
REFINE 2008

ArcAngelC : a Refinement Tactic Language for
Circus

M. V. M. Oliveira 1,2

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Natal, Brazil

A. L. C. Cavalcanti 3

Computer Science Department
University of York

York, United Kingdom

Abstract

Circus is a refinement language, in which specifications define both data and be-
havioural aspects of concurrent systems using a combination of Z and CSP. Its
refinement theory and calculus are distinctive, but refinements may be long and
repetitive, and using this technique can be hard. Some useful strategies have al-
ready been identified, described, and used. By documenting and using them as
tactics, a lot can be gained since they can be repeatedly used as single transfor-
mation rules. Here, we present ArcAngelC , a language for defining such refinement
tactics; we present the language and its application in the formalisation of an ex-
isting informal strategy for verification of Ada implementations of control systems.

Key words: Concurrency, refinement calculus, tactics, control law
diagrams.

1 Introduction

Circus [3] is a formalism that combines Z and CSP to cover both data and
behavioural aspects of a system development or verification. It distinguishes
itself from other such combinations like CSP-Z [4], TCOZ [8], and CSP-B [20],
in that it has a related refinement theory and calculus [13]. Using Circus, one
may develop state-rich reactive systems in a calculational style [10].

1 CNPq supports the work of Marcel Oliveira: grant 551210/2005-2.
2 Email: marcel@dimap.ufrn.br
3 Email: Ana.Cavalcanti@cs.york.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Oliveira and Cavalcanti

In this approach, the repeated application of refinement laws to an abstract
specification produces a concrete specification that correctly implements it.
However, this may be a hard task, since developments may prove to be long
and repetitive. Some development strategies may be captured as sequences
of law applications, and used in different developments, or even many times
within a single development. Identifying these strategies, documenting them
as tactics and using them as single refinement laws can save time and effort.

We present ArcAngelC , a refinement-tactic language for Circus whose con-
structs are similar to those in ArcAngel [15], a refinement-tactic language for
sequential programs. Both languages are based on a general tactic language,
Angel [9], which is not tailored to any particular proof tool and assumes only
that rules transform proof goals. Angel allows the use of angelic choice to
define tactics that backtrack to search for successful proofs. Furthermore, it
has a formal semantics and an extensive set of laws that provide a complete
tool to reason about tactics. The semantics of ArcAngel and its set of laws can
be found in [12] along with the formalisation of useful refinement strategies.

Like ArcAngel, as a refinement-tactic language, ArcAngelC must take into
account the fact that the application of refinement laws yields not only a pro-
gram, but proof obligations as well. So, the result of applying a tactic is a pro-
gram and a set of all the proof obligations generated by each law application.
In the design of ArcAngelC , we adapted the Angel approach to refinements.
The constructs of ArcAngelC are similar to Angel’s, but adapted to deal with
the application of the Circus refinement laws: its structural combinators are
used to apply tactics to Circus’ programs, processes, and actions.

Many tactic languages can be found in the literature [5,21,1,22]. However,
as far as we know, none of them present a formal semantics and support
a refinement calculus for concurrent systems. Furthermore, some of these
languages do not present some operators like recursion and alternative. This
limits the power of expression of these languages.

This paper presents the novel combinators of ArcAngelC , and illustrates its
use to formalise and generalise part of a refinement strategy [2] to prove the
correctness of implementations of Simulink diagrams [6] in SPARK Ada. This
formalisation provides structure and abstraction to the refinement strategy,
and fosters its automation in tools like [17].

The next section describes Circus. In Section 3, our tactic language for
Circus, ArcAngelC , is presented. Section 4 describes control law diagrams and
uses a simple controller to illustrate them; it also informally describes the
refinement strategy that can be used to prove that a given Ada code correctly
implements a particular control law diagram [2]. In Section 5, we formalise
parts of the refinement strategy presented in [2] as ArcAngelC tactics and use
them in the verification of a simple controller. Finally, in Section 6, we draw
our conclusions and discuss some future work.

2

Oliveira and Cavalcanti

2 Circus

In Circus, programs are declared as a sequence of paragraphs. Each paragraph
may be a channel declaration, a Z paragraph, or a process definition. A
process defines a system that contains its own state, and communicates with
the environment via channels. The main constructs of Circus are illustrated
in the specification of a register presented below. The register stores a value,
which is initialised with zero, and can store or add a given value to its current
value. The stored value can also be output or reset.

channel store, add , out : N; result , reset
process Register =̂ begin state RegSt =̂ [value : N]

RegCycle =̂ store?newValue → value := newValue

2 add?newValue → value := value + newValue

2 result → out !value → Skip

2 reset → value := 0

• value := 0; (µ X • RegCycle; X)

end

Channel declarations channel c : T introduce a channel c that commu-
nicates values of type T . For instance, channel store, add , out : N declares
three different channels that communicate natural numbers.

Processes may be declared in terms of other processes or explicitly. An
explicit definition is composed of a state definition, a sequence of paragraphs,
and finally, a nameless main action that defines the behaviour of the process.
The state is defined as a Z schema; the remaining paragraphs can either be Z
paragraphs, or named actions. For instance, the state of process Register is
defined by the Z schema RegSt ; it contains a component that stores its value.

Three primitive actions are Skip, Stop, and Chaos . The first finishes with
no change to the state, the second deadlocks, and the third diverges. Other
Circus actions may be defined using Z schemas. Finally, actions may be defined
as a guarded command, an invocation to other actions, or the combination
of actions using CSP operators like hiding, sequence, external and internal
choice, parallelism, interleaving, or their corresponding iterated operators.

The process Register initialises its value to zero and then, has a recursive
behaviour. The action RegCycle is an external choice: a new value can be
stored or accumulated using the channels store and add ; the current value is
requested through result , and then received through out , or reset .

Circus prefixing is as in CSP. However, it may have a guard associated with
it. If the predicate p is true, the action p & c?x → A assigns the value input
through c to a new implicitly declared variable x ; it deadlocks otherwise.

Besides the set of channels in which the actions synchronise, the parallelism
of actions requires additional information in order to avoid conflicts in the
access to the variables in scope: two sets that partition all the variables in

3

Oliveira and Cavalcanti

scope. In the action A1 |[ns1 | cs | ns2]| A2, the actions synchronise on the
channels in the set cs and have access to the initial values of all variables in
scope. However, only A1 and A2 may modify the values of the variables in
ns1 and ns2, respectively. The interleaving A1 ||[ns1 | ns2]|| A2 has a similar
behaviour. However, the actions do not synchronise on any channel.

Parametrised actions (and processes) and their instantiation are also avail-
able in Circus. When applied to actions, the renaming operator substitutes
state components and local variables. Finally, actions may be assignments,
alternations, variable blocks, or specification statements in the form of [10].
The CSP operators of sequence, choice, parallelism, interleaving, event hiding
and renaming may also be used to define processes.

Refinement in Circus.

In Circus, the basic notion of refinement is that of action refinement [18].
Here, we use some of the refinement laws from [13] like the Law 2.1 (par-inter)
presented below, which transforms a parallel composition into an interleaving.

Law 2.1 (par-inter) A1 |[ns1 | cs | ns2]| A2 = A1 ||[ns1 | ns2]|| A2

provided (usedC (A1) ∪ usedC (A2)) ∩ cs = ∅

Proof obligations of refinement laws are described in their provided condition.
They are conditions that need to be met in order to validated the application
of the corresponding refinement law. For instance, the application of Law 2.1
is only valid if none of the channels used in actions A1 and A2 are in cs ; the
function usedC returns the set of all channels used in a given action.

Process refinement is defined in terms of action refinement: a process P2

refines a process P1 (P1 ⊑P P2) if its main action (P2.Act) refines the main
action of P1 (P1.Act). Both main actions may act on different states and their
dashed counterparts, and so may not be comparable. Hence, we compare the
actions we obtain by hiding the state components of P1 and P2, as if they
were declared in a local variable blocks.

Definition 2.1 [Process Refinement] P1 ⊑P P2 if, and only if,
(∃P1.State; P1.State ′ • P1.Act) ⊑A (∃P2.State; P2.State ′ • P2.Act)

As discussed above, the state of a process is private. This allows processes’
components to be changed during a refinement. This can be achieved in much
the same way as we can data refine variable blocks and modules in imperative
programs [11]. A well-known technique of data refinement in those contexts is
forwards simulation [7]. Details of Circus data refinement can be found in [3].

3 ArcAngelC

ArcAngelC is a refinement-tactic language similar to ArcAngel [15], which is
a tactic language tailored for Morgan’s refinement calculus. It includes basic

4

Oliveira and Cavalcanti

TacticDecl ::= TacticN (Decl) Tactic [tactic declaration]

[generates Prog]

[proof obligations Pred+] end

Tactic ::= law N (Exp∗) [law application]

| tactic N (Exp∗) [tactic application]

| skip | fail | abort [basic tactics]

| applies to Prog do Tactic [patterns]

| Tactic ; Tactic | Tactic | Tactic [sequence / alternative]

| µ
T

N • Tactic | !Tactic [recursion / cut]

| succsTactic | failsTactic [assertions]

| → Tactic | & Tactic [action combinators]

| µ Tactic | if Tactic+ fi | var Tactic

| val Tactic | res Tactic | vres Tactic

| beginend ((N, Tactic)∗, Tactic) [process combinators]

| ⊙ Tactic | ⊙inst Tactic

| =̂ Tactic | Tactic ; Tactic [action/process combinators]

| Tactic2 Tactic | Tactic⊓ Tactic

| Tactic‖ Tactic | Tactic ||| Tactic

| ; Tactic | 2 Tactic | ⊓ Tactic

| ‖ Tactic | ||| Tactic | \ Tactic

| \ Tactic | := Tactic

| • Tactic | •inst Tactic

| program (N, Tactic)∗ [program combinator]

Fig. 1. Abstract Syntax of ArcAngelC

tactics, like a law application, for example; tacticals, which are general tactic
combinators; and structural combinators, which support the application of
tactics to components of Circus programs. The basic tactics and tacticals of
ArcAngelC are inherited from Angel, and some of its structural combinators are
inherited from ArcAngel; nevertheless, the ArcAngelC ’s structural combinators
that are related to the CSP part of Circus are a new feature. Furthermore,
unlike ArcAngel tactics that can be applied to programs only, ArcAngelC ’s tac-
tics can be applied to Circus programs, processes, and actions. Hence, tactics
can be used to prove proof obligations raised in the application of refinement
laws like process refinement laws whose proof obligations may contain action
refinement statements.

The syntax of ArcAngelC is displayed in Figure 1. We use Exp∗ to denote
a possibly empty sequence of elements of the syntactic category Exp of ex-
pressions. We use Tactic+ to denote a non-empty sequence of tactics. The

5

Oliveira and Cavalcanti

categories N, Number, Pred, and Decl include the Z identifiers, numbers, pred-
icates and declarations defined in [19]. Finally, the syntactic category Prog

denotes the Circus programs as in [13].

Tactic Declarations

A tactic program consists of a sequence of tactic declarations. We declare
a tactic t named n with arguments a using Tactic n(a) t end. For docu-
mentation purposes, we may include the clause proof obligations and the
clause generates; the former enumerates the proof obligations generated by
the application of t , and the latter shows the program generated.

Basic Tactics

The most basic tactic is a law application: law n(a) p. If the law n with
arguments a is applicable to the Circus program p, the application succeeds: a
new program is returned, possibly generating proof obligations. However, if it
is not applicable to p, the application of the tactic fails. A similar construct,
tactic n(a), applies the tactic n as though it were a single law.

By way of illustration, the tactic law copy-rule-action(N) applies to an
action the refinement Law A.2 (copy-rule-action), which takes the name N of
the action as argument. As a result, it replaces all the references to N by the
definition of N . In this case, no proof obligation is generated. A list of the
refinement laws used in this paper can be found in Appendix A.

Other basic tactics are provided: the trivial tactic skip always succeeds,
and the tactic fail always fails; finally, the tactic abort neither succeeds nor
fails, but runs indefinitely.

Tacticals

The tactic applies to p do t introduces a meta-program p that charac-
terises the programs to which the tactic t is applicable; the meta-variables used
in p can then be used in t . For example, the meta-program A|[ns1 | cs | ns2]|Skip

characterises those parallel compositions whose right-hand action is Skip; here,
A, ns1, cs and ns2 are the meta-variables. We consider as an example a
refinement tactic that transforms a parallel composition into an interleav-
ing: applies to A |[ns1 | cs | ns2]| Skip do law par-inter().

The tactical t1; t2 applies t1, and then applies t2 to the outcome of the
application of t1. If either t1 or t2 fails, then so does the whole tactic. When it
succeeds, the proof obligations generated are those resulting from the applica-
tion of t1 and t2. For example, we may define a tactic that removes a parallel
composition by first transforming it into an interleaving using Law 2.1 (par-

inter), and then simplifies this interleaving using the unit law for interleaving,
Law A.3 (inter-unit). These two law applications are composed in sequence.
The tactic interIntroAndSimpl presented below formalises this tactic. It applies

6

Oliveira and Cavalcanti

to parallel compositions in which the right-hand action is Skip and returns the
action A and the proof obligation originated from the application of inter-unit.

Tactic interIntroAndSimpl() =̂

applies to A |[ns1 | cs | ns2]| Skip

do law par-inter(); law inter-unit() generates A

proof obligations usedC (A) ∩ cs = ∅ end

Tactics may also be combined as alternatives: t1 | t2. First t1 is applied
to the program. If the application of t1 succeeds, then the composite tactic
succeeds; otherwise t2 is applied to the program. If the application of t2
succeeds then the composite tactic succeeds; otherwise the composite tactic
fails. If one of the tactics aborts, the whole tactic aborts.

The definition of the tactic below uses alternatives. It promotes the local
variables declared in the main action to state components. This is the result
of an application of either Law A.9 (prom-var-state) or Law A.10 (prom-var-

state-2) depending on whether the process has state or not.

Tactic promoteVars() =̂ law prom-var-state() | law prom-var-state-2() end

Angelic nondeterminism is implemented through backtracking: on failures,
law applications are undone up to the last point where further alternatives
are available (as in t1 | t2) and can be explored. This, however, may result in
inefficient searches. Some control is given to the programmer through the cut
operator: the tactic ! t behaves like t , except that it returns the first successful
application of t . If a subsequent tactic application fails, the whole tactic fails.

ArcAngelC has a fixed-point operator that allows us to define recursive
tactics. Using µ, we can define a tactic like the one below that exhaustively
applies a given tactic t , terminating with success when its application fails.

Tactic EXHAUST(t) =̂ µX • (t ; X | skip) end

Recursive application of a tactic may lead to nontermination, in which case
the result is the same as the basic tactic abort.

Two tactics are used to assert the outcome of applying a tactic. The tactic
succs t fails whenever t fails, and behaves like skip whenever t succeeds. On
the other hand, fails t behaves like skip if t fails, and fails if t succeeds. If the
application of t runs indefinitely, then these tacticals behave like abort. A
simple example is a test to check whether a program is a parallel composition.
The commutativity law for parallel composition applies only (and always) to
parallel compositions. So, our test may be coded as succs(law par-com()).

Structural Combinators

Often, we want to apply individual tactics to parts of a Circus program.
In [15], we defined structural combinators that apply to subprograms of se-

7

Oliveira and Cavalcanti

quential programs. ArcAngelC extends the number of structural combinators;
essentially, there is one combinator for each syntactic construct in Circus.

The Action Structural Combinators are the ones that allow us to apply
a tactic to parts of a Circus action. The first one we present allows us to apply
a tactic to an action prefixed by an event. The tactic → t applies to actions
of the form c → A. It returns the prefixing c → B , where B is the program
obtained by applying t to A; the proof obligations generated are those arising
from the tactic application. As for the other structural combinators, if the
tactic application fails or aborts, so does the application of the whole tactic.

Similarly, the combinator & t applies to a guarded action g & A and
returns the result of applying t to A; the guard is unaffected in the resulting
program. For recursive actions µX • A(X), there is the structural combinator
µ t ; it returns recursion obtained by applying t to A(X).

For alternation, there is the structural combinator if t1 [] . . . [] tn fi , which
applies to an alternation if g1 → p1[] . . . []gn → pn fi. It returns the result
of applying each tactic ti to the corresponding program pi . For example, if
we apply the tactic if law assign-intro(x := −1) [] law assign-intro(x := 1) fi
to the program if a ≤ b → x : [x < 0][] a > b → x : [x > 0] fi we
obtain two proof obligations true ⇒ −1 < 0 and and true ⇒ 1 > 0, and
if a ≤ b → x := −1[] a > b → x := −1 fi.

The structural combinator var t applies to a variable block; it applies
t to the body of the block. By way of illustration, if we apply the tac-
tic var law assign-intro(x := 10) to var x : N • x : [x ≥ 0], we get
var x : N • x := 10 and the proof obligation true ⇒ 10 ≥ 0. For argument
declaration, the combinators val t , res t , and vres t are used, depending on
whether the arguments are passed by value, result, or value-result.

The Process Structural Combinators are those combinators that can
be applied only to processes bodies. The only Circus constructs that are partic-
ular to process are the explicit processes definitions (enclosed by the keywords
begin and end) and indexing processes declarations and instantiations.

In order to apply tactics to components of a process explicit declaration we
may use the structural combinator beginend . This combinator receives two
arguments: a possibly-empty sequence of pairs (n, t) of names n and tactics t ,
and another tactic. For each element (n, t) in the sequence received as second
argument, this combinator applies t to the paragraph named n of the process;
and finally, the second argument is applied to the process main action. For
example, the tactic beginend (〈(RegCycle, tactic T1())〉, tactic T2()) could
be used to apply a tactic T1 to the body of RegCycle and a tactic T2 to the
main action of process Register .

Most of the Circus constructs originating from CSP can be used in the def-
inition of both processes and actions; therefore, for each of these constructs
we define a single Action/Process Structural Combinator. Their appli-
cation are oblivious to whether we are applying the tactic to an action or a
process: in both cases they have the same behaviour.

8

Oliveira and Cavalcanti

The tactic t1 ; t2 applies to actions/processes of the form p1; p2. It returns
the sequential composition of the actions/processes obtained by applying t1
to p1 and t2 to p2; the proof obligations generated are those arising from
both tactic applications. This structural combinator is widely used in Sec-
tion 5. For instance, one of the steps of the refinement strategy is defined
as skip ; tactic interIntroAndSimpl() (See Page 19 for details). This tactic
applies to a sequential composition: the left-hand action is left unchanged and
the tactic interIntroAndSimpl is applied to right-hand action.

As for the sequential composition, similar structural combinators are avail-
able for external choice (t1 2 t2), internal choice (t1⊓ t2), parallel composi-

tion (t1 ‖ t2), interleaving (t1 ||| t2), event hiding (\ t), and renaming (:= t).

As for the binary constructs, we also have a corresponding structural
combinator for each of the indexed CSP constructs that can be used in Cir-

cus. For instance, ; t can be applied to an indexed sequential composition
; decl • body : the result is that obtained by the application of t to body . For
instance, assuming that s is a natural variable that has already been initialised
to 0, a program that assigns the sum of all elements of a sequence sq of natu-
ral numbers to s can be specified as ; i : 0. .#sq • s : [s ′ = s+sq [i]]. If we apply
; law assign-intro(s := s+sq [i]), we get the program ; i : 0. .#sq • s := s+sq [i]
and proof obligations true ⇒ s + sq [i] = s + sq [i], for every i in 0 . . #sq .

As for indexed sequential composition, we have 2 for indexed external

choices, ⊓ for indexed internal choices, ‖ for indexed parallel composition,

and ||| for indexed interleaving.

There is only one Program Structural Combinator; it can be used
to apply tactics to specific paragraphs of a Circus program. The tactical
program receives a sequence of pairs (n, t) of names and tactics: for each
element (n, t) in the received sequence, it applies the tactic t to the paragraph
named n of the Circus program. The tactic used in our case study in Section 5
illustrates the use of this constructor.

Using ArcAngelC we are able to formalise the refinement strategy discussed
in the next section.

4 A Refinement Strategy for Verification of Control
System Implementations

Control systems can be specified using block diagrams, which model systems
as a directed graph of blocks interconnected by wires. The wires carry sig-
nals that represent input and output and the blocks represent functions that
determine how the outputs are calculated from the inputs.

Simulink is a popular tool that is part of the Matlab environment[6]; its use
in the avionics and automotive sectors is very widespread. A simple example
of two Simulink diagrams is presented in Figure 2; it contains a PID (Propor-
tional Integral Derivative) controller, a generic control loop feedback mecha-

9

Oliveira and Cavalcanti

Fig. 2. A Simple PID Controller

nism that attempts to correct the error between a measured process variable
and a desired set-point by calculating and then outputting a corrective action
that can adjust the process accordingly.

Control systems present a cyclic behaviour. We consider discrete-time
models, in which inputs and outputs are sampled at fixed intervals. The
inputs and outputs are represented by rounded boxes containing numbers. In
our example, there are four inputs, E, Kp, Ki, and Kd, and one output, Y.

Typically, a block takes input signals and produces outputs according to its
corresponding function. For instance, the circle is a sum block and boxes with
a × symbol model a product. There are libraries of blocks in Simulink, and
they can also be user-defined. Boxes enclosing names are subsystems; they
denote control systems defined in other diagrams. For example, the diagram
that corresponds to the Diff block is also presented in Figure 2.

Blocks can have state. For instance, Unit Delay blocks store the value of
the input signal, and output the value stored in the previous cycle.

In [2], we present a technique to verify SPARK Ada programs with respect
to Simulink diagrams using Circus. The approach, illustrated in Figure 3, is
based on calculating the Circus model of the diagram using the semantics given
in [2], calculating a Circus model for the SPARK Ada program, and proving
that the former is refined by the latter.

Fig. 3. The Refinement Strategy

In the model of the diagram, there is a basic Circus process for each block,
and the diagram itself is specified by the parallel composition of these pro-
cesses. For a subsystem block, the Circus process captures the parallel be-
haviour that arises if some of the outputs do not depend on the values of all

10

Oliveira and Cavalcanti

the inputs. For example, if there is one output whose value does not depend
on the value of all the inputs, as soon as the required inputs become available,
its calculation can proceed, and the resulting value can be output. In this
case, the calculation of the output is an independent flow of execution of the
subsystem. In addition, for all blocks, the update of its state, if any, is an
independent flow of execution.

By way of illustration, the translation of the Diff block shown in Figure 2
is the Diff process sketched below.

process Diff =̂ begin state Diff St =̂ [pid Diff UD St : U] . . .

Exec Diff out =̂ var In1 : U • E?x → In1 := x ;

var Out1 : U • Calc Diff out; Diff out !Out1 → Skip

Diff StUpdt =̂ var In1 : U • E?x → In1 := x ; Calc Diff St

Flows =̂ Exec Diff out

• Init; µX • (Flows |[{ } | {|E |} | { pid Diff UD St}]| Diff StUpdt);
end cycle → X

end

For conciseness, we have included only the parts that are needed to understand
the refinement strategy presented here. Informally, Init initialises the process
state, Calc Diff out calculates the output of the differentiator at the next
clock cycle, and Calc Diff St calculates the process state at the current clock
cycle; all of them are defined as Z operations on the state of Diff .

The inputs of diagrams and blocks are modelled as components In1?, In2?,
and so on. Similarly, outputs have conventional names Out1!, Out2!, and so
on. Components state, state0, and initialstate record the value of the state
at the beginning and at the end of the cycle, and at the beginning of the first
cycle. The other components, if any, represent blocks; for each block in the
diagram or in the diagram of a subsystem block, there is a component.

For each flow of execution f , the action Exec f takes the required inputs,
and then calculates and produces the outputs. The name f of the flow is
determined by the unique outputs that it produces. In Exec Diff out there is
one input variable In1, and one output variable Out1. The inputs are received
in any order. The value x of the input is recorded in the corresponding variable
Ini . Similarly, outputs are sent in any order. In our example, since there is
only one input and one output, the interleavings are each reduced to one
action: an input through E and an output through Diff out .

The main action starts with the initialisation, and recursively proceeds in
parallel to execute each of the flows and update the state, before synchronising
on end cycle. The flows proceed independently, but a block can only start a
new cycle when all the flows (and all the blocks of the diagram) have finished.
In Diff , there is only one flow, so the parallelism in the action is reduced to a
single action Exec Diff out that synchronises with Diff StUpdt on E .

11

Oliveira and Cavalcanti

Fig. 4. Blocks Configuration

The proof of refinement uses a four-phase strategy. In the first of them,
NB, we refine the Circus process that corresponds to each block into a recursion
that iteratively performs an action that embodies the behaviour of one cycle,
and signals the end of the cycle. The action should be in a form similar to
that of the model of a SPARK Ada procedure: interleaving of inputs, followed
by output calculations and state update, followed by interleaving of outputs.

Informally, the steps in the phase NB are described in [2] as follows: in
order to normalise the model of a block we remove the parallelism between the
actions that model the flows of execution and the state update, and promote
the local variables of the main action to state components. If the block can be
implemented sequentially, this step succeeds generating only proof obligations
that can be discharged using simple syntactic checks.

After the NB phase, three other phases, BJ, Pr, and Sc conclude the re-
finement. They match the structure of the diagram to the architecture of
the scheduler, and prove that the individual procedures implement the block
functionality correctly. Their definitions are omitted here for the sake of con-
ciseness. Further details can be found in [2].

In what follows, we present the tactic NB that formally describes the re-
finement strategy presented in this section. Its application to the example
presented here is also discussed; it illustrates how we can accomplish the stage
NB of the refinement strategy by using a single refinement tactic.

5 Case Study - The Tactic NB

In [2], we describe the NB phase for blocks whose flows share their inputs as
in Figure 4. The state update is also combined in this way with the flows.

The first step of this phase is a series of applications of the refinement Law
copy-rule-action to eliminate all references to action names in the main action.
The tactic that accomplishes this step uses a couple of auxiliary tactics in its
definition. The first one, TRY, makes a robust application of a given tactic t .

Tactic TRY(t) =̂ !(t | skip) end

The next tactic is used to repeatedly apply a given law l using the elements
of a given list args as arguments, in sequence. It uses the tactic TRY in order
to skip when it reaches the base case, an empty list of arguments.

Tactic APPLYL(l , args) =̂ TRY(law l(hd args); APPLYL(tl s)) end

The functions hd and tl return the head and the tail of a given list, respectively.
The former fails if applied to an empty sequence.

12

Oliveira and Cavalcanti

The tactic below formalises the series of applications of Law copy-rule-

action. It receives a list fs of the names of the actions Exec f that execute the
flows as arguments. It applies to explicit process definitions, and transforms
the process using Law copy-rule-action () .

Tactic applyCopyRule(fs) =̂

applies to process P =̂ begin PPars • Main end

do =̂



 law copy-rule-action(“Flows”); APPLYL(copy-rule-action, fs);

TRY(law copy-rule-action(P+“ StUpdt”))



 end

The tactic that corresponds to the first step of the NB phase, NBSt1, simply
receives the list of the action names and invokes tactic applyCopyRule(fs).

Tactic NBSt1(fs) =̂ tactic applyCopyRule(fs) end

The application of this tactic to Diff changes its main action to the action
below in which the references to Flows , and then Exec Diff out (the unique
flow) and Diff StUpdt are replaced with their definitions. For that, we give
as parameters to NBSt1 the singleton list 〈Exec Diff out〉.

Init ; µX •









var In1 : U •

E?x → In1 := x ;

var Out1 : U • Calc Diff out; Diff out !Out1 → Skip





|[{ } | {|E |} | { pid Diff UD St}]|

(var In1 : U • E?x → In1 := x ; Calc Diff St)





;

end cycle → X

Throughout this paper, we box the target of the next refinement step.

Synchronise inputs

All flows in the main action require all inputs, and so does the state update.
For this reason, all parallel actions in the body of the recursion declare local
variables dIn to hold each of the input values, and take all of them in inter-
leaving in AIn . In our example, an interleaving is not needed because we have
a single input. In this step, we extract from the parallelism the declarations
dIn using Law A.15 (var-exp-par-2) and the interleaving AIn , using a law that
distributes an action over a parallel composition, Law A.8 (par-seq-step-2).

Tactic syncInput() =̂

applies to (var dIn : U • AIn; AOut) |[ns1 | cs | ns2]| (var dIn : U • AIn; ASt)

do law var-exp-par-2(); var law par-seq-step-2()]]

generates var dIn : U • AIn; (AOut |[ns1 | cs | ns2]| ASt)

proof obligations usedC (AIn) ⊆ cs ,wrtV (AIn) ⊆ {dIn} end

13

Oliveira and Cavalcanti

This tactic generates a program that declares the input variables, takes the
inputs and behaves like a parallel composition.

In our example we have a single flow; nevertheless, we aim at the definition
of a tactic that supports multiple flows. In the general case, we have a parallel
composition as the one presented below in which the right-hand side is the
state update, and the left-hand side is the parallel composition of all the flows.

I ; µX •



 ((var d • AIn; AOut0) ‖ (. . . ‖ (var d • AIn; AOutn)))

‖ (var d • AIn ; ASt)



 ; EC

Our strategy is to remove the declarations d and interleaving AIn from the
parallel composition of all the flows by recursively applying syncInput. Only
then, we remove d and AIn from the outermost parallel composition. The
auxiliary tactic fold‖ recursively applies a given tactic t , from the innermost
to the outermost parallel composition of an action A1 ‖ (. . . ‖ An).

Tactic fold‖(t) =̂ µX • tactic TRY((skip‖ X); t) end

For example, the application of tactic fold‖ (tactic syncInput()) to an instan-
tiation of the generic case in which there are three flows is presented below.
The tactic recurs until the point in which the application of the structural
combinator ‖ fails (lines 1 to 6), in which case, since we are in a TRY tactic,
the tactic skips and returns (var d • AIn ; AOut2) (line 7). Then, the tactic
applies tactic syncInput() to each result of the the recursive invocation: first,
it synchronises the inputs of the branches 1 and 2 (lines 8 and 9), and finally,
it synchronises all the inputs (lines 10 and 11).

(var d • AIn; AOut0) ‖ ((var d • AIn; AOut1) ‖ (var d • AIn; AOut2)) (1)

= [tactic TRY ((skip‖ (tactic fold‖ (tactic syncInput()))); . . .)] (2)

(var d • AIn; AOut1) ‖ (var d • AIn; AOut2) (3)

= [tactic TRY ((skip‖ (tactic fold‖ (tactic syncInput()))); . . .)] (4)

(var d • AIn; AOut2) (5)

= [tactic TRY ((skip‖ (tactic fold‖ (tactic syncInput()))); . . .)] (6)

(var d • AIn; AOut2) (7)

= [tactic TRY (. . . ; tactic syncInput())] (8)

(var d • AIn; (AOut1 ‖ AOut2)) (9)

= [tactic TRY (. . . ; tactic syncInput())] (10)

var d • AIn; (AOut0 ‖ (AOut1 ‖ AOut2)) (11)

In the same way, we may use fold‖ in the n-ary case to join all the variables
declarations d and interleaving AIn in the left-hand action of the outermost

14

Oliveira and Cavalcanti

parallel composition. This is captured by the tactic that follows.

Tactic joinFlowsInput =̂ tactic fold‖ (tactic syncInput()) end

The process to which we are applying this step may have state or not: the main
action of a stateful process is a parallel composition of the flows with the state
update. For this case, we define the following tactic, which synchronises the
inputs of the flows, and then, it synchronises the inputs of the whole action.

Tactic NBSt2 f() =̂ (tactic joinFlowsInput()‖ skip); tactic syncInput() end

Nevertheless, stateless processes do not have a parallel composition with a
state update; the application of the tactic above fails. Hence, we define an-
other tactic that synchronises the input of the flows, and then, introduces a
parallel composition of the flows output with Skip. This unifies the structure
of the actions that result from the application of this step to both stateful and
stateless processes, allowing the remaining tactics to be used in both of them.

Tactic NBSt2 l() =̂ tactic joinFlowsInput(); var (skip ; tactic createPar())]] end

The tactic createPar creates a parallel composition using Laws A.3 (inter-unit)
and A.6 (par-inter-2) in sequence.

Finally, we may define the tactic that corresponds to second step of the
NB phase, NBSt2: it is either the application of the stateful version or the
application of the stateless version of the second step.

Tactic NBSt2() =̂ tactic NBSt2 f() | tactic NBSt2 l() end

Our example has one flow; hence, the application of joinFlowsInput immediately
skips. Afterwards, the application of syncInput returns the action below.

Init ; µX •





var In1 : U •

E?x → In1 := x ;

(var Out1 : U • Calc Diff out; Diff out !Out1 → Skip)

|[{ } | {|E |} | { pid Diff UD St}]|

Calc Diff St





;

end cycle → X

The next step expands the scope of the output variable blocks.

Expanding the scope of the output variables

Since there are no repeated declarations of output variables and each out-
put is handled by a single flow, we can expand the scope of the output vari-
able blocks, and join the resulting nested blocks. This can be achieved using
Laws A.14 (var-exp-par), A.17 (var-exp-seq) and A.4 (join-blocks).

15

Oliveira and Cavalcanti

As for the previous step, we need to define a tactic that supports multiple
flows. At this point, the general structure of the main action has a parallel
composition as the one presented below in which the left-hand side is the
parallel composition of variable blocks that declare different output variables.

I ; µX • (var d • AIn; (((var d0 • A0) ‖ (. . . ‖ (var dn • An))) ‖ ASt)); EC

The strategy to define the tactic that corresponds to this step is similar to
the one used in the previous step: we define a tactic, expDisjVarPar, which ex-
tracts both variable blocks from a parallel composition of two variable blocks,
and joins them; we use fold‖ to join all the variables blocks in the left-hand
action of the outermost parallel composition; and finally, we define a tactic
that expands the scope of the output variable blocks to outside the parallel
composition and AIn , and join the variable blocks.

The tactic expDisjVarPar presented below applies to a parallel composition
of two variables block whose sets of declared variables are disjoint. It applies
Law var-exp-par to expand the scope of the variable block in the left-hand
action to outside the parallelism. Next, it commutes the parallel composition
and uses the Law var-exp-par again to expand the scope of the other variable
block to outside the parallel composition. Finally, it commutes the parallel
composition once again and joins the variable blocks.

Tactic expDisjVarPar() =̂

applies to (var d0 • A0) |[ns1 | cs | ns2]| (var d1 • A1)

do law var-exp-par();

var law par-comm(); law var-exp-par(); var law par-comm()]]]] ;
law join-blocks()

generates var d0; d1 • (A0 |[ns1 | cs | ns2]| A1) end

Using this tactic, we may join all the variables declarations di in the left-hand
action of the outermost parallel composition. This is captured by the tactic
joinFlowsOutVarScope declared below.

Tactic joinFlowsOutVarScope =̂ (tactic fold‖ (tactic expDisjVarPar()))‖ skip end

Finally, we define the tactic expOutVarScope, which applies to actions that
declare the input variables, receives their values, and then, declares the out-
put variables, and calculates and produces the outputs in parallel with the
state update. First, using Law A.14 (var-exp-par), we expand the scope of
the variable blocks to outside the parallelism. Next, the tactic introduces a
Skip to obtain an action in the format accepted by Law var-exp-seq, which is
then applied to move the variable declaration to include AIn in its scope. Fi-
nally, the tactics remove the Skip that was introduced and joins both variable
blocks. The invocation of equality laws superscripted with b (from backwards)

16

Oliveira and Cavalcanti

indicates that the law shall be applied from right to left.

Tactic expOutVarScope() =̂

applies to var d • AIn; ((var dO • AO) |[ns1 | cs | ns2]| ASt)

do var (skip ; (law var-exp-par(); law seq-right-unit())); law var-exp-seq();

var skip ; law seq-right-unitb()]]]] ; law join-blocks()

generates var d ; dO • AIn; (AO |[ns1 | cs | ns2]| ASt) end

The result is a single variable block that declares input and output variables.
The tactic that corresponds to the third step of the NB phase, NBSt3, first
joins all the variables blocks in the left-hand action of the outermost parallel
composition. Finally, it invokes tactic expOutVarScope() in order to expand
the scope of the block that introduces the output variables, and joins the
resulting nested blocks.

Tactic NBSt3() =̂
var skip ; tactic joinFlowsOutVarScope()]] ; tactic expOutVarScope() end

As for the previous step, the application of the tactic joinFlowsOutVarScope

immediately skips in our example because it contains only one flow. The
application of the tactic expOutVarScope yields the following action.

Init ; µX •





var In1 : U; Out1 : U •

E?x → In1 := x ;

(Calc Diff out; Diff out !Out1 → Skip)

|[{ } | {|E |} | { pid Diff UD St}]|

Calc Diff St





; end cycle → X

The next step removes all schemas that calculates the outputs and updates
the state from the parallel composition.

Isolating the input processing

The fourth step aims at isolating the communication of the output values.
In the most general case, at this stage, we have a parallel composition as
the one presented below, in which the right-hand action is the state update
and the left-hand action is the parallel composition of the flows: each flow
calculates the output values and communicates them.

I ; µX • (var d ; dO • AIn; (((AC0
; AO0

) ‖ (. . . ‖ (ACn
; AOn

))) ‖ ASt));EC

As before, the strategy is to define a tactic that isolates the output commu-
nications in a parallel composition of two flows, use fold‖ to isolate all the
output communications in the left-hand action of the outermost parallel com-
position, and finally, define a tactic that isolates the output communications
in the outermost parallel composition.

17

Oliveira and Cavalcanti

The tactic isolateOutComm presented below applies to a parallel compo-
sition (AC0

; AO0
) ‖ (AC1

; AO1
). It applies Law A.7 (par-seq-step) to remove

the schema AC0
from the parallel composition resulting in a sequential com-

position. Next, it commutes the remaining parallel composition and uses the
Law par-seq-step again to remove the schema AC1

from the parallel composi-
tion. Finally, it commutes the parallel composition once again and applies the
associativity law for parallel composition in order to aggregate AC0

and AC1
.

Tactic isolateOutComm() =̂ applies to (AC0
; AO0

) |[ns1 | cs | ns2]| (AC1
; AO1

))

do law par-seq-step();



 skip ;



 law par-comm(); law par-seq-step();

(skip ; law par-comm())







 ;

law seq-assoc()

generates (AC0
; AC1

); (AO0
|[ns1 | cs | ns2]| AO1

)

proof obligations

usedC (AC0
) = ∅, usedC (AC1

) = ∅,

wrtV (AC0
) ⊆ ns1 ∩ ns ′1,wrtV (AC1

) ⊆ ns2 ∩ ns ′2

usedV (AC1
; AO1

) ∩ wrtV (AC0
) = ∅, usedV (AC0

) ∩ wrtV (AC1
) = ∅ end

The proof obligations are originated from the applications of Law par-seq-step.
Using this tactic, we may isolate all the output communications AOi

in the
left-hand action of the outermost parallel composition. This is captured by
the tactic joinFlowsCalc declared below.

Tactic joinFlowsCalc =̂ (tactic fold‖ (tactic isolateOutComm()))‖ skip end

Finally, we can define the tactic isolateIn, which introduces a Skip into the
right branch of the parallel composition and then uses Law par-seq-step to
remove the schemas ACi

that calculate the outputs from the parallel composi-
tion resulting in a sequential composition. Then, it works on the second part
of this sequential composition: it commutes the parallel composition and then
it applies once again Law par-seq-step in order to remove the schemas ASt that
calculates the state. Once again, it commutes the remaining parallel compo-
sition. Finally, it applies the Law A.11 (seq-assoc) to the whole sequential
composition; this aggregates the output calculation and the state update.

Tactic isolateIn() =̂ applies to (AC ; AO) |[ns1 | cs | ns2]| ASt

do (skip‖ (law seq-right-unit())); law par-seq-step();

(skip ; (law par-com(); law par-seq-step(); (skip ; law par-com())));
law seq-assoc()

generates (AC ; ASt); (AO |[ns1 | cs | ns2]| Skip) end

This step is applied to the result of step three, which is a sequential com-
position AIn ; (AOut ‖ ASt). Its objective is to apply isolateIn to the parallel

18

Oliveira and Cavalcanti

composition. Nevertheless, the system may have many flows; hence, we first
need to isolate all the output communications in AOut . Afterwards, we are able
to apply isolateIn to the parallel composition. Finally, Law seq-assoc isolates
the parallel composition as the second part of a sequential composition.

Tactic NBSt4() =̂
(skip ; (tactic joinFlowsCalc(); tactic isolateIn())); law seq-assoc() end

In our example, the application of the tactic joinFlowsCalc immediately skips.
The application of the tactic isolateIn yields the following action.

Init ; µX •





var In1 : U; var Out1 : U •

 (E?x → In1 := x);

(Calc Diff out; Calc Diff St)



 ;

Diff out !Out1 → Skip

|[{ } | {|E |} | { pid Diff UD St}]|

Skip





; end cycle → X

Finally, the next step removes the parallel composition from the main action.

Introducing and simplifying interleaving of outputs

None of the input variables occur in the parallelism resulting from the last
step. Hence, we can use the tactic interIntroAndSimpl presented in Section 3
to simplify this parallel composition. The result of the previous step is a
sequence: the first part of the sequence processes inputs and calculates the
outputs and the state, and the second part of the sequence is the parallel
composition; we apply interIntroAndSimpl only to the second part.

Tactic NBSts5 6() =̂ skip ; tactic interIntroAndSimpl() end

In our example, the application of this tactic yields the following action.

Init ; µX •





var In1 : U; var Out1 : U •

 (E?x → In1 := x);
(Calc Diff out; Calc Diff St)



 ;

(Diff out !Out1 → Skip)




; end cycle → X

Next, we extend the scope of the variables blocks to the whole main action.

Extend scope of the variable declarations to the outer level

At this stage, the main action’s format is AIn ; (µ X • (var d • AOutSt); EC).
We expand the scope of d to the outer level using the unit laws for sequence,

19

Oliveira and Cavalcanti

and Laws A.16 (var-exp-rec) and A.17 (var-exp-seq) as follows. First, we in-
troduce a Skip to the left of the sequential composition in the body of the
recursion. Next, we expand the scope of d to the whole sequential compo-
sition in the body of the recursion (Law var-exp-seq), remove the Skip that
was introduced, and expand the scope of d over the recursion (Law var-exp-

rec). Finally, we introduce a Skip to the sequential composition in the main
action, expand the scope of d to the whole sequential composition (Law var-

exp-seq), and remove the Skip that was introduced. At the end, we have
var d • AIn ; (µX • (AOutSt ; EC)) as the main action.

Tactic extendVarScope() =̂ applies to AIn; (µX • (var d • AOutSt); EC)

do




skip ;







 µ



 law seq-left-unit(); law var-exp-seq();
var law seq-left-unitb()]]







 ;

law var-exp-rec(); law seq-right-unit()








;

law var-exp-seq(); var (skip ; law seq-right-unitb())]]

generates var d • AIn; (µX • (AOutSt ; EC))

proof obligations {d , d ′} ∩ (FV (AIn) ∪ FV (EC)) = ∅,

d are initialised before use in AOutSt end

The proof obligations are those originated from the application of the expan-
sion laws. The simple application of extendVarScope represents the seventh
step of the phase NB: Tactic NBSt7() =̂ tactic extendVarScope() end. The
result of its application to our example yields the following main action.

var In1 : U; Out1 : U •

Init; µX •







 (E?x → In1 := x);
(Calc Diff out; Calc Diff St)



 ;

(Diff out !Out1 → Skip)




; endCycle → X

This concludes the transformation in the main action of the process.

Promote local variables to state components

In the last step, the tactic NBSt8 simply invokes the tactic promoteVars

in order to turn the input and output variables into state components. This
concludes the application of the refinement strategy, which, in our example,
results in the following process.

process Diff =̂ begin state Diff St =̂ [pid Diff UD St : U; In1 : U; Out1 : U]

. . .

• Init; µX •







 (E?x → In1 := x);

(Calc Diff out; Calc Diff St)



 ;

(Diff out !Out1 → Skip)




; endCycle → X

end

20

Oliveira and Cavalcanti

There is one tactic NBSti , for each of the steps i of the refinement strategy.
We compose most of these tactics in the tactic NBMain. Furthermore, two
auxiliary tactics are used in NBMain. As previously discussed, the process we
are dealing with may have a state or not. The example presented here falls
in the first case: its main action is a sequential composition of a schema that
initialises the state and a recursion. In the second case, however, since there is
no state to initialise, the main action is just a recursion. In order to have the
same structure (a sequential composition) in both cases, we use two auxiliary
tactics, insertSeqComp and removeSeqComp. In the absence of a sequential
composition, the former introduces one, using law seq-left-unit; otherwise, it
skips. The latter does the opposite job.

The tactic NBMain is applied to the main action of the processes. After
introducing a sequential composition, if needed, it works on the body of the
recursion. This body is a sequential composition in which the second part
ends the cycle and is not changed. Hence, the tactic only changes its first
action: it applies NBSt2 (creating a parallel composition with Skip if needed),
NBSt3, NBSt4, and NBSts5 6. Finally, we apply the seventh step and remove
any sequential composition with Skip in the variable block.

Tactic NBMain() =̂

tactic insertSeqComp();


skip ; µ









tactic NBSt2(); tactic NBSt3();

var
tactic NBSt4();
tactic NBSts5 6()

]]




; skip








;

tactic NBSt7();var tactic removeSeqComp()]] end

The tactic NB presented below can be applied to normalise the blocks: it
receives the list of names of the flows as argument and applies the tactic NBSt1

using this argument. Then, it applies the tactic NB to the main action of the
process. Finally, it promotes the variables declared in the beginning of the
resulting main action to state components using the tactic NBSt8.

Tactic NB(fs) =̂ tactic NBSt1(fs);

=̂ (beginend (〈〉, tactic NBMain()); tactic NBSt8()) end

This tactic refines the corresponding Circus process in the diagram model to
write its main action in a normal form: a recursion that iteratively executes
an action that captures the behaviour of a cycle as an interleaving of inputs,
followed by output calculations and state update, followed by interleaving of
outputs, and synchronisation on end cycle.

Using this tactic, we may also refine the remaining components shown in
Figure 2; the refinement of Int, Si, Sd, Sp, and Sum can be accomplished with
simple applications of tactic NB. We achieve this by applying the following
tactic to the Circus program that contains their specifications. Although not

21

Oliveira and Cavalcanti

presented in this paper, Si, Sd, Sp, and Sum do not have state and, as a direct
consequence, do not have a parallel composition in the main action because
they do not need to have any state update. The first three of them, Si, Sd,
and Sp, take two input values and produce one output value; the last one of
them Sum takes three input values and produces one output value. In what
follows, the function FNames returns the list that contains the names of the
actions of a given process that execute its flows.

program

〈 (Diff , tactic NB(FNames(Diff))), (Int , tactic NB(FNames(Int))),

(Si , tactic NB(FNames(Si))), (Sd , tactic NB(FNames(Sd))),

(Sp, tactic NB(FNames(Sp))), (Sum, tactic NB(FNames(Sum)))

〉

Regardless of the difference in the internal structure of these processes, how-
ever, the tactic NB can be applied with success reducing considerably the
amount of effort used in the correctness proof of the PID controller.

6 Conclusions

In this paper, we presented ArcAngelC , a refinement-tactic language that ex-
tends ArcAngel and can be used in the formalisation of refinement strategies
for concurrent state-rich programs in Circus. Tactics can be used as single
transformation rules; hence, shortening developments.

We formalise the first of four phases of a refinement strategy proposed
in [2] that is used to verify SPARK Ada programs with respect to Simulink
diagrams using Circus. The approach is based on calculating the Circus model
of the diagram using the semantics given in [2], calculating a Circus model
for the SPARK Ada program, and proving that the former is refined by the
latter. In this paper, we described this first phase as a tactic NB and used it in
the development of a simple PID-controller. The tactics, however, are general
enough to apply to the large examples that we find in industrial practice. The
formalisation of the verification strategy as tactics of refinement gives clear
route to automation.

We are currently developing a tool based on the work presented in [23,17]
to provide automated support for the application of the Circus refinement
calculus. In the near future, we intend to include support to tactics written in
ArcAngelC ; using this extension, one may then specify refinement tactics like
those presented in this paper, and apply them just like refinement laws.

We also intend to investigate the properties that are inherent to ArcAngelC .
We will formalise the ArcAngelC semantics in Z. With the mechanisation of
this semantics in a theorem prover like ProofPower-Z, we will be able to me-
chanically prove algebraic laws for reasoning about ArcAngelC tactics. Some
of them have already been presented in the context of ArcAngel [15], but laws
about the novel structural combinators are still needed. Furthermore, this
mechanisation can be done in the context of the work presented in [16], where

22

Oliveira and Cavalcanti

we present the mechanisation of Circus in ProofPower-Z. This will allow us
to use tactics in the development of Circus programs within the theories for
Circus processes we have developed in ProofPower-Z.

Finally, we will complete the formalisation of the refinement strategy for
Ada programs. ArcAngelC and the tools that we will develop will provide a
route for its automated application.

A Laws of refinement

We use FV (p) to denote the set of free variables of a predicate or expression
p. Moreover, we use L(n) to denote the fact that the Local action definitions
may include references to the action n; the same holds for the Main Action
MA(n). Later references to L(A) and MA(A) are the result of substituting
the body A of n for some or all occurrences of n in L and MA.

Law A.1 (assign-intro) w : [pre, post] ⊑A x := e
provided pre ⇒ post [e/x]

Law A.2 (copy-rule-action)
begin (state S) (n =̂ A) L(n) • MA(n) end
= begin (state S) (n =̂ A) L(A) • MA(A) end

Law A.3 (inter-unit) A ||[ns1 | ns2]|| Skip = A

Law A.4 (join-blocks) var x : T1 • var y : T2 • A = var x : T1; y : T2 • A

Law A.5 (par-comm) A1 |[ns1 | cs | ns2]| A2 = A2 |[ns2 | cs | ns1]| A1

Law A.6 (par-inter-2) A1 ||[ns2 | ns2]|| A2 = A1 |[ns2 | ∅ | ns2]| A2

Law A.7 (par-seq-step) (A1; A2) |[ns1 | cs | ns2]| A3 = A1; (A2 |[ns1 | cs | ns2]| A3)
provided usedC (A1) = ∅, usedV (A3) ∩ wrtV (A1) = ∅, and wrtV (A1) ⊆ ns1 ∪ ns ′1.

Law A.8 (par-seq-step-2)

var d • (A1; A2) |[ns1 | cs | ns2]| (A1; A3) = var d • A1; (A2 |[ns1 | cs | ns2]| A3)
provided usedC (A1) ⊆ cs, wrtV (A1) ⊆ α(d).

The reference to L() denotes the fact that declarations of x (and x ′) in
schemas, which were used to put the local variable x of the main action into
scope, may now be removed, as x is a state component.

Law A.9 (prom-var-state)
begin (state S) L(x : T) • (var x : T • MA) end
= begin (state S ∧ [x : T]) L() • MA end

Law A.10 (prom-var-state-2)
begin L(x : T) • (var x : T • MA) end
= begin (state [x : T]) L() • MA end

Law A.11 (seq-assoc) A1; (A2; A3) = (A1; A2); A3

Law A.12 (seq-left-unit) A = Skip; A

Law A.13 (seq-right-unit) A = A; Skip

Law A.14 (var-exp-par)

(var d : T • A1) |[ns1 | cs | ns2]| A2 = (var d : T • A1 |[ns1 | cs | ns2]| A2)
provided { d , d ′ } ∩ FV (A2) = ∅

23

Oliveira and Cavalcanti

Law A.15 (var-exp-par-2)

(var d • A1) |[ns1 | cs | ns2]| (var d • A2) = (var d • A1 |[ns1 | cs | ns2]| A2)

Law A.16 (var-exp-rec) µX • (var x : T • F (X)) = var x : T • (µX • F (X))
provided x is initialised before use in F.

Law A.17 (var-exp-seq) A1; (var x : T • A2); A3 = (var x : T • A1; A2; A3)
provided { x , x ′ } ∩ (FV (A1) ∪ FV (A3)) = ∅

References

[1] R. J. R. Back and J. von Wright. Refinement Concepts Formalised in Higher
Order Logic. Formal Aspects of Computing, 2:247–274, 1990.

[2] A. L. C. Cavalcanti and P. Clayton. Verification of Control Systems
using Circus. In Proceedings of the 11th IEEE International Conference on
Engineering of Complex Computer Systems, pages 269 – 278. IEEE Computer
Society, 2006.

[3] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

[4] C. Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett, and
M. Hinchey, editors, ZUM ’98: Proceedings of the 11th International Conference
of Z Users on The Z Formal Specification Notation, pages 5–23. Springer-Verlag,
1998.

[5] L. Groves, R. Nickson, and M. Utting. A Tactic Driven Refinement Tool. In
C. B. Jones, R. C. Shaw, and T. Denvir, editors, 5th Refinement Workshop,
Workshops in Computing, pages 272–297. Springer-Verlag, 1992.

[6] Brian R. Hunt, Ronald L. Lipsman, and Jonathan M. Rosenberg. A guide to
MATLAB: for beginners and experienced users. Cambridge University Press,
New York, NY, USA, 2001.

[7] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data Refinement Refined.
In E. Robinet and R. Wilhelm, editors, ESOP’86 European Symposium on
Programming, volume 213 of LNCS, pages 187–196, March 1986.

[8] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: an
Introduction to TCOZ. In K. Torii, K. Futatsugi, and R. A. Kemmerer, editors,
The 20th International Conference on Software Engineering (ICSE’98), pages
95–104. IEEE Computer Society Press, 1998.

[9] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus.
Formal Aspects of Computing, 8(4):479–489, 1996.

[10] C. Morgan. Programming from Specifications. Prentice-Hall, 1994.

[11] C. Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta
Informatica, 27(6):481–503, 1990.

24

Oliveira and Cavalcanti

[12] M. V. M. Oliveira. ArcAngel: a Tactic Language for Refinement and its Tool
Support . Master’s thesis, Centro de Informática – Universidade Federal de
Pernambuco, Pernambuco, Brazil, 2002. At http://www.ufpe.br/sib/.

[13] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using
Circus. PhD thesis, Department of Computer Science, University of York, 2005.
YCST-2006/02.

[14] M. V. M. Oliveira. ArcAngelC. Technical report, Departamento de Informática
e Matemática Aplicada - Universidade Federal do Rio Grande do Norte, Natal,
Brazil, February 2007.

[15] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a
Tactic Language for Refinement. Formal Aspects of Computing, 15(1):28–47,
2003.

[16] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying
theories in ProofPower-Z. In S. Dunne and B. Stoddart, editors, UTP
2006: First International Symposium on Unifying Theories of Programming,
volume 4010 of LNCS, pages 123–140. Springer-Verlag, 2006.

[17] M. V. M. Oliveira, M. Xavier, and A. L. C. Cavalcanti. Refine and Gabriel:
Support for Refinement and Tactics. In Jorge R. Cuellar and Zhiming Liu,
editors, 2nd IEEE International Conference on Software Engineering and
Formal Methods, pages 310–319. IEEE Computer Society Press, Sep 2004.

[18] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in
Circus. In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods—
Getting IT Right, volume 2391 of LNCS, pages 451–470. Springer-Verlag, 2002.

[19] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

[20] H. Treharne and S. Schneider. Using a process algebra to control B
operations. In K. Araki, A. Galloway, and K. Taguchi, editors, Proceedings of
the 1st International Conference on Integrated Formal Methods, pages 437–456.
Springer, June 1999.

[21] T. Vickers. A language of refinements. Technical Report TR-CS-94-05,
Computer Science Department, Australian National University, 1994.

[22] J. von Wright. Program Refinement by Theorem Prover. In D. Till, editor,
6th Refinement Workshop, Workshops in Computing, pages 121–150, London,
1994. Springer-Verlag.

[23] M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus

Specifications. In A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian
Symposium on Formal Methods, pages 105 – 120, 2006.

25

	Introduction
	Circus
	ArcAngelC
	A Refinement Strategy for Verification of Control System Implementations
	Case Study - The Tactic NB
	Conclusions
	Laws of refinement
	References

