implements multi-synchronisation. For
JCircus we designed the class GeneralChannel that represent channels; it encap-
sulates the protocol, in the case of channels involved in multi-synchronisation.
This class can be regarded as an extension of JCSP, as its use is not restricted
to Java implementations of Circus programs.

The main purpose of JCircus is to provide animation for Circus programs;
for that, it also provides a simple graphical interface for execution of the gen-
erated programs. We do not have efficiency as a primary concern, but rather,
correctness: we have formally verified part of the translation strategy, namely,
the multi-synchronisation protocol.

In the next section we give a brief introduction to Circus and in Section 3 we
present the JCSP library. In Section 4, we present JCircus and the translation
strategy with a simple example, and we also present the class GeneralChannel.
In Section 5, we discuss our improvements to the strategy, some errors that
were found in the original strategy, the limitations of JCircus, and our approach
to prove its correctness. In Section 6, we draw conclusions and discuss some
directions of future work.

2 Circus

In Circus, just as in CSP, a system is regarded as a process. However, in Circus
a process may contain an internal state, which is described using the schema
constructs of Z. The state of a process is encapsulated; channels are the only
means of communication between a process and its environment.

Like a Z specification, a Circus program is formed by a sequence of para-
graphs. We use a small example of a program that calculates the greatest com-
mon divisor (GCD) between two natural numbers (Figure 1) to explain some of
the main constructs of Circus.

Our example begins with the declaration of two channels that communicate
natural numbers. The channel in receives two numbers, in sequence, and the
channel out outputs their GCD.

A process declaration gives its name and a process definition. The most basic
form of process definition specifies the state of the process, a sequence of process
paragraphs, and a nameless main action which describes the behaviour of the
process. All these are delimited by the keywords begin and end.

channel in, out : N

process GCD_FEuclidean = begin
state GCDState = [a, b : N]
InitState = z,y:Ne a,b:=1z,y
UpdateState = a,b := b, a mod b
GCD = uX eif b=0— outla — Skip
| b #0— UpdateState; X
fi
e in?z — in?y — InitState(z, y); GCD
end

channel gcd, sum
channel read, write : N

process SumOrGCD = (GCD_Euclidean |[{ in, out [}]| GCDClient) \ { in, out [}

process GCDClient = begin
ReadValue = read?z — read?y — ChooseOper(z, y)
ChooseOper = z,y : N ®
ged — inlz — inly — out?r — writelr — Skip
O
sum — write!(z + y) — Skip
o ;1 X ® ReadValue; X
end

Fig. 1. Concrete Circus program for calculation of the GCD

In our example, we declare a process GCD_FEuclidean which has its state
described by the schema GCDState; it contains two components, a and b, which
are initialised with the numbers for which we want to calculate the GCD. The
following definitions in the basic process describe actions. The initialisation op-
eration is InitState, which defines a parametrised action that takes z and y as
input, and assign them to a and b. The action UpdateState updates the values
of the state components in each iteration of the calculation of the GCD. The
recursive action GCD implements the Euclidean algorithm for calculation of the
GCD. When b # 0, it recurses; if b = 0, then the GCD is output. The basic
action Skip terminates without communicating values or changing the state.

The main action describes the behaviour of the process. It receives two inputs
through channel in, initialises the state with these values, and then calls GCD.

A process definition like that of GCD_Fuclidean uses Z and CSP constructs
to define the state and the behaviour of the process. It is also possible to define
processes in terms of others previously defined, using the CSP operators for
sequence, external choice, internal choice and parallelism, among others. The
process SumOrGCD is a parallel composition of the processes GCD_FEuclidean
and GCDClient. They communicate via in and out, which are hidden; this means
that the environment cannot see communications that occur through them.

The process GCDClient is recursive: in each iteration, it reads values z and
y from a channel read, and passes them to the parametrised action ChooseOper,
which offers a choice between the sum and the greatest common divisor oper-
ations. The external choice operator is as in CSP: it offers the environment a
choice between two or more actions. If the GCD operation is chosen, it delegates
to process GCD_FEuclidean the calculation of the greatest common divisor; com-
munication occurs through channels in and out. Otherwise, it outputs on write
the summation of the two values.

In Section 4, we discuss the translation of this example to Java using JCircus.
More details on Circus can be found in [8].

3 JCSP

The translation strategy makes use of the JCSP library to implement many of the
CSP constructs used by Circus. The library provides a simplified way to program
concurrency in Java without having to deal directly with the Java primitives.

In JCSP, a process is a class that implements the interface CSProcess, which
defines only the method public void run(). The implementation must encode
in this method the behaviour of the process.

JCSP also defines interfaces for channels: ChannellInput is the interface
for input channels and defines the method read; ChannelOutput is the inter-
face for output channels and defines the method write; Channel extends both
ChannelInput and ChannelOutput and is used for channels which are not speci-
fied as input or output channels. The implementations for channels are the classes
One20neChannel, One2AnyChannel, Any20neChannel and Any2AnyChannel. The
appropriate implementation to be used when creating a channel depends on
whether there are one or more possible readers and writers for the channel.

Synchronisation in JCSP is not in exact correspondence with the original
concept in CSP. Despite being possible to have more than one process that read
or write on a channel, only one pair of processes can synchronise at each time;
this model is similar to that of occam [9]. Thus, multi-synchronisation, that
is, three or more processes synchronising on a single communication, which is
allowed in CSP, is not directly supported by JCSP. To solve this problem, the
translation strategy implements a protocol for multi-synchronisation.

The class Alternative implements the external choice operator. Its con-
structor takes an array of channels that may be selected. The implementation of
the alternation requires that only input channels that have at most one reader
participate. The method select() waits for one or more channels to become
ready to communicate, makes an arbitrary choice between them, and returns
the index of the selected channel.

Parallelism is implemented by class Parallel, which implements CSProcess.
The constructor takes an array of CSProcesses, which are the processes that
compose the parallelism. The method run executes all processes in parallel and
terminates when all processes terminate. Differently from CSP, it is not possi-

ble to choose the channels on which the processes synchronise; in JCSP, they
synchronise on all channels that they have in common.

The CSP constructors Skip and Stop are implemented by the classes Skip
and Stop, respectively. JCSP includes also implementations for other features
that are not available in CSP, such as barrier synchronisation, timers and process
managers, among others, and extensions for the java.awt library that provide
channel interfaces for graphical components. For details, see [6].

4 JCircus

The translator from Circus to Java is an implementation of the translation strat-
egy that was originally described in [5]. The strategy defines rules for translation
of each construct of Circus. Translation is carried out by the recursive applica-
tion of the translation rules, following the syntactic structure of the program.
We proposed some adaptations to the original translation strategy, which we
discuss later on in this section and in Section 5. The complete reference to the
rules implemented in JCircus can be found in [10].

JCircus translates a concrete Circus program (written in WTEX markup) into
a Java program that implements the specification. It requires from the user: the
path of the input file, the name of the project (which will be the name of the
Java package for the program), and the output path. Before translation, the tool
performs parsing and typechecking, and verifies if the specification meets the
requirements for translation.

For each process definition in the input file, the tool asks if the user wants
to create a main class for it. For a process X, this class is called Main_X, and
it is the starting point for the execution of the process. It implements a parallel
composition of the process and a graphical interface that simulates its environ-
ment. A batch file Run_X.bat is also created; it contains commands to compile
the project and run the class Main_X using JDK [11].

4.1 The translation strategy

The translation consists of two phases. The first phase collects information about
types and channels: the free types defined in the program, the channels used by
each process, how they are used (for input or output), and whether they are
hidden or not. The second phase uses this information to generate the Java
code; it is basically an application of the translation rules.

Figure 2 shows as an example the rule for translation of a process declaration.
The function []|7"°*P**" is applied to a process declaration (ProcDecl) and takes
as parameter the name of the project (N). Each process declaration is translated
to a Java class that implements the interface CSProcess, and has the same name
as the process. The body of the class is translated with the rule for process
definition (ProcDef), which we omit here. This rule introduces the attribute
declarations, the constructor, and the implementation of the method run.

Rule A.1 Process declaration

[7Pt ProcDecl + N + JCode
|[process P = ProcDef ||" P! proj =
package proj.processes;

import java.util.x*;

import jcsp.lang.x*;

import proj.axiomaticDefinitions.*;
import proj.typing.*;

public class P implements CSProcess { |[ProcDef]" " p }

Fig. 2. Translation rule

Figure 3 shows the class GCD_Euclidean (without package and import dec-
larations), which results from the translation of the process GCD_Fuclidean.
Its private attributes are the channels that this class uses: in and out. As
they are not hidden in the declaration of the process, they are taken as in-
put by the constructor of the class. The channels are implemented by the class
GeneralChannel. The use of this class was one of the modifications to the orig-
inal strategy, which used the Any20neChannel class provided by JCSP instead.

The translation of the process definition gives the implementation of the
method run (Figure 3, lines 6-47) of the class. In our example, it is a definition of
a basic process, which is translated to a call to the method run of an anonymous
instantiation of CSProcess (lines 7-46).

The anonymous instantiation of CSProcess declares the state components
as private attributes. Since an action cannot be referenced outside the process
where it is defined, action definitions are translated as private methods.

The parametrised action definition InitState yields a parametrised method
with the same name. The Circus multiple assignment is translated to a sequence
of Java assignments. The implementation of the multiple assignment in action
UpdateState needs auxiliary variables because variable a is being updated and
used within the same assignment.

The definition of the action GCD uses the recursive operator p; the transla-
tion defines an inner class I_0. The translation of the recursive action yields the
declaration (lines 18-34), initialisation (line 35), and execution (line 36) of the
method run of this class. It implements CSProcess, and its method run contains
the implementation of the body of the recursion. In the places where a recursive
call is made, there is a new instantiation and execution of I_0 (lines 28-29).

The main action of the basic process is translated as the body of the method
run for the anonymous class that implements it (lines 39-44). In our example,
we have two inputs on channel in, a call to InitState, and a call to GCD.

Figure 4 shows the translation of the process SumOrGCD. It is a parallel
composition of two other processes; so, its attributes are the channels used by

public class GCD_Euclidean implements CSProcess {

private GeneralChannel in, out;

public GCD_Euclidean(GeneralChannel in, GeneralChannel out) {

this.in = in; this.out = out;
}
public void run () {
(new CSProcess() {
private CircusNumber a, b;

private void InitState(CircusNumber x, CircusNumber y) {

a = x; b=y;

}

private void UpdateState() {
CircusNumber aux_a = b;

CircusNumber aux_b = a.mod(b);

a = aux_a; b = aux_b;

}
private void GCD() {

class I_0 implements CSProcess {

public I_00) {}
public void run() {
if ((b.getValue() ==

(new CircusNumber(0)).getValue())) {

out.write(a);
(new Skip()).run();

} else if (b.getValue() !=
(new CircusNumber(0)).getValue()) {

UpdateState() ;
I_0i_0_0 = new I_00);
i_0_0.run();

} else {
while(true) {}

public void run() {

{ CircusNumber x = (CircusNumber) in.read();
{ CircusNumber y = (CircusNumber) in.read();

InitState(x, y);
GCDQ);
}
}
}
P .run(Q);
}
}

Fig. 3. Translation of process GCD_Fuclidean

DN DD DN DD e e e e e e e T o~~~ —~
DU W H O O© W0~ TR WNHFHOWWOW--I O UL WN -
NSNS AN NN I AN N NS AN NN N N N IS

NN
=
-t

o~

N N N N TN TN TN TN TN TN N N TN TN TN TN TN TN TN N N N N N N N N N N N N

public class SumOrGCD implements CSProcess {

private GeneralChannel gcd, read, sum, write, in, out;
public SumOrGCD(GeneralChannel gcd, GeneralChannel read,
GeneralChannel sum, GeneralChannel write) {
this.gcd = gcd;
this.read = read;
this.sum = sum;
this.write = write;

ChannelInfo inf_in = new ChannelInfo();

inf_in.put("GCDClient", new Integer(0));

inf_in.put("GCD_Euclidean", new Integer(1));

this.in = new GeneralChannel (new Any20neChannel(),inf_in,"SumOrGCD");

ChannelInfo ch_out = new ChannelInfo();
inf_out.put("GCDClient", new Integer(1));
inf_out.put("GCD_Euclidean", new Integer(0));
this.out = new GeneralChannel (new Any20neChannel(),inf_out,"SumOrGCD");
}
public void run(){
new Parallel(new CSProcess[] {
new GCDClient(new GeneralChannel(gcd, "GCDClient"),
new GeneralChannel(in, "GCDClient"),
new GeneralChannel (out, "GCDClient"),
new GeneralChannel(read, "GCDClient"),
new GeneralChannel(sum, "GCDClient"),
new GeneralChannel (write, "GCDClient")),

new GCD_Euclidean(new GeneralChannel(in,"GCD_Euclidean"),
new GeneralChannel (out,"GCD_Euclidean"))
B .runQ);
}
}

Fig. 4. Translation of process SumOrGCD

each of them. However, since in and out are hidden in this process, they are not
taken by the constructor, instead, they are created there.

The constructor of the class GeneralChannel takes an Any20neChannel and
an object of type ChannelInfo. This class is a mapping that associates a process
name with an integer, that indicates if the instance of the channel is used as an
input (1) or an output (0) channel. In our example, channel in is used for input
by the process GCD_Fuclidean and for output by the process GCDClient; the
channel out is used for output by GCD_Fuclidean and for input by GCDClient.
The constructor also takes the name of the process that is using the instance of
the channel; in our case, the process SumOrGCD.

The body of the method run contains the translation of the parallelism, which
uses the class Parallel of JCSP. As said before, the constructor of Parallel
takes an array of CSProcesses; in this case, instances of GCD_Euclidean and
GCDClient. Their constructors take the channels used by each process. We con-
struct new instances of the channels based on the ones that we already have,
changing only one attribute: the name of the process.

4.2 Running the program generated by JCircus

Besides the classes specified by the translation strategy, JCircus also generates a
simple graphical interface to simulate the execution of a process. For a process
X, this class is called Gui_X; it represents the environment that interacts with
the process. It is a Java Swing frame, with buttons and fields to represent the
interface of the process to its environment, namely, the channels that the process
uses and are not hidden. The state, hidden channels, and internal operations are
not visible by the environment. The graphical interface is also an implementation
of a CSProcess. It runs in parallel with the class that represents the process.

Figure 5 shows the graphical interface for the process GCD_Fuclidean. This
process uses only two channels: the input channel in and the output channel out,
and both communicate natural numbers. In the text fields next to the buttons,
we can type values for the input channels or visualise the values communicated
through the output channels.

£ GCD E]@

in Input: Circusinteger

out Outpunt: Circusinteger

Fig. 5. GUI for process GCD

When we run the class Main_GCD_Euclidean, the screen presented in Figure 5
is shown. The program waits for a synchronisation on channel in, as this is the
first communication in which the process GCD_FEuclidean can engage. As this
is an input channel, we must type in the first text field the input value, which is
the first of the pair of numbers for which we want to calculate the GCD. After
entering the value, we press the button in; this represents the synchronisation on
channel in. The generated program does not perform parsing or type checking.
It expects that the values entered by the user are well-formed and well-typed.

Once the first number has been entered, the program waits for the second
communication through channel in. After that, the program calculates the GCD
and waits for synchronisation on the channel out. When we press the button out,
the GCD appears in the text field just next to it.

4.3 The class GeneralChannel

The original translation strategy used the class Any20neChannel from the JCSP
library to implement a simple synchronised channel, that is, a channel on which
at most two processes synchronise. This class implements the interface Channel
which defines methods read and write. Every synchronisation is point-to-point;
it occurs by monitor synchronisation when one reference calls read and the other
calls write. Multi-synchronisation is not directly supported by JCSP.

To allow the implementation of processes that use multi-synchronisation, the
original translation strategy makes use of a protocol: for each channel involved in
a multi-synchronisation, there is a controller process running in parallel with the
system, and this process manages the requests for multi-synchronisation on the
channel it controls. The communication between the controller and each process
is done via simple synchronisations. Basically, each channel ¢ is replaced by an
array of Any20neChannels from_c, which the controller uses to communicate
with their clients, and an Any20neChannel channel to_c, which is shared by the
clients to send messages to the controller.

We have designed a class GeneralChannel to provide an abstraction for chan-
nels irrespectively of their use in multi-synchronisations. This class encapsulates
the data necessary for the implementation of multi-synchronisation; it contains
an array of Any20neChannels from and one Any20neChannel to. If the instance
of the channel is not involved in a multi-synchronisation, the channel to is used,
and the array from is ignored.

An object of class GeneralChannel contains not only the data necessary
to implement communication, but it also defines how the channel is used by
a process, that is, whether the process writes to or reads from the channel.
This information is registered in the attributes ChannelInfo channelInfo and
String processName. The class ChannelInfo is a mapping from Strings to in-
tegers. The Strings are the names of all processes that synchronise on the chan-
nel, and, for each of them, the associated integer determines whether the chan-
nel is used for writing or reading. The attribute String processName records
the name of the process that uses the instance of the channel. By looking up
processName in channellInfo, the constructor sets up the attribute int rw,
which holds 0 if this instance is used for writing, and 1 if it is used for reading.

The class GeneralChannel has three constructors: one for channels used
in simple communications, one for channels involved in multi-synchronisations,
and one that constructs a channel from another GeneralChannel, changing only
the process name. The last one is used when calling the constructor within
a compound process’ class; for example, the instantiation of GCDClient and
GCD_Euclidean in Figure 4. When using this constructor, the status rw is prop-
erly set for the new GeneralChannel instance, according to the new processName.
The signatures of the constructors are presented in Figure 6.

Like the class Any20neChannel, the class GeneralChannel defines methods
read and write. In the case of a channel that is not involved in a multi-
synchronisation, the implementation just calls the method read or write of

/* Constructor for multi-synchronisation */
public GeneralChannel (Any20neChannel to, Any20neChannel[] from,
ChannelInfo channelInfo, String procName) { ... }

/* Constructor for single-synchronisation */
public GeneralChannel (Any20neChannel[] from,
ChannelInfo channelInfo, String procName) { ... }

/* Constructs a new instance of a channel, changing the processName */
public GeneralChannel (GeneralChannel gc, String procName) { ... }

Fig. 6. Constructors of GeneralChannel

the channel to; in the case of a channel involved in multi-synchronisation, these
methods contain an implementation of the protocol for the appropriate case.

Besides the methods read and write, the class GeneralChannel also defines
the method synchronise. It is used in the translation of channels that do not
communicate values, as channels ged and sum in our example (these channels do
not contain input (?) or output (!) fields). Since, in JCSP, the synchronisations
are point-to-point, it is necessary to always define a reader and a writer. In our
implementation we use the method synchronise, so that we do not have to
determine if a channel should be read or written, in a particular process.

To determine if a channel is used as a reader or a writer in one process
requires inspecting the uses of the process. In the example below we have three
processes A, B, and C that execute an event c¢. These processes are combined
in parallel, two at a time in the processes ParAB, ParBC and ParAC.

process A = begin e ¢ — Skip end
process B = begin e ¢ — Skip end
process C = begin e ¢ — Skip end

process ParAB=A|{ ¢} B
process ParAC = A|[{c[}] C
process ParBC = B | { ¢ }] C

If we determine, for instance, that channel ¢ will be a reader in process A and a
writer in process B (for the parallelism ParAB), then we would not be able to
determine the role of channel ¢ in process C; ParAC would require that it was
a writer, and ParBC would require it to be a reader.

In our solution, the communications on channel c are translated using the
method synchronise, whose implementation is presented in Figure 7. The at-
tribute rw is set in the constructor of the GeneralChannel, as explained before,
according to the mapping in the ChannelInfo objects, which are initialised in
the classes Main_ParAB, Main_ParAC and Main_ParBC, with specific mappings
for each parallelism.

public Object synchronise(Object x) {
Object r = null;
if (this.rw == GeneralChannel.READ)
r = this.read();
else
this.write(x);
return r;

Fig. 7. Implementation of method synchronise

5 Discussions

Our main contribution to the original translation strategy was the class intro-
duced in the last section, GeneralChannel. In this section, we discuss other
improvements to the original translation strategy, including the correction of an
error related to parallelism of actions. Furthermore, we discuss the limitations
of JCircus and our approach for validating the multi-synchronisation protocol.

5.1 Translation of Circus types

The treatment of types in JCircus is different from that in the original proposal, in
which free types and special forms of abbreviation are translated to classes that
represent types. The forms of abbreviation considered were those that defined
sets in terms of at most one other set, by extending or restricting its elements;
that is, they could have the form TNamee,, == TName U {Vi,..., V,} or
TNameey, == TName \ {V1,..., V,,}. For instance, the following example is
taken from a case study presented in [8].

Mode ::= automatic | manual | disabled
SwitchMode == Mode \ {disabled}

In the original translation strategy, these definitions yield two classes: Mode,
which defines constants final int automatic = 0, final int manual = 1,
and final int disabled = 2; and SwitchMode, which extends Mode and de-
fines a constant int final MAX = 1, that restricts the values that it can assume.

We found this approach inappropriate because the notion of type here does
correspond to the Circus type system, which follows that of Z: SwitchMode does
not introduce a new type. It actually defines a set; a variable declared as, for
instance, var x : SwitchMode actually has type Mode. The treatment of types in
the original translation strategy could result in a situation in which a correctly
typed Circus program would result in a Java program that does not compile.

In the implementation of JCircus, we opted for following the Circus type sys-
tem to have a 1-1 mapping between Circus types and Java classes that represent

types. At the moment, we implement only free types and the basic type A; we
do not treat compound types yet, which is left as future work. Each free type
definition generates a class that represents that type, and abbreviations are not
considered. The basic type A, defined in the Z Standard to represent number
types, is implemented using class CircusNumber, but we have another restriction
here, since at the moment this class only implements a subset of A: the set of
integer numbers. Although in a Circus specification a number variable can hold
a value from an infinite set, in a programming language, like Java, we have finite
memory, which restricts the actual ranges that can be represented.

5.2 Parallelism of actions

We found a mistake regarding the translation of action parallelism. Action par-
allelism is different from process parallelism because the former requires the
definition of the set of variables that each parallel action can modify; we call
this set a partition. For process parallelism, there is no such concern, since each
process can access only its own data. The semantics of action parallelism defines
that each parallel action deals with copies of the local variables, and at the end
of the parallelism, the original variables are updated with the values of their re-
spective copies from the actions where they appear in the partition. In this way,
concerns about shared access to the state by the parallel actions are avoided.

The original translation strategy did not reflect this semantics when one
of the parallel actions contained an action call. In this situation, the action
call, which was translated as a method call, would update the original values,
instead of the copy. Our solution was to change the translation of an action
call that occurs within a parallelism; it is translated using an inner class (that
implements CSProcess) that declares as attributes copies of the local variables.
The translation consists of instantiation and execution of this class, and update
of the values of the original variables at the end.

5.3 Limitations

The implementation of JCircus also helped us to identify some requirements that
were not explicitly stated in the original translation strategy. We describe three
of them here. First, synchronisation on channels must always involve the same
number of processes, and the same processes. So, this is not allowed.

process P; = begin e ¢ — Skip end
process P, = begin e ¢ — Skip end
process P3 = begin e ¢ — Skip end

process P = (((Py[[{] ¢ [} P2) [{l ¢) P3); (Pul{l ¢ HI P2))\{ ¢}

Process P is a sequential composition; the first process is a parallelism of three
processes Py, P, and Pj3, synchronising on c; the second is a parallelism of P;
and P,, synchronising on c. So, in the first parallelism, channel ¢ is involved in a
multi-synchronisation, whereas in the second one, it is not. This cannot occur; the

channel c is instantiated in the constructor of class P, and the settings regarding
multi-synchronisation must hold for the whole implementation of process P.

The second limitation we discuss here also involves parallelism. Because the
implementation of class GeneralChannel uses the name of the processes involved
to determine how each process uses the channel, there cannot be repeated copies
of a processes in a parallelism, or parallelism of anonymous processes, like in the
following examples.

process P=A|{... }] A
process Q =begin ... end |[{| ... [}] begin ... end

However, this is not a serious restriction, which can be solved by redefining
the processes with new names. This rewriting could be automatically done by
JCircus, and this is one of the improvements that are planned for future versions.

The third limitation is that the situation in which a channel is used for
reading and for writing by the same process is not allowed. The reason is the
design of the class GeneralChannel, already discussed; it requires that the role
of a channel is uniquely determined in each process where it is used.

These and other limitations are recognised and documented as restrictions
on the input specification. They are also checked by JCircus; it gives an error
message in the case that the input program violates one of these restrictions.

5.4 Verification of the multi-synchronisation protocol

In order to have a useful tool, we are concerned not only with the correct im-
plementation of the translation rules, but also with a guarantee that the rules
themselves are correct. A complete proof of soundness for the translation strategy
requires a formal semantics for Java, and a mapping from the Circus semantics.
With that, we could prove that the semantics of every Circus program is in corre-
spondence with the semantics of the Java program obtained with the translation.
This, however, is by no means a simple task. We have proposed a smaller step to
bridge the gap between Circus and Java: to model the JCSP constructs and the
Java programs in Circus itself, and use the Circus refinement calculus to prove
that the translation rules are refinement laws. We used this approach to tackle
the verification of the algorithm for multi-synchronisation.

We were inspired by the work on [12] which considers a simple form of multi-
synchronisation. It is verified to be equivalent to another model that uses only
simple synchronisations. We have used a similar approach to verify a more com-
plex type of multi-synchronisation, where the channel takes part in an external
choice. We proposed a Circus model for this kind of multi-synchronisation; then
we proposed a Circus model for the multi-synchronisation protocol, and proved,
using the refinement calculus of Circus that the multi-synchronisation is refined
by our model of the implementation. The model is very close to the implemen-
tation and improves our confidence in it.

The approach taken for carrying out the refinement consists in refining the
specification to an action system; transforming the implementation model into

another action system; and then proving that the action systems are equivalent.
An action system is a type of recursive process whose execution is controlled by
a local variable which determine which events that are enabled in each iteration.
We have used equality or refinement rules in each step of the transformation.

6 Conclusions

We have described JCircus, a tool that implements a translation strategy from
Circus to Java. JCircus was developed in Java itself, and the translator module
amounts to about 10000 lines of code. We have followed a structured approach
for design and testing, and the project is documented in UML.

JCircus was implemented using the CZT framework [13], an open-source Java
framework for the ISO Z Standard and extensions. It has been recently ex-
tended to support Circus. The framework provides, among other things, a Java
library for abstract syntax trees, basic tools like parsers, type checkers and print-
ers, and an interchange format, based on XML, for representing specifications.
The use of the CZT framework allows future integration with other tools for
Circus that use the same framework. Currently, we have a parser and a type
checker [14] for Circus, that JCircus already uses, and a prototype model checker
for Circus [15]. A long-term goal of the Circus group is to provide an integrated
environment that supports development using Circus. JCircus is available at
http://www.cs.york.ac.uk/circus/jcsp/freitas-msc/, where we can also
find examples of translations.

Some previous work on translation tools are a translator from a subset of
CSP into Handel-C [16], and a translator of CSP to Java and C code [17].
The latter also uses libraries that implement CSP operators in a programming
language. Their strategy is similar to ours, however, we have the translation
rules formalised and we cover a broader range of CSP operators. As far as we
know, there is no other translator for Circus.

Another distinguishing feature of our work is the generation of the graph-
ical interface. It is an additional functionality provided by JCircus and is not
formalised by the translation rules. It makes the execution of the program gen-
erated immediately available, and is appropriate for the rapid prototyping of
Circus programs. The classes that capture the behaviour of each of the pro-
cesses, however, can be used in other contexts, where, for example, an interface
that is more specific to the application is implemented.

JCircus can translate some interesting examples, but the work is far from
complete. There are still some features that need to be implemented to make
the tool more useful. Some Circus constructs are not supported by our tool
because we do not have a robust parser yet. However, the translation rules are all
implemented. The CZT project is currently working on a new parser for Circus,
which extends the existing Z parser. When this parser is done, the translation
of the constructs which are not currently supported will become available.

One important extension is the provision of implementation of compound
Circus types, and number types other than integers in the CircusNumber class.

Implementation of more types will make the tool available for translation of a
larger range of programs. Another piece of future work is the investigation of
new implementations for the external choice and parallelism that avoid the limi-
tations of classes Alternative and Parallel of JCSP. The limitations described
in Section 5.3 also make an interesting topic for future research.

Acknowledgements

The authors thank Marcel Oliveira for extensive discussion about the translation
strategy; Leo Freitas for discussion about the design of JCircus; and Manuela
Xavier, who implemented the typechecker which is part of JCircus. This work
has been partially funded by the Royal Society and QinetiQ.

References

1. J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refine-
ment. In 5th Irish Workshop on Formal Methods, 2001.

2. J. C. P. Woodcock and J. Davies. Using Z — Specification, Refinement, and Proof.
Prentice-Hall, 1996.

3. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

4. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

5. M. V. M. Oliveira. A Refinement Calculus for Circus. PhD thesis, Department of
Computer Science, The University of York, 2005.

6. P. H. Welch. Process Oriented Design for Java: Concurrency for All. In Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA 2000), 2000.

7. Z Standards Panel. Formal Specificationn — Z Notation — Syntax,
Type and Semantics — Consensus Working Draft 2.6, 2000. At
http://www.cs.york.ac.uk/ ian/zstan/.

8. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining Industrial
Scale Systems in Circus. In Communicating Process Architectures, 2004.

9. The occam archive. At http://vl.fmnet.info/occam/.

10. A. Freitas. From Circus to Java: Implementation and Verification of a Translation
Strategy. Master’s thesis, Department of Computer Science, The University of
York, 2005.

11. Java Development Kit. http://java.sun.com/javase/.

12. J. C. P. Woodcock. Using Circus for Safety-Critical Applications. In VI Brazilian
Workshop on Formal Methods, 2003.

13. P. Malik and M. Utting. CZT: A Framework for Z Tools. In 5th International
Conference of Z and B Users (ZB 2005), 2005.

14. M. Xavier. Definigdo Formal e Implementagdo do Sistema de Tipos para a Lin-
guagem Circus. Master’s thesis, Centro de Informaética, Universidade Federal de
Pernambuco, Brazil, 2006. To be submitted.

15. L. Freitas. Model checking Circus. PhD thesis, Department of Computer Science,
The University of York, 2005.

16. J. D. Phillips and G. S. Stiles. An Automatic Translation of CSP to Handel-C. In
Communicating Process Architectures, 2004.

17. V. Raju, L. Rong, and G. S. Stiles. Automatic Conversion of CSP to CTJ, JCSP,
and CCSP. In Communicating Process Architectures, 2003.

