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Abstract. SysML is a UML-based graphical notation for systems engi-
neering that is becoming a de facto standard. Whilst it reuses a number
of UML diagrams, it introduces new diagrams, and maintains the loose
UML semantics. Refinement is a formal technique that supports the val-
idation and verification of models by capturing a notion of correctness
based on observable behaviour. In this paper, we analyse the issue of
formal refinement in the context of SysML. First, we identify the require-
ments for supporting refinement in SysML, next we propose extensions
to SysML that satisfy these requirements, and finally we present a few
refinement laws and discuss their validity.

1 Introduction

SysML [1] is a profile of UML 2.0 for systems engineering. SysML retains a
number of UML 2.0 diagrams, modifies others (like the block definition, inter-
nal block, and state-machine diagrams) and adds a new type of diagram. It
supports modelling of a variety of aspects of a system, including software and
hardware components, and socio-technical aspects. SysML includes a notion of
refinement, but it is informal and there is no universally accepted understanding
of its meaning. Whilst it is difficult to gauge adoption of SysML in industry, its
current support by tool vendors such as IBM 2], Atego [3] and Sparx Systems [4]
indicates that adoption is at least perceived as wide.

In [5,6,7] a denotational semantics for a subset of SysML has been proposed;
it is based on the state-rich refinement process algebra CML, which is a combina-
tion of VDM [8], CSP [9,10] and the refinement calculus [11]. CML is related to
the Circus family of refinement languages, and its semantics is specified in Hoare
and He’s Unifying Theories of Programming (UTP) [12], which is a relational
refinement framework. Circus has a refinement strategy [13] with associated no-
tions of refinement that can be directly adopted in the context of CML.

In this paper we lift the notion of refinement of CML to SysML, propose
extensions to SysML that enable reasoning based on refinement at the level of
the diagrammatic notation rather than CML, and present refinement laws both
for diagrams written using only standard SysML and for diagrams that use our
extensions. Our objective is to support stepwise refinement, and we also explain
how the Circus refinement strategy can be lifted to SysML; the laws that we
present are useful in the context of that strategy.
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Fig. 1. Block definition diagram of abstract model

There have been several studies of refinement in UML. They either do not
consider formal refinement [14], take refinement as a syntactic notion based
directly on UML components [15,16,17], or do not focus on laws of refinement
for model transformations as we do here [18,19,20,21,22]. Our objective is to
support sound model transformation at the diagrammatic level.

The structure of this paper is as follows. Section 2 introduces SysML and its
formal model [7]. Section 3 presents our notions of refinement. Section 4 discusses
the limitations of SysML in supporting refinement and proposes extensions to
overcome these limitations. Section 5 presents refinement laws. Finally, Section 6
summarises our results and discusses related and future work.

2 SysML and its formal model

Although our definition of refinement applies to models involving an arbitrary set
of diagrams, in this paper, we focus on block definition, internal block and state-
machine diagrams. Block definition diagrams allow the declaration of blocks,
which are the main modelling units in SysML used to define systems and their
components, and their relationships (composition, aggregation, generalisation
and association), internal block diagrams support the specification of the in-
ternal connections of a composite block, and state machines provide the means
of specifying the behaviour of a block. Activities play a similar role to state
machines, and are omitted here to simplify the exposition.

To illustrate refinement in SysML, we introduce a simple example of a chro-
nometer that records seconds and minutes, and accepts a tick signal that in-
crements the chronometer and a time operation that queries the recorded time.
The example consists of two distinct models, one abstract, depicted in Figure 1
and one concrete, shown in Figure 2, related by refinement. Whilst the abstract
model is centralised, the concrete one has two components, one recording the
seconds and the other recording the minutes. The components of the concrete
model cooperate to realise the behaviour specified in the abstract model.

Figure 1 shows the block definition diagram of the abstract model; it declares
a single block AChronometer with two private properties sec and min, both of
type Integer, and a port port that provides the operations and signals in the
interface ChronometerI. This interface is also defined by a block and contains
an operation time that returns a value of type Time, and a signal tick that
models the passing of time. The type Time is a datatype with two components,
min and sec, that encode a time instant in minutes and seconds.
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Fig. 2. Block definition diagram of concrete model
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Fig. 3. State machine diagram of the abstract model.

Since the block AChronometer is simple, there is no internal block diagram
specifying its internal structure. The remaining diagram in the abstract model
is the state-machine diagram shown in Figure 3; it contains two simple states.
When the state machine is started, the properties min and sec are initialised to
0, and the state State is entered. When the state is active, either the internal
transition triggered by time is executed, or the transition triggered by tick is
executed. The first models the treatment of a call to the operation time and
returns a value of type Time built from min and sec, whilst the second models
the passing of time and increments the block’s properties. The second transition
leads to a state that is exited as soon as it is entered due to the fact that its
outgoing transitions do not have triggers.

The concrete model is formed by four diagrams: one block definition diagram,
one internal block diagram and two state-machine diagrams. The first is shown
in Figure 2; it declares three blocks CChronometer, Min and Sec. The first is
composed of the other two as indicated by the composition relation (arrow with
a black diamond). The block CChronometer is similar to the block of the abstract
model except that it has no properties. These are distributed in the components
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Fig. 4. Internal block diagram of concrete model

Min and Sec. The block Min has a single private property and two ports, ip
and ip_aux, that both provide the operations in the interface MinutesI. The
provided and required interfaces of a port are the sets of operation calls and
signals that the block, respectively, receives and sends through the port.

The block Sec also has a single property, but two ports, port and ip_conj.
The first is identical to the port of the block CChronometer, whilst the second is
complementary to the port ip of Min and requires the operations in the interface
MinutesI. The block definition diagram has some extra annotations (hiding and
through port), which support refinement and are explained in Section 4.

The internal block diagram of the concrete model (Figure 4) shows the com-
posite block CChronometer and its components (marked with <<part>>); it spec-
ifies that the port port of Sec is connected to the port of CChronometer, and
that the ports ip and ip_conj are connected to each other. Finally, the blocks
Sec and Min have each one state machine (Figure 5). The state machine of Sec
is called SecMain and is similar to the state machine of the abstract model, ex-
cept that it delegates the operations involving minutes to the block Min. These
operations are treated by the state machine MinMain that contains a single state
with two internal transitions that react to a call to the operations minsReq and
inc. The first returns the value stored in min, and the second increments it.
Next, we describe the main elements of SysML that are covered in this paper.

Block. A block may declare properties, which are typed named elements (sec
and min in Figure 1), receptions (tick), which specify the signals that can be
treated by the block, and operations (time()). Additionally, it may generalise
other blocks, use and realise interfaces, and declare ports (ip, ip_conj and port
in Figure 4), parts (min and sec in Figure 4) and references.

State machine. State machines contain states (State in Figure 3), which may
be simple or composite, regions, transitions (the four arrows in Figure 3), junc-
tions (the small black circle in Figure 3), joins, forks, history junctions, initial
junctions (the larger black circle in Figure 3) and final states. States may declare
entry actions (executed when a state is entered), do activities (executed after the
state is entered), and exit actions (executed when the state is exited). Composite
states have one or more regions, which are entered, executed and exited in par-
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Fig. 5. State machine diagrams of the concrete model.

allel. Regions may contain states, both simple and composite, initial junctions
and final states. Initial junctions specify which state of a region is entered first,
and final states indicate when the behaviour of a region has terminated.

Transitions allow the deactivation of one or more states, and the activation of
others. Whilst two states may be connected directly by a transition, the connec-
tion may be extended by the use of junctions that allow the specification of more
complex flows; for instance, the three transitions connected to the junction in
Figure 3 specify that after sec is incremented, if its value is zero, nothing is done
and State is re-entered, otherwise, min is incremented and State is re-entered
Transitions may be triggered by events (tick in Figure 3) and guarded by con-
ditions ([sec <> 0] in Figure 3). Additionally, they may specify an action that
is executed when the transition is taken ([frame wr sec, min post sec = 0
and min = 0] in Figure 3). Joins and forks allow transitions to link one state
to multiple parallel states (contained in regions).

CML. A CML specification is a sequence of paragraphs that declare types,
constants, functions, channels, channel sets and processes. Figure 6 illustrates
the specification of a message buffer in CML.

First, the type of identifiers (ID) is defined as the type token, which is a
universal type in CML, and the type of messages is defined as a record type
with three components that record the origin of the message, its destination and



types
ID = token
MSG :: origin: ID dest: ID msg: seq of char
inv mk_MSG(o,d,-) == o <> d
values MAX = 5
channels read, write: MSG
process Buffer = Dbegin
state b: seq of MSG inv len b <= MAX
operations

Init: () ==> ()
Init() == b := []
actions
Read = [len b > 0] & read!(hd b) -> b := tl b
Write = [len b < MAX] & write?x -> b := b~ [x]
@ Init(); mu X @ ((Read [] Write); X)

end

Fig. 6. A CML specification of a message buffer

the text of the message. An invariant requires that the origin and destination
must be different. Next, the maximum size of the buffer is declared as a constant
MAX, and two channels as specified: read and write. They each communicate a
message, and are used to add and remove values from the buffer.

Finally, the process Buffer is declared. It encapsulates a single state compo-
nent b that holds sequences of messages of size at most MAX. A data operation
Init is declared to initialise the state component with an empty sequence, and
two actions, Read and Write, specify how the channels read and write are used
to interact with the buffer. In the first case, it is only possible to obtain a value
through the channel read, if there is at least one value in the buffer. In the
second case, the action specifies that it is only possible to send a value through
the channel write if there is space on the buffer (len b < MAX). Finally, the data
operation and actions are combined to specify the behaviour of the process (af-
ter @): it initialises the state and starts a recursive action (mu X @ ...) that at
each step offer a choice between the actions Read and Write.

Central to CML is the notion of refinement that supports the comparison of
processes with respect to their external communications. Calculational stepwise
refinement is supported in CML by a rich catalogue of refinement laws that cover
both data and process refinement.

Formalising SysML. Our formal model of SysML is a CML specification that
declares a number of types, values, channels, channel sets and processes. The
semantics of a block is given by a CML process; it offers interactions through a
number of channels:

— set and get channels for each property of a block to allow properties to be
read and written to;
— op and sig channels that allow the receipt of operations and signals; and



— ext_op and ext_sig channels for each port that also allow the receipt of
operations and signals.

The model of the system defined by the SysML diagrams is captured in CML by
the process that defines the block that characterises that system. The process
defines the system interface in terms of the above channels, and interacts with
other processes that capture other diagrams of the SysML model and restrict
the interface of the system as indicated in those diagrams.

The structure of the processes that model blocks differs according to the
nature of the block: simple or composite. The process that models a compos-
ite block is formed by the parallel composition of the processes that model the
blocks that type its parts; the parallel composition is determined by the inter-
nal blocks diagram that describes the composite block. For instance, the block
CChronometer in Figure 5 is modelled by a process that is defined by the par-
allel composition of the processes that model the blocks Min and Sec with their
channels appropriately renamed to allow the communication between ports ip
and ip_conj, and ports port of Sec and port of CChronometer.

Simple blocks, on the other hand, are modelled by processes that describe
which operations and signals can be received by the block and may interact
with a state machine process to treat them. These processes are formed by
the parallel composition of processes that model the block’s interface, the state
machine that describes the behaviour of the block, and the block’s ports. State
machines are modelled by CML processes that are prepared to receive SysML
events and react according to the behaviour specified in the state machines.
Whilst communication in CML is synchronous, it is asynchronous in SysML,
and, therefore, cannot be specified directly in CML. In our semantics, SysML
communications are modelled in terms of buffers and CML communications.

The semantics of SysML is specified by inductive functions over the meta-
model of SysML. The semantics of a SysML model is given by the function
t_model, which takes a model as argument and characterises its corresponding
CML specification. The formalisation of the semantics of SysML is in [7].

3 Refinement in SysML

Informally, our notion of refinement for SysML models compares the two blocks
that define the systems with respect to their operations and signals. Essentially,
if a block A is refined by a block B, the following properties must hold:

1. A and B must accept exactly the same public signals;

2. A and B must accept exactly the same public operations;

3. A and B must have exactly the same public properties;

4. for each public operation of A, if its return value is nondeterministically
chosen from a set S, the same operation on block B must return a value that
is nondeterministically chosen from a subset of S;

5. for each property of A, if its value is nondeterministically chosen from a set
S, the same property on the block B must have a value nondeterministically
chosen from a subset of §.



This refinement relation is induced by the CML semantics of SysML and corre-
sponds to the refinement relation of CML process.

First of all, since process refinement is compositional in CML, and the main
SysML elements (blocks, state machines and activities) map to processes used to
define the CML process that defines the system model, we can refine the models
of the individual diagrams to refine the SysML model as whole.

Next, we formalise the notion of refinement for blocks and state machines.

Definition 1 (Block refinement) Let 9 be a SysML model, and let By and
By be blocks of M, then

By Ty Bo & t_model ON).By Cp t_model (M) By

That is, block 9, is refined by block Bs (written B, Egock B,) if, and only
if, the CML process B; that models the block 2 is refined by the process Bs
that models B5. With the view that a system is specified by a block in a SysML
model, block refinement as formalised in Definition 1 is the main relation that
must be verified to establish refinement between systems.

Data-refinement in SysML is defined similarly to behavioural refinement by
lifting CML data-refinement, which is based on forward simulation.

Definition 2 (Forward Simulation) A forward simulation (—49}?) between
blocks 81 and By of a SysML model N is a relation R between B1.PrivateProps
and Bs. PrivateProps if, and only if, R is a forward simulation between the pro-
cesses t_model OM).By and t_model (MN).Bs.

Unlike state components of CML processes, properties of blocks are not neces-
sarily encapsulated (private). For this reason, forward simulation in SysML is
defined with respect to private properties of the blocks. This is an extension of
a calculational approach to data refinement presented in [11] to allow (private)
variables in local blocks to have their types data refined.

Definition 3 (State machine refinement) Let I be a SysML model, and let
&1 and &9 be state machines of M, then

61 Ch,, 60 & t_model ON).S; Cp t_model (M).Sy

That is, a state machine &; is refined by another state machine Gy (written
GH Q?Im S,) if, and only if, the CML process S that models the state machine
&, is refined by the process S; that models &s.

Notions of refinement for states (written Egate), regions, transitions and
actions are similarly defined. For states, the observations that are preserved
by refinement are the activation and deactivation of the top state (that is, the
substates are not observable), and the signals and operation calls performed
inside the state. The observations of regions are the activation and deactivation
of the region and the signals and operation calls performed inside the region.
Transition refinement preserves the observation of activation and deactivation
of states as well as the signals and operation calls performed by the transition.



As indicated in the previous section and further explained in Section 4, a
subset of CML is used as action language for SysML. This subset excluding
signals, operation calls and return statements retains the original CML semantics
(except that they are enclosed in a variable block that models a local copy of
the shared state). For this reason, CML refinement laws for such statements can
be reused in the refinement of SysML models.

4 SysML extensions

In general, we wish to prove that an abstract model, where possibly no particular
design has been chosen, is refined by a more concrete model in which some design
decisions have been taken. In SysML, the more concrete model often adds new
operations to the abstract model in order to implement particular designs. This,
however, makes the refinement invalid as new operations are now observable in
the concrete model. The extra operations should in fact be internal, and used
solely to implement behaviour specified in the abstract model. An alternative
notion of refinement could allow addition of operations and use hiding to lift the
CML notion of refinement. Here, we adopt the standard notion of refinement in
process algebra directly.

In our example, we wish to show that the block AChronometer is refined by
CChronometer. However, based solely on the pure SysML model, it is not possible
to verify this refinement since block CChronometer clearly offers more operations
than AChronometer: inc, minsReq and reset from block Min in Figure 2. These
operations are used to implement the operation time, and are not meant to be
visible outside the block CChronometer, that is, they are meant to be internal.

Moreover, since some of the ports of internal parts can be left unconnected,
the operations and signals they offer are not called by another part, and simply
making them internal, could lead them to occur spontaneously. For this reason,
there needs to be a way of making them unavailable when hidden.

Finally, SysML does not provide adequate support for specifying abstract
behaviours: both state machines and activities define very concrete models, and
the fact that their action language is undefined is also a hindrance. The use of
a programming language to define the action does not address this issue; as it
does not provide support for abstract specifications.

We address the problems above through five extensions to SysML: hiding,
restrictions, alphabets, plugs and the definition of an action language. The first
extension supports the specification of internal signals and operations, the next
three can be used to make certain signals and operations unavailable, and the
fifth adds support for abstract specifications.

In order to specify that certain operations and signals are internal to a block,
we propose the use of the hiding extension. A set of operations and signals rep-
resented by a SysML interface is hidden in a block by creating a dependency
between the block and the interface, and adding a hiding comment to the de-
pendency as shown in Figure 2. The semantics of this extension is given by the



hiding operator of CML, which makes a set of channels internal to a process,
and therefore, independent from external influences.

As already mentioned, any internal operation or signal that is offered but not
used can occur spontaneously, which in turn leads to an infinite loop of internal
behaviours. Therefore, only operations and signals that are used as specified by
the internal block diagram can be made internal.

This restriction, however, is too strong as unused operations are often as-
sumed to be unavailable. In fact, in our example, none of the extra operations of
CChronometer can be hidden due to this restriction: some of them (reset) are
not used at all, and the others are used only through a particular port of Min.
The next three extensions provide mechanisms to indicate that an operation or
signal is unavailable under certain situations (and can, therefore, be hidden).

Operations and signals of a block can be called by referring directly to an
instance of the block, or through the ports that provide them. In order to support
the specification of operations and signals that are only used through ports or
(directly) through the block, we propose the use of restrictions.

Restrictions are represented by a through ports or through block com-
ment linked to an operation, signal or interface to indicate that it is offered only
through ports or only through the block. If there is no comment, it remains avail-
able through both. Figure 2 illustrates the use of restrictions in the realisation
between the block Min and the interface MinutesI. The semantics of a restriction
that declares an operation 0 only available through ports is given by a reduction
of the alphabet of the process that models the block. This reduction removes all
communications that allow calls to the operation directly to the block.

Alphabets specify which operations and signals of a block are available when
it is used as a part of another block. This extension is represented by a SysML
comment that lists the used operations and signals and is associated with par-
ticular instances of blocks (parts). Alphabets must be connected to part (and
not blocks) because they specify restrictions over the use of a block as a part. A
block may be used in different contexts with different alphabets. In our example,
to prevent the part min shown in Figure 4 from offering the operation reset, it
is annotated with an alphabet containing minsReq and inc.

At this point, the operation reset can be hidden because it is not offered by
the block CChronometer or its parts, but the remaining operations of Min cannot.
They are offered on ports ip and ip_aux, but only used on ip as indicated by
the connector between ip and ip_conj in Figure 4. Before these operations are
made internal, the unused port ip_aux must be disabled. This is achieved by
means of the plug extension, which allows us to mark a port as unused (plugged).
A plug is specified by a comment linked to the port that is unavailable. Similarly
to alphabets, this annotation must be placed on a port of a part since it does not
affect a block in general, but only a particular use of a block. In our example,
the port ip_aux is plugged as shown in Figure 4.

Finally, the problem of supporting abstract specifications is addressed by the
use of a subset of CML as action language in state machines (and activities).
This subset includes the CML statements (like the specification statement for



instance), as well as sequential composition, external and internal choice, inter-
leaving and guarded statements. These are the basic CML action constructors,
except for those that involve communication (prefixing and parallel composition)
since the communication paradigm of SysML (asynchronous) is different from
that of CML (synchronous) and is already supported by signals and operation
calls. In our example, the only statements that are used are assignments. speci-
fication statement and and sequential compositions as shown in Figures 3 and 5.
The complete syntax of CML statements is in [23]

5 Refinement laws in SysML

In this section, we describe how the Circus refinement strategy can be applied
to SysML models and present a few laws that support the strategy. These laws
fall into two main groups: refinement laws that rely solely on existing SysML
constructs, and laws that use alphabets, restrictions, plugs or hiding.

The Circus refinement strategy is an iterative process. In each iteration, ini-
tially, a centralised abstract process is data refined to introduce concrete data
models, next the actions of the process are refined to introduce parallelism, and
finally the process is partitioned into one or more processes that interact with
each other to implement the abstract process. Each of the new processes may
become the object of a subsequent iteration of the strategy.

We illustrate the use of this refinement strategy for SysML and the new
laws through a simple example that verifies that the distributed concrete model
shown in Figure 2 is a refinement of the centralised abstract model in Figure 1.

The first phase of the refinement strategy is supported in SysML by sim-
ulation laws that distribute a forward simulation (see Definition 2) through a
SysML model. Since the data model of our concrete specification is the same
as that of the abstract specification, this phase is not required in this simple
example. Simulation laws can be found in [24].

In the second phase, we start by introducing local auxiliary behaviours in
the abstract model that are initially not used via state machine refinement laws.
Namely, the local hidden operations minsReq and inc are introduced by the
Law Local operation introduction presented below.

This law takes a block and an operation, introduces the operation in the
block as a private operation, and hides it. The resulting block is identical to the
original because the new operation is only available internally and is not used.
Whilst this seems useless, further laws can take advantage of the availability of
the local operation to replace behaviours by calls to it.

Still as part of the second phase of the strategy, we introduce some of the
structure of the design. In our example, the single state in the abstract state
machine is refined into a composite state with two regions using the Law Region
introduction shown below — the first region corresponds to SecMain in Figure 5,
and the second contains a state that offers the behaviours associated with the lo-
cal operations. This does not modify the behaviour of the state machine because
the newly introduced behaviours are triggered by unused local operations.



Law 1 Local operation introduction.
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Law 2 Region introduction.
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This law takes a composite state with a single region containing any number
of substates and transitions, and refines it into a composite state with two re-
gions: the first is the original region, and the second is an empty region. This is
possible because the two regions are executed in parallel, and the empty region
does not introduce new behaviours observable outside the composite state.

In the third phase, the block AChronometer is partitioned in two using
Law Block decomposition. This law is a block refinement law that takes a simple
block with two ports, pl and p2, and a state machine that at the top level has
two regions, R1 and R2. It refines the simple block into a composite block with
the same two ports, but whose parts are two new blocks, Blockl and Block2,
each with two ports (e.g., p1 and ipl), and each with its own state machine
derived from one of the regions R1 and R2. In this law, I1 and I2 represent both
the provided and required interfaces of the port.

The provisos of this law guarantee that no new operations or signals are
introduced and that their treatments (in the state machine) are independent
and, therefore, can be separated. That is, this law can be applied as long as the
a subset of the operations and signals (the external ones) of the original block
are partitioned in the interfaces I1 and I2 (proviso 1), the transitions of the two



Law 3 Block decomposition.

«block»
Block

STM
i

0 | 0

port1: 11 | port2:12
1

m
;Block

«block»
Block

«part» «party
part: Block1 part1: Block2

STM_R1 STM_R2

p1l ip1:m p2 12

o1 ip2:112 pz Iz

provided
1. I1NnI2=2@ NI1UI2C Block
2. triggers(R1) N triggers(R2) = @ A usedV (R1) NusedVR2 = &
3. provided(I1) N trigger(R2) = & A required(I1) N used(R2) = @
4. provided(I12) N trigger(R2) = @ A required(12) N used(R2) = &

where

1. Blockl N Block2 = @ N Blockl U Block2 = Block
2. provided(II1) = Blockl N used(R2) A required(II1) = Block2 N used(R1)
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top regions of the state machine have no triggers in common and the two regions
do not share block properties (proviso 2), the provided items (operations and
signals) of I1 are not used in the triggers of the transitions of region R2 and the
required items of I1 are not used in the actions of the states and transitions in
R2 (proviso 3), and the provided items of I2 are not used in the triggers of the
transitions of region R1 and the required items of I2 are not used in the actions
of the states and transitions in R1 (proviso 4).

Each block has an event pool where received events (operation calls and
signals) are stored for processing. The proviso 2 of Law 3 guarantees that it is
possible to partition the event pool of the block into two parts: one containing
only events that may be consumed by the first region, and the other containing
the events that may be consumed by the second region. Since the order in which
events are sent to the state machine is non-deterministic (see [7,25]), it is not



possible to distinguish the two pairs of event pools and state machines from the
original pair, thus allowing the block to be decomposed in two.

The two new blocks produced by the Law Block decomposition partition the
operations and signals of the original block, and each has two ports; for instance,
in Blockl they are p1 and ipl. The ports pl and p2 are identical to those of
the original block and are linked by a connector to the corresponding ports of
the composite block. The connected ports ipl and ip2 are introduced to allow
one part to call operations of the other, which accounts for the use of block
operations in the original state machine. The interfaces II11 and II2 of these
internal ports are such that they contain as provided items those operations and
signals of the associated block (Blockl or Block2) that are used by the region
associated with the other block, and contain as required items those that are
used by its associated region. Both of these interfaces are hidden.

In a second iteration of the refinement strategy, standard CML refinement
laws are used to (1) introduce a local variable aux initialised with min in the
behaviour of the transition triggered by time (see Figure 3), and (2) replace min
in the record constructor mk_Time by the local variable. Finally, Law Operation
call introduction [24] is applied twice, once to replace aux := min by a call to
minsReq via port ip_conj, and again to replace min := (min + 1) mod 60 by
a call to inc through the same port.

The soundness of these laws can be verified using the CML models induced
by our semantics, and our notions of refinement. The soundness of the refinement
laws presented in this paper is further discussed in [24].

6 Conclusions

In this paper we have presented our initial results regarding the use of refinement
in SysML models. We have identified limitations of the diagrammatic notation
that restrict, if not disallow, the use of refinement for all but the most trivial ex-
amples where concrete models add no extra operations, signals and components.
To address these limitations, we have proposed extensions to SysML that address
those limitations, and described a number of laws that support the development
and verification of SysML models by stepwise refinement.

Current work on refinement in UML tends to follow three main directions
First, [14] provides some extensions for structuring refinements, but does not
present a formal notion of refinement.

Second, the notion of refinement in UML is analysed and contrasted with
the notion of generalisation in [15], whilst in [16], it is related (informally) to a
formal notion of refinement as inspiration for transformation patterns. Bergner
et al. [17] use an extension of the informal notion of refinement available in UML
to record evolution of models across different levels of abstraction. Our notion
of refinement is induced by our semantics of SysML, whilst the above results use
a notion of refinement based directly on components of UML models.

A third line of work is pursued [18,19,20,21,22]; our work differs from those
most noticeably in our support for stepwise refinement at the level of SysML



rather than of the model adopted. Hnatkowska et al. [18] formalise in a de-
scription logic refinement between models at different levels of abstraction and
semantic levels, but it is not clear what properties are preserved by such notions
of refinement. A similar approach is taken in [20], where the notion of refinement
is based on the observation of operation calls.

Liu et al. [19] formalise a subset of UML in an object-oriented specification
language that supports refinement. Similarly to our work, refinement patterns
are proposed and their soundness is argued based on the formalisation. However,
complicating aspects such as concurrency are not explored. Furthermore, it is
not clear if compositional refinement patterns for state machines are supported
as the formalisation of state machines is based on a preprocessing phase that
flattens the state machine eliminating the hierarchical structure.

In [21], refinement is explored in a formal variant of UML based on Event-
B [26]. This work differs from our mainly in that the Event-B approach is based
on the guess-and-verify paradigm, where a new model is created and the refine-
ment is verified rather than on refinement laws.

Finally, [22] explores refinement in UML by formalising a subset of UML in
CSP. The notions of refinement are those of CSP, and the preserved properties
are similar to ours, interaction between blocks via operations and signals. In that
work, however, refinement supports verification via model checking.

The soundness of the refinement laws is based on the formal semantics of
SysML published in [7,5,6] and the CML refinement calculus. As future work,
we will extend the catalogue of refinement laws for SysML models and apply
it to more examples. Furthermore, we plan to extend the SysML profile in [27]
to include our extensions and to use the CML theorem prover [28] to formalise
and mechanically verify our refinement laws, as well as to automate as much as
possible the verification of the provisos generated by a refinement.
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