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Abstract. ArcAngel is a tactic language devised to facilitate and automate program developments using
Morgan’s refinement calculus. It is especially well suited for the specification of high-level refinement strate-
gies, and equipped with a formal semantics that additionally permits reasoning about tactics. In this paper,
we present an implementation of ArcAngel for the ProofPower theorem prover. We discuss the underlying
design, explain how it implements the semantics of ArcAngel, and examine the interplay between ArcAngel
tactics and the native reasoning support of the prover. We also discuss several extensions of ArcAngel that
have been entailed by our implementation effort. They are of practical importance and provide a unification
of the related tactic languages Angel and ArcAngelC . Our main result is a mechanisation that reflects directly
the ArcAngel semantics, and can be used with any programming model for refinement. The approach can be
used to support other formal tactic languages using other theorem provers.
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1. Introduction

Morgan’s refinement calculus [Mor98] supports the derivation of programs from specifications by a series of
correctness-preserving refinement steps. Each step is justified by the application of a refinement law that
guarantees that the program obtained correctly implements its specification.

The ArcAngel language [OCW03] supports the documentation and automation of recurring sequences of
refinement steps. It has a formal semantics, and an extensive set of algebraic laws that support reasoning
about tactics. ArcAngel is an extension of Angel [Mar94, MGW96], a general-purpose tactic language; they
owe their name to their support for the use of angelic choices in the process of solving proof goals.

A number of tools have been proposed that address the issue of interactive and automatic refine-
ment [CHN+94]. Groves et al. and Vickers [GNU92, Vic90] present tools that can support refinement via
tactics in Morgan’s calculus. They, however, do not give a formal semantics to the underlying refinement
language, and thereby it is not possible to independently verify the laws. A similar restriction applies to
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the Gabriel extension of the interactive refinement tool REFINE [OXC04]. At the other end of the spec-
trum, von Wright presents a proof-based approach that mechanises refinements in HOL [Wri94]. Derivation
is sound in this work, however, the concern is not to provide a high-level language for refinement. Use of
the tool requires direct interaction with the window-inference toolkit that drives the tool underneath. The
PRT tool [CHN+98] aims to address both extensibility and support for sound derivation, but focuses on user
interaction rather than automation. The Ergo theorem prover [UW94], which is implemented in Prolog, was
extended to use Angel, but not ArcAngel, as a tactic language [MNU97a].

In this paper, we present an implementation of ArcAngel; our main contribution is an approach to provide
sound automated support for tactic-based refinement. Our mechanisation (and its underlying design) is
distinctive. (1) It is based on a tactic language with a formal semantics, so that we enable reasoning about
the tactics themselves. (2) It supports the sound derivation of refinements with the protection of the LCF
approach. (3) It enables independent verification of refinement laws with respect to a program model. (4) It
is extensible and can be used in conjunction with arbitrary refinement languages and underlying semantic
models. (5) It handles proof obligations and their discharge via the same mechanisms that apply refinement
tactics. (6) It supports the seamless integration of native reasoning facilities of the prover.

None of the existing tools do justice to all these features at once. On the one hand, we have refinement
editors tailored to a particular language. They do not provide proof support to validate refinements, and
are often interactively driven with limited support for automation. On the other hand, there are works that
tie in with automatic provers, but do not provide a level of abstraction that facilitates the development of
readable and powerful high-level strategies nor permit integration of custom languages. Our work bridges this
gap by supporting a user-friendly, high-level tactic language that is suitable for the automation of complex
strategies, and allows the user to combine native proof support and tactics in a flexible manner.

Main-stream provers do not generally perform automatic backtracking upon tactic failure. Our tool
makes this feature available by faithfully implementing ArcAngel’s angelic choice. In addition, conventionally
tactics apply to goals (sequents). The purpose of a refinement strategy, on the other hand, is to transform
program expressions. Our tool provides support for coupling transformation-based reasoning and goal-based
proof. An ArcAngel tactic is defined in terms of refinement laws, and, whenever possible, produces a theorem
that establishes that a given original specification is refined by a program (derived by the application of
the tactic). Proof obligations are either discharged or kept as hypotheses; they can be predicates over the
program variables (or logical constants) or refinement conjectures.

We also identify contributions to ArcAngel itself: we propose four extensions. A first extension is the
notion of a program model, which formalises the assumptions underlying the sound use of ArcAngel. This
allows the core of our tool to be used with computational models other than Morgan’s calculus. It also makes
the tool useful in proving equivalences of programs in addition to genuine refinements.

Another extension to ArcAngel is a new tactical that supports the combination of tactics to refine programs
with tactics to discharge (or simplify) the raised proof obligations. This allows us to take full advantage of
the capabilities of a theorem prover in mechanising and automating sound refinements.

As a further extension, we have also addressed the treatment of expressions used as arguments of tactics
and law applications. The original semantics of ArcAngel makes a simplifying assumption that all expressions
are fully evaluated. From a practical point of view, this is not always adequate; for instance, the shape of
expressions may have an effect on the use of laws that are applicable to a program. We provide an annotation
mechanism that supports fine control of expression evaluation.

Finally, we consider the practical treatment of termination in ArcAngel. We define and implement extra
tacticals for definition of recursive tactics. They limit the number of recursive calls to avoid nontermination.
They also allow us to decide whether, by exceeding the allowed number of recursive calls, the tactic aborts
or fails. This gives more control to the construction of useful tactics.

A third contribution of this paper is a mechanisation of Morgan’s refinement calculus in ProofPower-Z,
which is based on an encoding of the Unifying Theories of Programming [HJ98, ZC08]. It completes the
implementation of ArcAngel by defining its program model, but can also be used independently. In addition,
it provides further validation for the work in [ZC08], which supports the definition of programming theories.

Our work leads in parts to a unification of ArcAngel with its kin Angel, as well as the more specialised
derivate ArcAngelC , a variant tailored for action and process refinement in the Circus language [OC08]. A
by-product of this unification is a framework that fosters the development of other derivatives of Angel.

To demonstrate our approach, we have used ProofPower, a flexible and extensible theorem prover based
on HOL. It has an open architecture, and has been successfully employed on industrial projects (for example,
in the verification of avionics control systems [AC05]). ProofPower also provides an embedding of Z [WD96]
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known as ProofPower-Z. This is useful in defining semantic models for refinement languages, and we also
take advantage of the expressiveness of Z in examples discussed later on.

A preliminary discussion of our mechanisation is provided in [ZOC09]. Here, however, we present the
design that actually fulfills our goals of soundness and generality. The approach in [ZC10b] does not incorpo-
rate support for integration of a variety of programming models for refinement, discharge of proof obligations
via ArcAngel tactics, and fine-tuned handling of expression evaluation.

In Section 2 we introduce the relevant preliminary material. The following Section 3 introduces the exten-
sions and generalisations that we propose. Section 4 discusses the fundamental design of our implementation
and its relationship to the ArcAngel semantics. Section 5 is dedicated to the formalisation and mechanisation
of four programming models, and shows how they are used in conjunction with our tool. Section 6 illustrates
the use of the tool, and in Section 7 we finally draw our conclusions.

2. Preliminaries

In this section, we introduce the relevant preliminary material: Morgan’s calculus, ArcAngel and its semantics,
and ProofPower and its implementation language, Standard ML, which is also used in our implementation.

2.1. Refinement calculus

Morgan’s calculus provides a language in which sequential programs and their specifications can be written.
In that context, and here, the term program refers in general to abstract specifications, executable programs,
and designs that include specifications combined using program constructors. The language includes familiar
constructs from imperative programming, such as assignments, conditionals, local variables and loops. We
can also write a specification statement w : [pre, post ] to capture the abstract behaviour of a program
that can update the variables in the list w , called the frame, and has precondition pre and postcondition
post . In the postcondition, we can use 0 subscripts to refer to the initial values of variables. For example,
x : [x ≥ 0, x = x0+1 ∨ x = x0−1] specifies a computation that either increments or decrements any positive
x ; for a negative x , it behaves abortively and thus may exhibit any behaviour, including nontermination.

Table 1 presents an overview of the core constructs of Morgan’s calculus. After the specification statement,
the next five are those of Dijkstra’s guarded command language [Dij76]. Conditional and iteration are defined
in terms of a list of guarded commands. The conditional nondeterministically chooses one program pi whose
guard gi is true, and if no such guard exists, aborts. Iteration repetitively executes one of the programs
whose guard is true and terminates if none exists. If there is more than one program with a true guard
the choice is nondeterministic. Logical constants are a convenient way to refer to values of interest during
program development. For procedures, we follow Back’s approach based on parameterised commands [Bac87].
Procedures may have arguments which can be passed using any of the call-by-copy mechanisms.

The calculus is equipped with a collection of refinement laws that allow step-by-step transformations of
specifications into executable programs. A comprehensive list of laws is presented in [Mor88].

2.2. ArcAngel

ArcAngel [OCW03] includes basic tactics, like skip or the application of a refinement law, tacticals, which
are general operators on tactics, and structural combinators, which facilitate the application of tactics to
components of a program, that is, arguments of the program operators. The basic tactics and tacticals are
inherited from Angel [MGW93, MGW96], albeit adapted to deal with refinement laws to programs.

A tactic program in ArcAngel consists of a sequence of tactic declarations. We declare a tactic name with
body t and arguments args as Tactic name (args) =̂ t end. The body t of the declaration can be any tactic
expression involving the variables introduced through args . For documentary purposes only, an optional
clause proof obligations can be included to enumerate the proof obligations produced by the application
of t . An additional optional clause generates records the shape of the derived program.

The most basic tactic is law name(args), which performs the application of a single law; it assumes name,
the law, to be a priori defined and to have parameters that are suitably instantiated by args . If name with
arguments args is applicable, the application of the tactic succeeds and returns a new program, possibly
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Name Syntax

Specification Statement w : [pre, post ]

Skip skip

Assignment w := E where w and E may be lists

Sequential Composition p1 ; p2

Conditional if g1 → p1 [] g2 → p2 [] . . . [] gn → pn fi

Iteration do g1 → p1 [] g2 → p2 [] . . . [] gn → pn od

Local Variable var x : T • p

Logical Constant con x : T • p

Procedure Declaration

procedure name =̂ p

procedure name =̂ (. . . ,val x : T , . . . • p)

procedure name =̂ (. . . , res x : T , . . . • p)

procedure name =̂ (. . . ,vres x : T , . . . • p)

Procedure Call name and more generally name(arg1, arg2, . . .)

Table 1. Constructs of Morgan’s refinement calculus.

generating proof obligations corresponding to the provisos of the law name. If, on the other hand, the law
is not applicable, the tactic fails. An analogous construct exists to invoke a declared tactic. Its syntax is
tactic name(args) where name is the name of the tactic, and args the list of arguments passed to it.

The other basic tactics are skip, fail, and abort. The tactic skip always succeeds while leaving the
program unchanged, fail always fails, and abort neither succeeds nor fails, but may produce any (list of)
outcome(s) or even run indefinitely. Nontermination is not equated with failure since we cannot effectively
compute it. With regards to implementability of angelic choice, failure must always be inferable from tactic
execution. Hence comes the need to distinguish fail and abort at the semantic level.

Tactics can be composed using tacticals. A sequential composition t1 ; t2 applies the tactics t1 and t2 in
sequence. If t1 fails (or aborts), the whole tactic t1 ; t2 fails (or aborts), otherwise the outcome is determined
by subsequently applying t2. An alternation t1 | t2 first attempts to apply t1, and if this leads to failure at
any point, applies t2. An important feature of the alternating choice is that it is angelic: it always finds a
successful execution, if there is one, by making the right choices. Alternation is strict with respect to abort
in its first operand, but not the second one, because, whenever t1 succeeds, application of t2 is not carried
out. The entire tactic aborts if either t1 aborts, or t1 fails and t2 aborts.

The cut operator ! t is unary. It applies t , but considers only the first result when there is more than one
possible outcome due to alternation. It acts like the cut in Prolog with regards to the backtracking search
for a feasible path of execution. The tactical ! t fails when t fails; similarly, it aborts if t aborts.

Two further unary tactics are the assertions succs t and fails t . The first terminates without changing
the program (that is, behaving like skip) if t succeeds, and otherwise fails. The second terminates without
changing the program if t fails, and otherwise fails. Both are strict with respect to abort too.

ArcAngel also permits the specification of recursive tactics. The fixed-point construction µX • f (X ) is
used for this purpose; here f is a function on tactics. Recursive tactics may introduce nontermination; for
example, µX • skip ; X repeatedly applies skip without ever yielding a result. It is equivalent to abort.

The tactic applies to p do t guards the application of t by checking whether the program to which t
is applied to is of the form p, which acts as a pattern. If the pattern matching succeeds, the free variables
in p are instantiated as meta-variables, and can be referenced in the definition of t . Otherwise, the tactic
fails. To illustrate this, we consider the application of applies to w : [pre, post1 ∧ post2] do t to the program
x , y : [true, x = 1 ∧ y = 2]. The pattern matching in this case associates w with 〈x , y〉, pre with true, post1
with x = 1, and post2 with y = 2. The body of t can refer to w , pre, post1 and post2 in its definition. We
observe that the pattern matching does not make use of associativity of operators like ‘∧’ and ‘,’. It is in
essence syntactical and hence there is no possibility of multiple matches.
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Name Syntax Description

Law Application law name(args) Application of a simple refinement law.

Tactic Application tactic name(args) Application of a declared tactic.

Skip skip Tactic that succeeds not altering the program.

Fail fail Tactic that always fails.

Abort abort Tactic that may not terminate.

Sequence t1 ; t2 Sequential composition of tactics t1 and t2.

Alternation t1 | t2 Alternating choice between tactics t1 and t2.

Cut ! t Only considers the first result when applying t .

Recursion µX • f (X ) Least fixed-point operator on tactics.

Assertion 1 succs t Behaves like skip if t succeeds, and fails if t fails.

Assertion 2 fails t Behaves like skip if t fails, and fails if t succeeds.

Pattern Matching applies to p do t Guards the application of t by a pattern p.

Table 2. List of ArcAngel tactics and tacticals. Structural combinators are omitted.

Finally, structural combinators allow us to apply individual tactics to subprograms of some program
operator. For example, the tactic t1 ; t2 transforms programs of the form p1 ; p2 by applying t1 to p1 and t2
to p2. The proof obligations generated are those arising from both tactic applications, and the piecewise ap-
plication of the tactics is justified by monotonicity, namely here of sequential composition in both operands.
In ArcAngel, we have a structural combinator for each syntactic construct of the refinement calculus. For in-
stance, to apply the tactics t1, t2, . . . to the programs p1, p2, . . . of a conditional if g1 → p1 [] g2 → p2 [] . . . fi,
we employ the n-ary structural combinator if t1 [] t2 [] . . . fi .

Table 2 summarises the ArcAngel constructs, apart from the structural combinators, which are identifiable
as boxed versions of the program operators. Significant examples of ArcAngel tactics can be found in [OCW03,
OZC11]. We use in the sequel a series of small examples that illustrate well our mechanisation approach.

Semantics of ArcAngel In what follows, we summarise some elements of the existing semantic model of
ArcAngel [OCW03] that are relevant to the presentation of the extensions we discuss in Section 3, and that
have also instructed the design of our implementation.

Tactics in ArcAngel are characterised by functions that map refinement cells to (possibly infinite) lists of
refinement cells. A refinement cell captures a program and a sequence of proof obligations to derive it.

RCell =̂ Program × seq Predicate and Tactic =̂ RCell 7→ pfiseq RCell

Program is the domain for program expressions, and Predicate represents proof obligations which are char-
acterised by predicates. The list generated by a tactic application can potentially be infinite, namely if there
is an infinite number of possible outcomes, and also can be only partially defined. For example, the tactic
skip | abort generates a list for which evaluation of only the first element is guaranteed to succeed. Any
further outcome is undefined and could even lead to its evaluation failing to terminate. In [Mar96] Mar-
tin presents a model for partial, f inite and infinite lists (pfi lists). The function pfiseq used above is the
constructor for such lists. Appendix A includes its formal definition and a number of list operators.

The semantic function J. . .K for tactics is parameterised by two environments that record declared laws
and tactics: LEnv is the set of law environments, and TEnv that of tactic environments.

LEnv =̂ Name 7→ seqExpression 7→ Program 7→ RCell

TEnv =̂ Name 7→ seqExpression 7→ Tactic

The type Name is that of law and tactic names, and Expression that of expressions used as arguments.



6 F. Zeyda, M. Oliveira and A. Cavalcanti

The semantic function for tactics maps tactic expressions and environments to elements of Tactic.

J K : TacticExpr → TEnv → LEnv → Tactic

As defined above, Tactic specifies the semantic domain for tactics; TacticExpr , on the other hand, contains
all syntactic expressions for tactics. The semantics of basic tactics is defined as given below.

JskipK ΨT ΨL r = [r ] JfailK ΨT ΨL r = [ ] JabortK ΨT ΨL r = ⊥

For skip the outcome is a finite singleton list containing only the refinement cell (program) r to which the
tactic is applied. For fail it is the empty list, and for abort it is a partial list ⊥ whose elements are left
completely unspecified. The semantics of the tactic law name(args) is a singleton list with the refinement cell
containing the transformed program and possibly additional proof obligations, or an empty list if application
fails. The law definition is inferred from the law environment. Similarly, tactic name(args) executes the tactic
name by inferring its definition from the tactic environment.

For sequential composition, we have the following definition.

Jt1 ; t2K ΨT ΨL r =
∞
a/ (Jt2K ΨT ΨL)∗ (Jt1K ΨT ΨL r)

Here,
∞
a/ is the distributed concatenation of pfi lists. The operator ∗ is a mapping function: (f ∗) s applies f

to all elements of a pfi list s . Informally, we apply t2 to all refinement cells obtained by first applying t1, and
flatten the resulting list of lists into a single list of results. Alternation has the following simple definition.

Jt1 | t2K ΨT ΨL r = (Jt1K ΨT ΨL r)
∞
a (Jt2K ΨT ΨL r)

The
∞
a operator is concatenation for pfi lists. As an example, we consider the tactic skip | abort. Applying

it to p yields [p]
∞
a ⊥, a partial list whose first element is the only one that can be safely evaluated. On the

other hand, if we consider abort | skip, we obtain ⊥
∞
a [p], which is equal to ⊥.

We omit a discussion of the semantics of the remaining tacticals as well as structural combinators.
Recursion is defined using Kleene’s theorem, that is, as the least upper bound of approximation chains.

µX • f (X ) =
⊔
{i : N • f i(abort)} where f 0 is the identity function.

This requires a complete partial ordering on tactics with respect to which the tactic operators are continuous.
It is defined by t1 ⊑T t2 ≡ ∀ r : RCell • t1 r ⊑∞ t2 r where ⊑∞ is a generalised prefix ordering on infinite
lists. Intuitively, if t1 is refined by t2, then for every program, t2 can produce at least as many outcomes as
t1, and whenever t1 is guaranteed to terminate, so is t2. Appendix A includes a formal definition.

The notion of semantic equivalence and refinement of tactics provided the opportunity to specify and
prove algebraic laws about the tactic language [MGW96, OCW03]. In the context of our work, the laws
allow us to test the correctness of the implementation with respect to the semantics of ArcAngel.

2.3. ProofPower and Standard ML

ProofPower [AJ05] resulted from a re-engineering of the Cambridge HOL proof system, a descendant of LCF;
hence ProofPower has much in common with the original LCF prover. For example, it is implemented in
(Standard) ML [MTH90], and takes advantage of its type system to ensure that theorems can be constructed
only by means of logical inference. There is an abstract data type THM for proved theorems whose exposed
constructor functions invariably correspond to valid inferences in the logic.

ProofPower promotes and facilitates the semantic embedding of languages; in particular, Z has been
formalised, producing the ProofPower-Z package and dialect. It is in essence an extension of ProofPower that
provides additional syntactic constructs, parsing facilities, rules, theorems and tactics specific to transforming
and proving theorems about Z terms. The open architecture and flexibility of ProofPower encouraged the
development of several tools that enabled its use on industrial-scale projects [ACOS00, CO06].

Our implementation of ArcAngel directly integrates with the implementation of ProofPower by supplying
a database of additional SML constants and function definitions. Although much of it needs to use lower-level
functions of ProofPower for dissecting syntactic expressions, manipulating type information, and so on, none
of this can compromise soundness, and neither can potential bugs in our implementation. As explained in
Section 4, tactics generate theorems, that is, elements of the data type THM that record a refinement proof.
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Name Model theorem

Reflexivity of Refinement ∀X : T • X ⊑ X

Transitivity of Refinement ∀X ,Y ,Z : T • X ⊑ Y ∧ Y ⊑ Z ⇒ X ⊑ Z

Equivalence ∀X ,Y : T • X ≡ Y ⇔ X ⊑ Y ∧ Y ⊑ X

Table 3. Theorems that need to be provided for ArcAngel models.

Soundness of the theorem follows from the soundness of the ProofPower treatment of theorems. A bug or
the use of inadequate tactics may fail to generate a (desired) theorem, but not an unsound result.

Standard ML is a strongly-typed, strict and impure functional language. The implementations of SML
supported by ProofPower are Poly/ML (recommended) and New Jersey ML. Being impure, it permits the
use of global mutable data structures by means of reference types. Being strict implies that, unlike in lazy
languages, arguments of functions are always evaluated prior to the function itself.

A comprehensive account of the ML language and its facilities can be found in [Pau96]. For New Jersey
Standard ML, we refer to the on-line resource and documentation at http://www.smlnj.org.

3. Extensions to ArcAngel

In this section, we discuss several extensions to ArcAngel that have been motivated by our implementation.
We present them, however, in an implementation-independent way as each of them reflects a more general
conceptual issue, which is relevant to every implementation of ArcAngel and similar languages on other
theorem-proving platforms. All of them have been implemented in ProofPower.

3.1. Program model

In ArcAngel, we apply tactics to programs of the refinement calculus. The mechanics of ArcAngel, however,
generally do not depend on the kind of objects to which tactics are applied. Tactic application is in essence
a syntactic transformation process, and the meaning of those transformations is something that must be
established outside the semantics of the tactic language. It depends on the type of objects we apply tactics
to, and properties of the underlying refinement relation and program operators. For instance, if the basic
refinement laws are not correct, the refinement relation does not have the right properties, or the program
operators are not monotonic with respect to it, then we cannot claim that tactic application generally yields
a correct refinement. This, however, is fundamentally of no relevance to the ArcAngel semantics.

This has advantages; it fosters a high level of generality in the tactic language. Namely, we can abstract
from the particular details of the mathematical objects to which tactics are applied, and from the particular
semantic definitions of program operators and refinement. On the other hand, we have no formal guarantee
stemming from the use of ArcAngel per se that programs obtained via tactics are valid refinements.

In our tool, we provide support for the notion of a program model: it allows us to exploit the useful
aspects of the generality of ArcAngel, while eradicating concerns about soundness. Our technique concretises
and formalises the assumptions that we make outside the tactic language to justify its use.

3.1.1. Specification of the program model

A program model consists, first of all, of two relations over the program type T of the model. The first
relation, ⊑ , captures refinement, and the second relation, ≡, program equivalence. The introduction of
equivalence, in addition to refinement, enables us to use ArcAngel to prove equivalence between programs
where this is possible. Section 3.1.4 explains this feature in more detail.

A second ingredient is the set of three specific theorems listed in Table 3; we call them model theorems.
The first two establish that refinement is a preorder: reflexive and transitive. The third one requires that
equivalence corresponds to mutual refinement. These three theorems, together, establish the suitability of
the model for use with ArcAngel to establish program refinement and equivalence.

It should be noted that in order to verify the theorems, we clearly need a semantic theory for the

http://www.smlnj.org
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underlying program objects as a point of reference. Furthermore, refinement and equivalence laws need to
be justified by proof within that semantic theory. In return, we can claim that tactic application is sound.
Soundness here means that if we apply a tactic to a program p of the model, all possible outcomes can be
proved to be valid refinements of p, provided the indicated proof obligations are discharged.

We can prove this general result using the theorems in Table 3 and the definitions of the ArcAngel
operators. This is, however, not necessary: our implementation provides evidence on a per application basis
by constructing the refinement theorems established by the application of each tactic and tactical operator
(by exploiting the model theorems). The LCF paradigm then ensures that all derivations are sound.

3.1.2. Structural combinators

A further aspect that needs attention in a program model is the properties of program operators for which we
provide structural combinators. Their sound use relies on monotonicity theorems for the program operators
to justify the application of tactics to program arguments to construct a refinement of the overall program.

For operators with a fixed number of arguments, the monotonicity theorems are straightforward. For
those with a variable number of program arguments, like a conditional if g1 → p1 [] . . . [] gn → pn fi in the
guarded command language, the monotonicity theorems are specified in terms of sequences of programs. If
we name the operator for a conditional if , for instance, we have a theorem like that shown below.

⊢ ∀ gs : T1; ps , ps
′ : seqT2 | WF (gs , ps , ps ′) ∧ # ps = # ps ′ •

(∀ i : dom ps • ps(i) ⊑ ps ′(i)) ⇒ if(gs , ps) ⊑ if(gs , ps ′)

The operator if is defined to take a sequence of guards and, crucially, a corresponding sequence of programs
as arguments. Accordingly, in the above theorem, the type T1 is that of guards. The type T2 of the elements
of the sequences ps and ps ′ is that of programs. A condition WF (gs , ps , ps ′), which we omit here, captures
restrictions on the domain of the program operator, if in this case. The monotonicity theorem establishes
that, if each element of the sequence ps refines the corresponding element of the sequence ps ′ (of the same
size), then the operator application constructed from the programs in ps ′, here if(gs , ps ′), is a refinement of
the program obtained by applying the operator to the programs of ps .

Accordingly, an implementation of the structural combinator for the corresponding operator has to carry
out a rewrite step that splits the universal quantification in the antecedent into individual refinements before
they can be subject to tactic applications. This is an example of the interaction that is in many cases required
between our tool and low-level proof facilities to support more generic tactics.

Additional provisos on the arguments, like WF (gs , ps , ps ′) in the example above, capture the well-
formedness of the operator application. They do not affect the mechanics of the proofs, and our work
in [VZC10] explains in detail how they can be discharged automatically.

3.1.3. Predicative model

As already said, in our tool we provide support for the use of ArcAngel to refine programs encoded using any
model that provides the relations and theorems described in the previous two sections. To support the use
of ArcAngel to discharge proof obligations raised during refinement, including those that involve program
refinements themselves, however, we introduce a particular program model, namely the (boolean) model of
predicates. As explained in the sequel, it can be used alongside other program models of interest.

In the predicative model, we introduce refinement as reverse implication (⇐), and equivalence as bi-
implication (⇔). In this special case, the model theorems are trivial laws of classical logic, and refining a
predicate means to strengthen it. In particular, if we have a tactic that refines a predicate P into true, it
effectively constructs a proof for P . (As detailed later on, the refinement theorem generated is ⊢P ⇐ true,
which is equivalent to ⊢P .) Hence, tactics in the predicative model can be used for conventional proofs.

Refinement laws in the predicative model are simply laws about predicates. For example, the following
law ⊢P ∨ Q ⇐ P can be used to reduce a boolean program P ∨ Q to P . (A symmetric law reduces it to Q).
Although we cannot reduce conjunction in the same way, we may define a structural combinator ∧ which
exploits that conjunction is monotonic in both operands with respect to (reverse) implication. Using it as in
t1 ∧ t2, we are able to reduce the proof of P ∧ Q to a proof of P and Q individually via the two tactics t1
and t2. A trivial law true ∧ true ⇐ true completes the refinement.

Refinement proof obligations can arise as a result of applying, for instance, laws for introduction of re-
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cursive procedure calls in Morgan’s calculus. They take the form Γ ⊢A ⊑ B and can be discharged by
reducing the first program A to B by a means of a suitable tactic. To support this approach, we intro-
duce a unary structural combinator ⊑ that enables the application of a tactic to the first operand of
the refinement A ⊑ B in the boolean program model. It is monotonic since Γ ⊢A ⊑ A′ implies that
Γ ⊢ (A ⊑ B) ⇐ (A′ ⊑ B). This basically follows from transitivity of refinement. If, using this combinator,
we obtain a refinement Γ,Γ′ ⊢B ⊑ B , a simple law can transform it to true.

We observe that ⊑ is a hybrid structural combinator: whilst its argument tactic applies to a program,
the result is a refinement in the predicative model. Our use of program models does restrict the use of
ArcAngel unnecessarily. We can handle, for example, a combinator for a preconditioned program operator
pre | p. We can have a first tactic to weaken the precondition pre, and a second tactic to refine the program
p. Soundness is justified in different semantic theories; this is handled in the monotonicity theorem.

The predicative program model does not require a custom semantic theory when encoded in a theorem
prover, since its laws are easily provable by appealing to the deductive rules and core theorems of the prover.
To support and use it we, however, require support for higher-order logic.

3.1.4. Proving equivalences

In this section, we explain how the refinement and equivalence relations are used in evaluating tactic appli-
cations that can either yield a refinement or an equivalence, depending on the laws used.

A tactic t can follow various paths of execution, depending on the particular program p to which it is
applied. It is, therefore, not trivial to carry out an initial analysis of t to determine whether the program that
it generates is necessarily equivalent to, or a refinement of, p. Depending on the laws used in the particular
path taken by t when applied to p, we can have either.

In spite of that, instead of taking the safe route of regarding all generated programs as refinements,
our tool produces a stronger equivalence theorem whenever possible. For that, it determines whether the
generated program is an equivalence or refinement during the tactic application. This relies on the same
properties we previously required for program refinement, that is, reflexivity and transitivity, to hold for
equivalence. The third theorem in Table 3 is used to establish these properties.

3.2. Discharging proof obligations

Our tool implements a tactical discharge t 〈t1, t2, . . . , tn〉 that applies a tactic t and then uses the tactics t1,
t2, . . . to simplify, or in the ideal case discharge and remove, the proof obligations generated by the application
of t . It is not available in the original account of ArcAngel, and in this section we define its semantics.

The tactical discharge t 〈t1, t2, . . . , tn〉 collects the proof obligations generated by the application of t ,
say 〈b1, b2, . . . , bn〉, and applies each ti to the i-th proof obligation bi in that sequence. The proof obligations
generated by the application of t are replaced by the transformed ones produced by the application of the
ti . Crucially, the application of each ti to the respective bi is realised in the predicative program model.

The semantics of discharge caters for the fact that applying t as well as each of the ti may either yield
a list of outcomes, or otherwise aborts or fails. The formalisation is provided below, where we consider the
application of discharge to a tactic t and a list of tactics pob tacs .

Jdischarge t pob tacsK ΨT ΨL r =

let tacs = (λ tac • JtacK ΨT ΨL)map pob tacs •
∞
a/ (discharge rcell tacs r) ∗ (JtK ΨT ΨL r)

A local constant tacs records the semantics of each tactic in pob tacs when applied to the environments ΨT

and ΨL. This is determined by mapping (λ tac • JtacK ΨT ΨL) over pob tacs ; the result is a list of type
seq Tactic. It is used as an argument to discharge rcell , along with the original refinement cell r . We use
map for the map operator for the Z sequence constructor seq, and ∗ is the map for pfiseq.

Each cell of the (infinite) list (JtK ΨT ΨL r) gives a possible outcome of the application of t to (the
program in) r , along with the associated proof obligations. The function (discharge rcell tacs r), when
applied to such a refinement cell, gives the possible results of applying the tactics in tacs to each of the
new proof obligations. This is in itself a possibly infinite list or refinement cells. The result of mapping
(discharge rcell tacs r) to all elements (JtK ΨT ΨL r) is, therefore, a list of type pfiseq (pfiseq RCell). It is
flattened into a list of type pfiseq RCell containing all the possible outcomes of the application of the tactics.
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We define discharge rcell below; as indicated above, it takes as parameter a list tacs of tactics to discharge
the proof obligations, the original refinement cell r orig, and a single refinement cell r ′ (which is one of those
obtained from the application of t to r orig).

discharge rcell (tacs : seqTactic) (r orig : RCell) (r ′ : RCell) =

let pobs = r ′.2− r orig.2 •

let pob rcells = (λ pob • (pob, 〈〉)) map pobs •

let pob rcells ′ = tacs mapl pob rcells •

let combs rcells ′ = combine∞ pob rcells ′ •

let pobs ′ = pobs for comb ∗ combs rcells ′ •

(λ pob • (r ′.1, pob a r orig.2)) ∗ pobs ′

The constant pobs records the residual proof obligations in r ′: those generated by the application of t . The
refinement cells in the sequence pob rcells have as programs the proof obligations in pobs , and no proof
obligations. By applying the tactics tacs to these refinement cells, we get a resulting sequence of sequences
of refinement cells pob rcells ′: each inner sequence is the outcome of simplifying a particular proof obligation
with one of the tactics. The function mapl performs the pointwise mapping; it does not require the lists to
have the same length: superfluous tactics are simply ignored, and surplus refinement cells are left untouched.

The function combine∞ defined in Appendix A selects elements from a sequence of infinite sequences,
and combines them in every possible way to obtain a possibly infinite sequence of all combinations (each
combination is given as a standard sequence). Each element in combs rcells ′ thus records a possible outcome
of concurrently applying the tactics in tacs to the proof obligation refinement cells corresponding to pobs .

The function pobs for comb takes such a list of refinement cells and defines a corresponding list of
plain predicates (that can be used to characterise the proof obligations in the resulting refinement cell). Its
simple definition is omitted; pobs for comb just flattens all programs and proof obligation sequences of all
refinement cells in rs into a single sequence of predicates.

The semantics of discharge rcell is given by mapping (λ pob • (r ′.1, pob a r orig.2)) over the list pobs ′

of these proof-obligation sequences. This constructs, for each sequence pob in pobs ′, a cell whose program is
that resulting from the application of t , and whose proof obligations are pob concatenated with the initial
ones. In this way, the proof obligations generated by t are replaced with the result of applying tacs to them.

If any of the proof obligations are themselves refinements, the corresponding tactic supplied to discharge
needs the refinement structural combinator ⊑ discussed in the previous section. In the next section we
look at another practical aspect that has not been dealt with in existing work.

3.3. Evaluation of expressions

One issue not addressed by the semantics of ArcAngel is the treatment of expressions. The work in [OCW03]
only considers (fully evaluated) values. In our tool, however, for practical reasons, we need to treat and
control expression evaluation. It may be necessary to evaluate or avoid evaluation of particular expressions
before and after the application of a law. The next two examples illustrate the issues.

First, we consider a tactic that takes a string s and applies the copy rule twice by suffixing s with each
of the strings “ action1” and “ action2”. We may specify this tactic as follows.

Tactic copy-rule-twice (s) =̂ law copy-rule(s a “ action1”) ; law copy-rule(s a “ action2”) end

Whenever the tactic is applied, say as in tactic copy-rule-twice(“foo”), the formal parameter s must be
substituted by the argument provided. In this case this yields the following instantiation.

law copy-rule(“foo”a “ action1”) ; law copy-rule(“foo”a “ action2”)

The copy-rule expects a literal string as an argument (not a concatenation), hence here we need an implicit
evaluation step. In [OZC11] analogous tactics are presented to chain the applications of the copy rule.

As a second example, we consider the iter law presented below. It refines specifications of the form
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w : [inv , inv ∧ ¬ GG], where GG is an arbitrary disjunction of guards G1 ∨ G2 ∨ . . . .

Law iter(〈G1,G2, . . . ,Gn〉,V )

w : [inv , inv ∧ ¬ GG] ⊑ do [] i • Gi → w : [inv ∧ Gi , inv ∧ 0 ≤ V < V0 ] od

provided neither inv nor any of the Gi contain initial variables.

We use do [] i • g(i) → p(i) od to represent an iteration whose list of guarded commands has as its i-th
element g(i) → p(i), with the guard g(i) and the program p(i) defined in terms of i .

The disjunction GG needs to be represented by means of a function, named GG for instance, which
takes sequences of predicates as argument. Otherwise, we would require an instance of the law for each
possible length of the disjunction of guards. Turning (p ∨ q) and (p ∨ q ∨ r), for example, into GG 〈p, q〉 or
GG 〈p, q, r〉, is then an implicit step that is necessary before the application of iter. Additionally, postpro-
cessing is necessary to eliminate the uses of GG after applying the iter law.

We use annotations to control evaluation. In arguments of tactics and laws, annotations indicate the
expressions that require evaluation before they are applied. Similarly, annotations in expressions within laws
indicate that they should be preevaluated or postevaluated upon application. Precisely, when we apply a law
stating p1 ⊑ p2, annotations in p1 lead to evaluation before application, and in p2 lead to postevaluation.

Annotations are defined using a tagging function; formally, it is just an identity function. Utilising Eval
as the tagging function, our first example tactic is recast as follows.

Tactic copy-rule-twice (s) =̂

law copy-rule(Eval(s a “ action1”)) ; law copy-rule(Eval(s a “ action2”))

end

Semantically, Eval can always be eliminated. Syntactically, it causes evaluation according to a set of prede-
fined rules. In general, Eval operates in a top-down manner on expressions, carrying out successive rewrites.

During evaluation and instantiation of arguments, we cater for the possibility of type mismatch. Typing is
not part of the ArcAngel semantics, since it depends on the underlying type systems of program models. We,
therefore, carry out dynamic type checking for arguments of tactics (and laws). Types of formal parameters
of law and tactics are recorded, and the types of actual arguments are checked against them. We define that
the behaviour of tactics and laws applied to arguments of the wrong type is abort.

3.4. Termination in recursive tactics

For pragmatic reasons, we introduce a tactical for recursive tactics that imposes an upper limit on the
number of unfoldings that are performed. The recursive tactical in this case effectively monitors the number
of iterations performed, and behaves like abort if a certain threshold n is reached.

Pragmatically, this supports the implementation of more robust mechanisms for error-catching, as well
as the possibility to utilise safely tactics that may fail to terminate. This is especially useful when it is not
evident if, and under what conditions, tactics are guaranteed to terminate. By choosing a sufficiently high
value for n we obtain a reasonable approximation of the behaviour of the recursive tactic.

Formally, we can describe the bounded recursive tactic µ
n
X • f (X ) as shown below.

µ
n
X • f (X ) =

⊔
{i : N | i ≤ n • f i(abort)} = f n(abort)

Unlike in the case of unbounded recursion, we only take the limit of the first n elements of the approximation
chain f 0(abort), f 1(abort), f 2(abort), . . . . Because of monotonicity of f , this is equal to f n(abort), and
in terms of tactic refinement we have µ

n
X • f (X ) ⊑ µX • f (X ).

If we do not want to treat nontermination as an abnormal case, but use it to control the behaviour of
other tactics, the alternative tactical µ

∗
n
X • f (X ) yields failure rather than abortion when exceeding the

threshold. It fails if a certain number of unfoldings does not produce a result. The tactic µ
∗
n
X • f (X ) is

equivalent to f n(fail) where n is again the maximum number of recursive calls, however it is neither an
approximation nor a refinement of µX • f (X ). It is not an approximation since, for instance, we have
(µ∗

n
X • X ) = fail and µX • X = abort, but abort 6⊒ fail. It is also not a refinement because µ∗

n
X • f (X )

may produce fewer outcomes. It is nevertheless a useful description of recursion in practical terms, identifying
detected nontermination with failure of a tactic to be applied.
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Although it would be possible to engineer a model for ArcAngel that has only one semantic concept of
failure, the fusion of fail and abort would cause implementability issues that cannot be overcome. The tactic
µ
∗
n
X • f (X ) closes this gap by simulating this unified notion of failure by only looking a finite number of

iterations into the future, whereas the implementation of angelic choice otherwise would have to achieve the
impossible feat of solving the problem of termination in general for recursive tactic applications.

In the following section we explain the details of our implementation of ArcAngel in ProofPower, taking
into account all we have discussed in terms of extensions and unification in this section.

4. Mechanisation design

In this section we discuss some of the core features of the design integrating ArcAngel into ProofPower. We
first explain how we encode tactics, secondly address some implementation issues of operator encodings, and
lastly explain how ArcAngel tactics can be used together with the backward proof facilities of ProofPower.

4.1. Encoding of ArcAngel tactics

A näıve approach to encode ArcAngel tactics directly by virtue of ProofPower tactics is problematic. First,
ProofPower tactics do not exhibit backtracking behaviour, and secondly ProofPower tactics solve (or reduce)
proof goals whereas ArcAngel tactics transform program expressions. Although theorem provers typically
provide functions to rewrite expressions, in LCF-based provers these functions have to act on theorems, and
not expressions themselves, to ensure that inference is always sound.

To bridge this gap, we first introduce the notion of a refinement theorem in ProofPower. It is a theorem
of the form Γ ⊢ A ⊑ B or Γ ⊢ A ≡ B , where Γ is a list of assumptions (provisos). Because refinement
theorems are of central importance, for documentation purposes, we introduce a type abbreviation REF THM
for them. Although REF THM is equated with THM, the standard type for theorems in ProofPower, it allows
us though to indicate when functions expect or return refinement theorems.

ArcAngel tactics in ProofPower apply to refinement theorems, instead of refinement cells. Roughly, the
program of a refinement cell is encoded as the refining program, and the proof obligations as the assump-
tions. Accordingly, the application of a tactic typically results in a transformation (rewrite) of the refining
program, possibly with the addition of assumptions. We observe, however, that, as opposed to the list of
proof obligations of a refinement cell, the assumptions of a refinement theorem cannot contain repetitions.
This can have some impact on the programming of tactics, but since the order of assumptions is preserved,
our experience shows that this is not an important restriction in practice.

Basically, the successful application of a law to a refinement theorem Γ1 ⊢ A ⊑ B produces a theorem
Γ1,Γ2 ⊢ A ⊑ B ′ where B ′ is a valid refinement of B under the additional provisos Γ2. It is obtained
by matching the refined program of the law against B to give an instantiation Γ2 ⊢ B ⊑ B ′, which, by
transitivity, permits the prover to conclude Γ1,Γ2 ⊢ A ⊑ B ′. If both the refinement theorem and the law are
equivalences, the program model theorems in Table 3 allow us to prove the stronger result Γ1,Γ2 ⊢ A ≡ B ′.

This reconciles ArcAngel’s approach of applying tactics to programs with the design of ProofPower which
is centred around theorem-generating functions. The conventional application of an ArcAngel tactic to a
program X can be simulated in ProofPower by first creating an initial refinement theorem ⊢ X ≡ X that
is trivially proved by definition of equivalence and reflexivity of refinement. We apply to it the encoding
of the ArcAngel tactic; if successful, a transformation of X to Y is captured by a theorem Γ ⊢ X ⊑ Y or
Γ ⊢ X ≡ Y . The validity of the refinement or equivalence is established by the soundness of core inferences
of ProofPower; it is independent of our actual implementation of ArcAngel which merely drives the prover.

Backtracking and infinite behaviours As formalised by the semantics of ArcAngel, to handle backtrack-
ing, we have to record all possible outcomes of a tactic. In our implementation, we therefore characterise
tactics as functions mapping refinement theorems to lists of refinement theorems. This closely resembles the
semantic model where tactics are functions mapping refinement cells to (infinite) lists of refinement cells.

To support infinite lists, we adopt lazy evaluation when computing the outcomes of tactic applications.
Specifically, we introduce a data type lazylist that allows us to defer evaluation of tactics until we actually
require their results. Since, unlike, for example, Haskell, evaluation in SML is generally strict, lazy evaluation
must be simulated by means of additional layers of functions with a spurious argument. Our list model is
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a lazy variant of the join list model. It provides the flexibility and expressiveness required to implement
ArcAngel operators in a correct, concise, and efficient way. In particular, it enables us to implement the
tactic combinators for alternation and recursion concisely.

Environments The tactics and law environments are encoded as global variables. They are updated by the
declaration of new laws and tactics (using functions discussed in the next section).

On the other hand, to implement parametrised tactics and the applies to p do t operator, it is necessary
to incorporate an environment that binds (meta)variables to expressions. It is represented by a list of pairs
of ProofPower terms (values of type TERM), where the first component gives the variable, and the second
component the bound expression. We introduce the type abbreviation ENV to represent the set of such lists.

To conclude, ArcAngel tactics are encoded by functions that map environments and refinement theorems
to lazy lists of refinement theorems. This is defined in SML as follows.

type AA_TACTIC = ENV -> (REF_THM -> REF_THM lazylist);

Environments are in most cases just propagated to the operands in tactic combinators, the exceptions are
applies to p do t , and law and tactic applications which need to process them.

In the next section we look at the implementation of some of the ArcAngel operators.

4.2. Implementation of operators

Each operator of ArcAngel is implemented by a designated SML function. The implementations of the basic
tactics directly mirror their semantic definitions. TSkip returns a singleton lazy list containing the program
the tactic is applied to, TFail returns an empty lazy list, and TAbort raises an exception Abort.

For law applications, TLaw essentially carries out the steps explained in the previous section. In addition,
it substitutes the meta-variables occurring free in the arguments. For laws to be applied, they have to be
declared first using the TLawDecl function. It expects the name of the law, its formal arguments as a list of
typed terms, and the corresponding ProofPower theorem that formalises the law. Upon application, using
TLaw, implications in the conclusion of a law theorem are moved to assumptions to make them provisos.

Similarly, we declare a tactic using the TTacDecl function and apply it using TTactic. The declaration
of tactics with TTacDecl corresponds to the Tactic name (args) =̂ t end construct of ArcAngel. Examples
of the use of all these operator and declaration functions are provided in the next section.

The implementations of the tacticals in most cases also mirror their semantic definitions. As an example,
we present the implementation of TSeq, a binary function on tactics that implements t1 ; t2.

fun (t1 : AA_TACTIC) TSeq (t2 : AA_TACTIC) : AA_TACTIC =
(fn env : ENV => (fn p : REF_THM => (lazyflat (lazymap (t2 env) (t1 env p)))));

It is a literal translation of the semantics (see Section 2.2), where
∞
a/ is encoded by lazyflat, and ∗ by

lazymap. These SML functions define operators on lazy lists similar to those used in the semantic functions
for infinite lists. A further interesting function is TRec, which implements the ArcAngel recursion construct.

fun TRec (tfun : AA_TACTIC -> AA_TACTIC) : AA_TACTIC =
(let val rec (trec : AA_TACTIC) =

(fn env => (fn p => (defer_tac_eval (tfun trec) env p))) in
trec

end);

The tfun argument provides the body of the recursion: a function on tactics. The local constant trec is
introduced as a recursively-defined value; it is the result of TRec. In defining trec, the recursive unfolding
takes place incrementally and application of the tactic is deferred in each step. This is achieved by the
function defer tac eval, which defers the application of one unfolding (tfun trec) to the program p.

fun defer_tac_eval (t : AA_TACTIC) (env : ENV) (p : REF_THM) =
LazyDefer (fn () => t env p);

This function takes advantage of the lazy list constructor LazyDefer to create a deferred list, suppressing
the immediate application of t to the environment and program.

An operator that needs to adjust the environment is applies to p do t . It is made available through the
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SML function TAppliesTo, whose definition is given below.

fun TAppliesTo (patt : TERM) (t : AA_TACTIC) : AA_TACTIC =
(fn env => (fn p =>

let val rhs = (rhs_ref_thm p);
val (_, tmm) = (term_match rhs patt);
val applies_env = (map swap tmm) in

t (override_env env applies_env) p
end
handle Fail msg => case (get_id msg) of

3054 => (TFail env p) | _ => raise Fail msg));

This function first extracts the refined program (rhs) of the refinement theorem (p) to which the tactical
is applied. It then uses the built-in ProofPower function term match to match it against the pattern patt.
The result is stored in tmm, and, providing the matching succeeds, it records the association of expressions
with matched variables as a list of expression and variable pairs. The subsequent mapping of swap to this
list turns around the components of the pairs; thus, applies env yields a corresponding list of variable
and expression pairs capturing the binding of (meta-) variables to terms. When finally applying the tactic
t, we override the current environment with the new bindings; this last step is realised by override env.
The remaining bottom part of the code causes the tactic to fail whenever the matching does not succeed.
(A failure exception with number 3054 is raised then by term match). In such cases, the implementation
ensures that the behaviour of the tactic is the same as that of TFail.

The last function that we discuss in this section is the implementation of the new discharge tactical (see
Section 3.2). It is mostly a direct translation of the semantic description. In this translation, however, the
encoding of the refinement cells as refinement theorems is not entirely trivial. First, we have to interpret
the proof obligations defined in a refinement cell. In the semantics, they record assumptions that need to be
discharged to establish that the associated program is a refinement (of whatever was the original program).
Accordingly, in the implementation, they are assumptions of a refinement cell.

In the semantics of discharge, for each new proof obligation b, we define a refinement cell (b, 〈 〉), to which
we apply the provided tactics (see pob rcells in the definition of discharge rcell). In the mechanisation, we
encode this refinement cell as a refinement theorem Γ⊢ b ⇐ b, where the assumptions Γ are all those already
in context, that is, all the proof obligations, excluding b itself. This enables their use when discharging b,
and characterises, in the context of our mechanisation, the weakest proof obligation defined by b.

Secondly, in the semantics of discharge we construct the refinement cells in the list that defines the result
of the tactic directly. More precisely, we take apart (using the function pobs for comb) the refinement cells
that result from the application of the tactics for the proof obligations, and add the new proof obligations
to the refinement cells resulting from the application of the tactic for the program.

In the implementation, refinement cells are encoded as theorems, and we cannot construct theorems
explicitly. We, therefore, make use of a rule, namely replace asm rule, that (soundly) derives the refine-
ment theorems. This rule takes two arguments: a theorem of the form Γ⊢P ⇐ P ′, which is that of the
theorems that result from the application of a tactic to a proof obligation P , and a refinement theorem
Γ′,P ⊢S ⊑ T (resulting from the application of the program tactic), in which P is one of the assumptions.
The rule replace asm rule replaces P by P ′ in Γ′,P ⊢ S ⊑ T , essentially by using the cut rule after
moving P ′ into the assumptions of the first theorem. Hence, replace asm rule yields Γ,Γ′,P ′ ⊢ S ⊑ T . If
P ′ is true, which is the case when the proviso has been discharged by the tactic, it is removed.

In the next section, we discuss how evaluation of expressions is handled in our tool.

4.3. Expression evaluation

To handle expressions in our tool using the annotation approach discussed in Section 3.3, we use conversions.
These are general mechanisms (available in ProofPower and several other theorem provers) to rewrite sub-
expressions of some term by appealing to referential transparency.

Unlike ArcAngel laws, conversions do not work only at the top level of a program expression, but can
rewrite arbitrary subexpressions. In our tool, they are used to eliminate the presence of Eval annotations.
We, however, also provide more general support for the use of conversions as part of ArcAngel tactics (and
avoid the need for their application to take place outside ArcAngel).
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Like laws and tactics, conversions are declared using an SML function, TConvDecl. It expects the name
of a conversion, a list of formal parameters, and a (ProofPower) conversion. To apply conversions, we use the
function TConv (name : string) (args : TERM list). Effectively, this makes available inside ArcAngel
native support for rewriting. In ProofPower, the conversion language provides a very rich set of constructs.

Conversions can be used to carry out transformations that cannot be directly specified by laws in Proof-
Power. For instance, they are useful to perform postprocessing of refinement theorems after applying laws;
an example is provided in Section 6. If a conversion fails, this results in failure of the underlying tactic.

Strictly, conversions are already accounted for by the semantics of ArcAngel, since we can think of them
as families of laws. Hence we treat them as an implementation feature.

In the next section we clarify the integration of ArcAngel tactics with ProofPower’s subgoal package.

4.4. Backward proofs

The embedding of ArcAngel is outside the subgoal package of ProofPower, because we cannot easily unify
ArcAngel and ProofPower tactics, which drive backward proofs. We, however, support the use of ArcAngel
tactics to facilitate the proof of refinement conjectures in a backward manner.

We provide a function aa tac; it takes an ArcAngel tactic atac as parameter and lifts it into a corre-
sponding ProofPower tactic. Its behaviour for a goal A ⊑ B is as follows. First, atac is applied. If that
fails, this also results in the failure of aa tac atac. Otherwise, the first element Γ ⊢ A ⊑ A′ of the list of
generated refinement theorems is considered. By adding the provisos Γ as subgoals to the current proof tree,
we justify the addition of A ⊑ A′ to the goal hypotheses. The ProofPower tactic asm tac achieves this
for theorems without assumptions, but we use a more general version that also handles assumptions. The
additional hypothesis either immediately discharges the goal if A′ = B . Otherwise, it is used to reduce the
goal to A′ ⊑ B using transitivity of refinement, since A ⊑ A′ and the new subgoal A′ ⊑ B imply the initial
goal A ⊑ B . The low-level steps of this reduction are carried out by aa tac using the model theorems.

We also provide an alternative lifting function, aa solve tac atac, which evaluates all outcomes of tactic
applications to A, and selects one that discharges the goal or otherwise fails if none exists.

5. Examples of program models

In this section, we discuss the encoding and mechanisation of four specific program models that can be used
with ArcAngel. In each instance we specify the semantics of the model, prove the model and monotonicity
theorems for structural combinators, and configure the model with our tool. The ProofPower source for all
theories is available at http://www.cs.york.ac.uk/circus/tp/tools.html.

5.1. Model for Morgan’s calculus

We encode the semantics of Morgan programs in terms of our mechanisation of the Unifying Theories of
Programming (UTP) in [ZC10c]. The UTP [HJ98] defines a general framework in which the semantics of a
variety of programming and specification languages with different computational paradigms can be uniformly
described. The calculus of the UTP is in essence Tarski’s [Tar41], presented in a predicative style.

Because predicates P in the UTP describe relations, they are associated with an alphabet denoted by
αP . For example, the predicate x ′ > x with alphabet { x , x ′ } describes a computation that increments the
value of x . By convention, undecorated variables refer to their values in an initial observation, and dashed
variables to their values in subsequent observations (just like in Z).

The UTP has a notion of theory: a set of predicates over a given alphabet that fulfil certain healthiness
conditions. Of interest here is the theory of designs, whose alphabets include, besides the program variables
and their dashed counterparts, two boolean variables, ok and ok ′, to capture program termination. A design
with precondition P and postcondition Q is written P ⊢ Q =̂ P ∧ ok ⇒ Q ∧ ok ′. Accordingly, we can
observe that if a design is started in a state where P holds, it terminates in a state where Q holds.

A notable feature of UTP theories are a unified notion of sequential composition, nondeterminism, and re-
finement. Sequential composition is generally characterised by relational composition, and nondeterminism by
disjunction of predicates. Refinement is characterised by universal (reverse) implication: S ⊑ P =̂ [P ⇒ S ].

http://www.cs.york.ac.uk/circus/tp/tools.html
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Here, [ ] is the universal closure operator, namely [P ] =̂ ∀w • P , where w is the list of all the variables in
the alphabet of P . Iteration and recursion are dealt with through fixed points.

Next, we present our mechanisation of the UTP in ProofPower-Z in [OCW06, OCW07, ZC10c], and
discuss our embedding of Morgan’s calculus as a restricted theory of designs.

5.1.1. Mechanisation of the UTP

Here we explain some of the core definitions of our UTP framework in ProofPower-Z. They are written in Z.

Variables and alphabets Variables are encoded by a schema type VAR, whose definition is included in
Appendix B. It has components that determine the name of the variable, a number of dashes, a possible
subscript, and its type as a subset of the semantic domain VALUE . Alphabets are introduced through a
type ALPHABET , which is defined as all finite subsets of VAR.

Values and expressions Two free types VALUE and EXPRESSION capture the semantic domain of
values and the syntax of expressions. The first one represents all values in the semantic universe.

VALUE ::= Int(Z) | Bool(B) | Real(R) | . . . | Set(F VALUE ) | Pair(VALUE × VALUE )

The abstract syntax for expressions is encoded by a free type EXPRESSION . It supports the syntax of
constant values, variables, relations, unary operators, and binary operators.

EXPRESSION ::= Val(VALUE ) | Var(VAR) |

Rel(REL× EXPRESSION × EXPRESSION ) |

Fun1(UNARY FUN × EXPRESSION ) |

Fun2(BINARY FUN × EXPRESSION × EXPRESSION )

The sets REL, UNARY FUN and BINARY FUN define the model for relations and functions.

Alphabetised predicates The semantic model for an alphabetised predicate is a set of bindings describing
the valuations of its alphabet variables that render it true. For example, the predicate x = 1 ∨ x = 2 with
alphabet {x} is characterised by the bindings x ; 1 and x ; 2.

The formal definition of ALPHA PREDICATE , the set of alphabetised predicates, is given below.

ALPHA PREDICATE =̂ {a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom b = a)}

The type BINDINGS =̂ PBINDING includes all sets of bindings. The set BINDING contains the partial
functions from variables (VAR) to values (VALUE ) that associate values of the correct type with the re-
spective variables. It is defined in Appendix B. The restriction ∀ b : bs • dom b = a ensures that we are only
including bindings whose domain corresponds to the alphabet of the predicate.

Core operators Semantic functions for alphabetised predicates are defined for the logical connectives,
equality, substitution, renaming, lattice operators for fixed-point constructions, and utility functions that
allow us to determine whether predicates are tautologies, contradictions, or contingencies. These operators
are distinguished by a subscript P . They usually explicitly construct the alphabet and binding set of the
results. For example, for conjunction we have the alphabet being the union of the alphabets of the operands,
and the binding set being the intersection of the binding sets of the operands after extending their domain
to the common alphabet. We do not provide a detailed description of all operators here, but instead explain
their rôle and arguments as needed in the text. Operators for designs are distinguished by a subscript D .

5.1.2. Encoding of Morgan’s calculus

Programs in Morgan’s calculus are in essence representable by UTP designs. Our encoding, therefore, reuses
our mechanisation of the design theory, while imposing one additional restriction: the alphabet of the pred-
icates has to be homogeneous, that is, the set of dashed program variables has to exactly match the set of
undashed variables. In this setting, we can define all program operators of Morgan’s calculus as design oper-
ators, except for logical constant blocks: we do not consider them here, although we treat them in [CWD06].
A treatment of procedures and parameters also requires further work as explained in [HJ98].
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The set of predicates in our UTP theory of Morgan’s programs are those in MORGAN PROGRAM .

MORGAN PROGRAM =̂
{p : ALPHA PREDICATE | (∃ th : MORGAN THEORY • p ∈ TheoryPredicates th)}

This definition makes use of a function TheoryPredicates which yields the predicates of a UTP theory in our
semantic encoding. The constant MORGAN THEORY refers to the family of all UTP theories of Morgan
programs, each with a different alphabet corresponding to different sets of program variables. Hence, p is a
valid (Morgan) program if it is a predicate of a Morgan theory instance th ∈ MORGAN THEORY .

Morgan operators The quintessential construct in Morgan’s refinement calculus is the specification state-
ment w : [pre, post ]. We use its design characterisation pre ⊢ post [w0,w\w ,w ′] ∧ IIA \w . The alphabet A is
the set of variables occurring in either the pre or the postcondition, with possible 0 subscripts removed, and
their dashed counterparts. The conjunction with IIA \w ensures that variables outside the frame retain their
values. For example, x : [y ≥ 0, x = x0 + 1] is encoded as y ≥ 0 ⊢ x ′ = x + 1 ∧ y ′ = y.

We provide the function SpecStmtM (a,w , pre, post) to encode the specification statement. Here, a is the
alphabet of the underlying design, w the frame variables, and pre and post are relational predicates with
suitable alphabets that provide the precondition and postcondition. The definition is in Appendix B.

Two other operators defined are Skip and Assignment. The functions we provide for this purpose are
IIM a and AssignM (a, ns , es); they are just the corresponding functions IID and AssignD of the design
theory encoding. The only difference is that they have a more restrictive domain and range by requiring
their alphabet a to be an element of MORGAN ALPHABET , and furthermore guaranteeing the result
to be in MORGAN PROGRAM defined above. The set MORGAN ALPHABET includes all valid design
alphabets that encode Morgan computations. Similarly, sequential composition p1 ;

M
p2 of programs is

simply defined as their relational composition p1 ;R p2.
The next operator we consider is the conditional if g1 → p1 [] g2 → p2 [] . . . [] gn → pn fi. To define a

semantics for it, we first introduce a type for representing guarded commands.

GUARDED CMD =̂ {g : MORGAN CONDITION ; p : MORGAN PROGRAM | g.1 ⊆ p.1}

A guarded command is represented by a pair: a guard (of type MORGAN CONDITION ) and a program (of
type MORGAN PROGRAM ), where the alphabet of the guard is a subset of that of the program. A
condition is a predicate whose alphabet includes only undashed variables.

We can define the semantics of a guarded command as g → (P ⊢ Q) =̂ (g ⇒ P) ⊢ (g ∧ Q). Similarly, a
preconditioning operator can be characterised by p | (P ⊢ Q) =̂ (p ∧ P) ⊢ Q . In our encoding of the design
theory, we have functions g →D D and p |D D for these operators; they allow us to give a concise definition
for a conditional. We first define a function GCmdsBody to give semantics to the body of a conditional: a
pair of sequences (gs , cmds), where gs contains the guards, and cmds the corresponding commands.

GCmdsBody : GUARDED CMDS →MORGAN PROGRAM

∀ gs : seqMORGAN CONDITION ; cmds : seqMORGAN PROGRAM |
(gs , cmds) ∈ GUARDED CMDS •

GCmdsBody (gs , cmds) =
if #cmds = 0
then MagicD ∅

else ((head gs) →D (head cmds)) ⊓D GCmdsBody (tail gs , tail cmds)

The type GUARDED CMDS defines restrictions that ensure that GCmdsBody is applied to pairs (gs , cmds)
that are valid as a conditional body. (For instance, all programs in cmds are required to be from the same Mor-
gan theory.) The semantics of these pairs is a nondeterministic choice g1 → p1 ⊓ g2 → p2 ⊓ . . . ⊓ gn → pn .
When the sequences of guards and commands are empty, the semantics is MagicD ∅ (that is, the miraculous
statement true ⊢ false with empty alphabet), which is the unit of nondeterministic choice. The head and tail
functions yield the head and tail of a sequence. Thus, (head gs) →D (head cmds) constructs a standalone
guarded design from the first element of each sequence. The # operator gives the length of a sequence.
Nondeterministic choice of designs is encoded by the ⊓D operator as the disjunction of the predicates.

In the semantics of the conditional, we also have to model divergence when none of the guards hold. To
do so, it is useful to encode a function GG that yields the disjunction of the guards of a sequence of guarded
commands. The type of this function is GUARDED CMDS →MORGAN CONDITION .
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Given all the above definitions, the conditional can now be concisely specified as shown below.

ifM fiM : GUARDED CMDS →MORGAN PROGRAM

∀ gcmds : GUARDED CMDS • ifM gcmds fiM = (GG gcmds) |D (GCmdsBody gcmds)

We use the semantic characterisation (∃ i • gi) | (g1 → p1 ⊓ g2 → p2 ⊓ . . . ⊓ gn → pn). The choice of
standalone guards yields nondeterministic execution of any programs pi whose guard gi is enabled, and the
precondition forces the statement to abort if all guards are false.

A second operator that expects a sequence of guarded commands is the iteration construct, given by
do g1 → p1 [] g2 → p2 [] . . . [] gn → pn od. Its meaning is defined in terms fixed points as usual.

The UTP already provides facilities for variable declaration in the theory of relations, and they are
directly reused to encode declarations for Morgan programs as a function varM .

This completes the presentation of our encoding of Morgan’s calculus; omitted definitions are in Ap-
pendix B. The next section explains how we integrate this model into the ArcAngel core implementation.

5.1.3. Configuration of the program model

For the configuration of an ArcAngel model, we first have to provide a refinement and an equivalence relation.
For Morgan’s model, refinement is encoded by the following relation on alphabetised predicates.

⊑ : P (ALPHA PREDICATE ×ALPHA PREDICATE )

∀ p1, p2 : ALPHA PREDICATE • p1 ⊑ p2 ⇔ α p1 = α p2 ∧ Tautology (p2 ⇒
P
p1)

The Tautology function determines whether an alphabetised predicate is a tautology, in other words equal to
TrueP a for some alphabet a, where TrueP encodes the predicate true. The function α yields the alphabet
of a predicate, that is, it selects its first component. Equivalence p1 ≡ p2 is defined as mutual refinement.

As explained in Section 3.1, we also require a collection of model theorems to hold for the two relations.
They are the ones in Table 3 with T being ALPHA PREDICATE . We have proved them in ProofPower-Z.

The model is configured by invoking the add_model SML function.

add_model ("Morgan", pZ ( ≡ )q , pZ ( ⊑ )q , typeof pZ X
⊕

⊕ ALPHA PREDICATE q ,
ref_refl_thm, ref_trans_thm, eq_def_thm);

The quotes pZ and q are used to invoke the Z-term parser to treat the expression in quotes. The fourth parame-
ter provides the ProofPower type of the terms that encode programs in the model. It is obtained by enquiring
the type of a free variable X whose type as a Z term is explicitly constrained to ALPHA PREDICATE using

the operator
⊕

⊕. Finally, in the example above, the values of the variables ref_refl_thm, ref_trans_thm,
and eq_def_thm are assumed to be the required model theorems.

The second part of the model consists of the definition of structural combinators. Here, we require the
construction of unary, binary, and n-ary structural combinators. Unary structural combinators are introduced
for the (var x • p) construct, which supports declaration of local variables.

For unary structural combinators, the constructor function requires the name of the operator for which a
combinator is to be provided, the position of the program argument to which tactics are to be applied, and
a monotonicity theorem for refinement (and equivalence) as explained in Section 3.1.2. To give an example,
TSCvar, which implements the structural combinator for variable declarations, is configured as follows.

val TSCvar = MakeUnaryTSC("TSCvar", pZ varM q , 2, var_ref_mon_thm, var_eq_mon_thm);

The program argument of the varM function is at the second position, as indicated by the argument 2
above. The monotonicity theorems for refinement and equivalence are provided by var_ref_mon_thm and
var_eq_mon_thm; the theorem for refinement is in Appendix B. Along the same lines, we use MakeUnaryTSC
to provide structural combinators for the valM , resM and vresM functions.

To cater for sequential composition, encoded by the function ( ;
M

), we use a different constructor
function MakeBinaryTSC to provide the binary (infix) structural combinator TSCSeq. In this case, we have
to specify two operand positions (one for each program argument), and the monotonicity theorem has to be
of a slightly different shape as to capture monotonicity in both arguments.

Finally, the combinators for conditional if . . . fi and iteration do . . . od deal with a variable number



Mechanised Support for Sound Refinement Tactics 19

of tactics depending on the number of guarded commands. They are n-ary combinators, and for their con-
struction we provide the function MakeNaryTSC. In this case, the monotonicity theorem has a more elaborate
shape (see Section 3.1). We include below the theorem used in the refinement of the conditional statement,
an n-ary program constructor whose corresponding structural combinator is specified using MakeNaryTSC.

⊢∀ gs : seqMORGAN CONDITION ; cmds , cmds ′ : seqMORGAN PROGRAM |

(gs , cmds) ∈ GUARDED CMDS ∧ #cmds = #cmds ′ ∧

cmds ∈ WF MORGAN PROGRAM SEQ ∧ cmds ′ ∈ WF MORGAN PROGRAM SEQ •

(∀ i : dom cmds • cmds(i) ⊑ cmds ′(i)) ⇒ ifM (gs , cmds) fiM ⊑ ifM (gs , cmds ′) fiM

This is the encoding of the theorem in Section 3.1.2. Its proof is by induction over the length of the sequences.
The constructor function MakeNaryTSC, which we use to implement TSCiffi, the structural combinator

for a conditional, has arguments similar to those of the function MakeUnaryTSC. The given position is that
of the program sequence (cmds above) as an argument of the program constructor: ifM fiM , for instance.

The three constructor functions MakeUnaryTSC, MakeBinaryTSC, and MakeNaryTSC for structural combi-
nators have been sufficient to obtain a full coverage of the tactic language for ArcAngel.

5.2. Model for generalised substitutions

Our second program model is for the generalised substitution language (GSL) of the B formalism [Abr96]; it
is based on a weakest predicate-transformer semantics. Our encoding illustrates how we use our tool in the
context of a deep language embedding. We also present an example here of a hybrid structural combinator.

5.2.1. Encoding of the GSL semantics

As in the previous example, we require Z types for the variables and values in the semantic universe. We call
them VAR and VAL here. Whereas VAR is introduced as a given type, we again use a free type for VAL,
albeit with only two type constructor functions Int and Bool . Further value constructors may be introduced
as required. For the sake of the example, the two are sufficient.

Valuations of the variables are captured by total functions from VAR to VAL. This gives rise to a notion
of state, and the underlying type STATE is simply equated with VAR→VAL. With it, we are able to define
a semantic notion of expressions and predicates. Expressions are modelled by functions from STATE to
VAL, and predicates by functions from STATE to BOOL. Here, BOOL is the HOL type for predicates.

EXPR =̂ STATE →VAL and PRED =̂ STATE → BOOL .

Finally, the type PRED TRANS =̂ PRED→PRED is introduced for predicate transformers, and provides
the semantic model for commands. We do not characterise predicate transformers syntactically, by functions
on program syntax, but semantically as functions on the semantic model for predicates.

The syntax of the GSL is encoded by a free type CMD , whose definition we include below.

CMD ::= SkipCMD
| AssignCMD (VAR × EXPR)
| SeqCMD (CMD × CMD)
| GuardCMD (PRED × CMD)
| PreCMD (PRED × CMD)
| ChoiceCMD (CMD × CMD) | UChoiceCMD (VAR × CMD)

The type constructor SkipCMD constructs the skip command, AssignCMD an assignment x := E , SeqCMD
the sequential composition S ; T , GuardCMD a guarded command g −→ S , PreCMD a preconditioned
command p | S , ChoiceCMD the choice S [] T , and UChoiceCMD an unbounded choice @ v • S . For
each syntactic command we introduce a semantic function that specifies its semantics as an element from
PRED TRANS . For example, for AssignCMD we have the following semantic definition.

Assign : VAR × EXPR → PRED TRANS

∀n : VAR; e : EXPR • Assign (n, e) = (λ p : PRED • (λ s : STATE • p (s ⊕ n 7→ e(s))))

Similar definitions exist for the remaining program constructors, however, we do not include them here. They
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implement the standard predicate-transformer semantics of GSL [Abr96].
With the above, we define the denotational semantics of GSL as a function wp mapping commands to

predicate transformers. Its standard recursive definition is sketched below.

wp : CMD → PRED TRANS

wp SkipCMD = Skip ∧
(∀ n : VAR; e : EXPR • wp (AssignCMD (n, e)) = Assign (n, e)) ∧
(∀ c1, c2 : CMD • wp (SeqCMD (c1, c2)) = Seq (wp c1,wp c2)) ∧
. . .

To conclude the model, we lastly consider refinement of generalised substitutions. For this, we first intro-
duce implication of predicates and predicate transformers in the semantic model. The predicate implication
p1 ⇒

PR
p2 holds if p1 implies p2 in every state, that is ∀ s : STATE • p1 s ⇒ p2 s , and predicate transformer

implication pt1 ⇒
PT

pt2 holds if pt1 p ⇒
PR

pt2 p for every predicate p. Refinement of commands is subse-
quently introduced as the implication of their corresponding transformers: c1 ⊑ c2 ⇔ (wp c1) ⇒PT

(wp c2).
The model we present does not consider the frame of a generalised substitution, that is the set of variables

that a command may alter. This is not a limitation since we do not treat parallel composition.

5.2.2. Configuration of the program model

As before, we first prove the model theorems in Table 3, this time with CMD as the program type T .
Equivalence is again just defined as mutual refinement. Unlike in the previous example, equivalence here
does not imply that the commands are mathematically the same object, since two different commands can
have the same semantics. This illustrates the need for our tool to maintain and provide means to dynamically
configure the equivalence relation, and not just assume it to be equality of the respective entities in HOL.

The model is configured as before by invoking the add_model SML function.

add_model ("GSL", pZ ( ≡ )q , pZ ( ⊑ )q , typeof pZ X
⊕

⊕ CMD q ,
wp_ref_refl_thm, wp_ref_trans_thm, wp_eq_def_thm);

The variables wp_ref_refl_thm, wp_ref_trans_thm and wp_eq_def_thm record the model theorems. The
fact that the model is deep does not impinge in its configuration or the functionality of our tool, as the latter
is not at all concerned with what kind of object it transforms; this reflects the spirit of ArcAngel.

In the GSL model, we have structural combinators for sequence, guarded statements, preconditioned
statements, nondeterministic choice, and unbounded choice. They are either unary or binary, but the combi-
nator for preconditioned statements is a hybrid. To configure it, we require an additional program model for
predicates, where refinement is identified with implication, and equivalence with bi-implication. We observe
that this is different from the boolean program model discussed in Section 3.1.3.

In this case, it is simple to prove the model theorems using standard properties of implication. We can
then configure the model as shown below; the program type is the set PRED .

add_model ("PRED", pZ ( ⇔ P )q , pZ ( ⇒ P )q , typeof pZ X
⊕

⊕ PRED q ,
PRED_refl_thm, PRED_ref_trans_thm, PRED_eq_def_thm);

As before, the variables PRED_ref_refl_thm, PRED_ref_trans_thm and PRED_eq_def_thm record the model
theorems. The monotonicity theorem for the precondition command is now specified as follows.

⊢ ∀ p, p′ : PRED ; c, c′ : CMD • p ⇒
P
p′ ∧ c ⊑ c′ • PreCMD (p, c) ⊑ PreCmd (p′, c′)

A note on monotonicity proofs in the GSL model is that they require monotonicity of wp. Formally, if p ⇒ q
then wp (c, p) ⇒ wp (c, q) for p, q : PRED and c : CMD . This is proved by induction over the type CMD .

The combinator for PreCMD is configured as a binary combinator via the SML function call below.

val TSCPreCMD =
MakeBinaryTSC "TSCPreCMD" pZ PreCMD q ((fst o dest_PreCMD), (snd o dest_PreCMD))

(PreCMD_eq_mon_thm, PreCMD_ref_mon_thm);

The pair of functions provided as the third argument are the destructor functions to isolate the pro-
gram arguments: dest_PreCMD generally destroys a preconditioned term. Also, PreCMD_eq_mon_thm and
PreCMD_ref_mon_thm are the monotonicity theorems.
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This shows that no special treatment is required for hybrid combinators. Our tool dynamically infers the
program models of the operands of the program operators to which a structural combinator is applied.

5.3. Model for Z operation refinement

Z and its schema calculus have been designed for specification, not program refinement. Later, a calculus in
Morgan’s style, ZRC, has been developed for Z [CW99]. It is justified using a weakest-precondition semantics,
so support for the use of tactics in ZRC can be provided in the way already discussed and exemplified.

It remains, however, that most of the Z schema calculus operators, among them conjunction, disjunc-
tion, and sequence, are not monotonic with respect to refinement. In [Gro02], Groves identifies constraints
under which monotonicity can be ascertained. This makes the schema calculus amenable to compositional
refinement. In the following we first formalise the notion of Z operation refinement, and then report on the
configuration of structural combinators that exploit the restricted monotonicity theorems in [Gro02].

The support for Z in ProofPower-Z is not deep enough to allow us to consider the set of all state schemas,
or of all operation schemas. For the sake of the example, we use a trivial state schema STATE =̂ [x : N] with
a true invariant and single component, and consider a rather restricted model of programs as Z operations
on STATE (without inputs or outputs). We can provide a proper model for Z in ProofPower, by encoding
its relational semantics for instance, but for the point of our example here, what we propose is enough.

In accordance with the Z relational semantics, operations are represented by sets of bindings (records).
The constant STATE OP =̂ P (∆STATE ) defines the program model in our simple example. Bindings in
STATE OP include all components of STATE as well as their primed versions. Refinement is defined in the
usual way [Gro02]. We define it in ProofPower-Z as follows; we use the Z pre operator directly available.

⊑ : P (STATE OP × STATE OP)

∀ p1, p2 : STATE OP • p1 ⊑ p2 ⇔
(∀ STATE • pre p1 ⇒ pre p2) ∧ (∀∆STATE | pre p1 • p2 ⇒ p1)

Equivalence, as before, is just mutual refinement. Since all schema calculus operators are available in
ProofPower-Z, it is not necessary to define them again. They are not Z functions; they exist as HOL functions
within the formalisation of Z inside the ProofPower HOL kernel. Our tool is designed to deal with both Z
and HOL functions at the level of the program models, so can readily cope with this.

The program model is configured as before; the model theorems are easily proved by exploiting the
default reasoning support for proofs about Z schemas in ProofPower-Z. The interesting part of this example
are the structural combinators, since the monotonicity theorems require additional provisos on the program
arguments. Some operators have several combinators to reflect the various monotonicity results. For instance,
the following monotonicity theorem holds for schema disjunction.

⊢ ∀ p1, p
′
1 : STATE OP ; p2, p

′
2 : STATE OP |

(∀∆STATE • pre p1 ∧ p′
2 ⇒ p1 ∨ p2) ∧ (∀∆STATE • pre p2 ∧ p′

1 ⇒ p1 ∨ p2) •

p1 ⊑ p′
1 ∧ p2 ⊑ p′

2 ⇒ (p1 ∨
s
p2) ⊑ (p′

1 ∨
s
p′
2)

The subscript s is used in ProofPower-Z for operators of the schema calculus. This is used to configure
a structural combinator TSCSchOr1 for schema disjunction. Applying the combinator raises the provisos
(∀∆STATE • pre p1 ∧ p′

2 ⇒ p1 ∨ p2) and (∀∆STATE • pre p2 ∧ p′
1 ⇒ p1 ∨ p2), where p1 and p2 are

the original operations and p′
1 and p′

2 the operations transformed by the combinator tactics. These proof
obligations persist as assumptions of the constructed refinement theorem, and have to be discharged in order
to obtain an unconditional theorem. (To achieve that within ArcAngel we can use the TDischarge tactical
and laws and combinators of the predicate program model.)

Several laws are presented in [Gro02] that establish monotonicity of conjunction and disjunction, and
they differ by their provisos. As all of them may be useful in a given context, we have a structural combinator
for each monotonicity theorem. The approach of Groves is relatively unconventional; our tool enables us to
safely utilise it and further explore its possibilities. Small examples are presented in Section 6.
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5.4. Model for Circus and CSP

A more specialised tactic language for refinement based on ArcAngel is ArcAngelC . It is tailored for a state-
rich process algebra called Circus [OCW07], which is based on Z and the CSP process algebra [Ros98].
ArcAngelC extends ArcAngel in two fundamental ways: a program model that includes three constructs that
represent computations (namely, actions, processes, and programs) to which we can apply refinement, and a
collection of novel structural combinators. Since our tool treats the program model as a separate component,
it can be used as basis to support ArcAngelC tactics, as we illustrate below.

For the program model, we can use our existing embedding of Circus and CSP [ZC10c], which is based
on the mechanisation of the UTP presented in Section 5.1.1. We can even reuse the proofs of the model
theorems for refinement and equivalence. In the following we focus our discussions on structural combinators
that are not handled using the functions we have already encountered.

ArcAngelC provides program and process structural combinators. For example, program (name, tac)
applies to a Circus program, which is a list of process paragraphs. The result is the application of the tactic
tac to the process name defined in the program. The position of the program component to which the tactic is
applied is not fixed, but identified by the name of the component. For this reason, this structural combinator
cannot be simply specified using the unary, binary, or n-ary constructor functions presented before.

To facilitate support for the definition of this kind of combinator, we provide a general recursive struc-
tural combinator TSCRec. It takes as parameter a testing function test that applies to any HOL term and
characterises those to which a base tactic base_tac, also given as parameter, is to be applied.

fun TSCRec (test : TERM -> bool) (base_tac : AA_TACTIC) : AA_TACTIC;

Unlike other combinators, TSCRec does not apply to a particular program operator. Instead, it propagates
itself recursively through any term, provided a combinator for its top operator is registered, and while the
testing function yields false. If the test succeeds, base_tac is applied instead. We use this combinator to
target the application of a tactic to a particular subterm. It is analogous to recursive rewriting tactics in
theorem provers, but operates within ArcAngel constructing sound refinements rather than equalities.

In our encoding of the semantics of Circus processes as predicates, we remove all references to processes
by applying the copy rule and the fixed point operator. References thus substituted are tagged by a function
LocalProcessP (name, p) defined as the projection in its second argument; its first argument records the
original name of the process. It is trivially monotonic, and a unary structural combinator TSCLocalProcess
applies a tactic to its argument p. A testing function fun LocalProcessTest (name : string) determines
if a term is of the form LocalProcessP (name, p) and name is syntactically equal to name. With that, the
structural combinator program (name, tac) is concisely defined as follows.

val TSCProgram (name : string) (tac : AA_TACTIC) =
TSCRec (LocalProgramTest name) (TSCLocalProcess tac);

If the test succeeds, tac is applied to the body of the named process. Otherwise, the application of the tactic
is propagated through the entire program. In consequence, only instances of LocalProcessP (name, p) where
name equals the name parameter of TSCProgram are affected. They, however, may be located anywhere in
the top-level program. Our previous work in [ZOC09] does not envisage support for the above structural
combinator, and with its implementation we can now claim full support for ArcAngelC via our tool.

Our experiments with the ArcAngelC encoding have revealed that a large number of provisos are raised
by model, law, and monotonicity theorems. This is due to the rich structure of Circus models, which involves
three (nested) constructs to define computations. As a consequence, our tool provides special treatment for
well-definedness constraints as part of the refinement theorem. This supports refinement theorems of the
from wd A ⊢ A ⊑ B ∧ wd B , where wd A and wd B are well-definedness constraints. Our implementation
manages and discharges such constraints, where possible, by default as part of the mechanics of applying
tactics. Details of our derived ArcAngelC tool can be found in [ZC10a].

The next section provides several examples that illustrate the use of our implementation of ArcAngel to
carry out program refinements using the embeddings in this section.
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Law name Definition Provisos

strPost(post ′) w : [pre, post ] ⊑ w : [pre, post ′] post ′ ⇒ post

seqComp(mid) w : [pre, post ] ⊑ w : [pre,mid ] ; w : [mid , post ]
mid and post have

no free initial variables

assign(w ,E ) w : [pre, post ] ⊑ w := E pre ⇒ post [w\E ]

assignIV(w ,E ) w , x : [pre, post ] ⊑ w := E x = x0 ∧ pre ⇒ post [w\E ]

Table 4. Some laws of Morgan’s calculus.

6. Tactic examples

We present here a mechanisation of the ArcAngel tactic in [OCW03]. It refines a specification statement into
a loop preceded by an initialisation of the variables modified by the iteration. Its declaration is given below.

Tactic takeConjAsInv (invBound , lstVar , lstVal , variantExp) =̂

applies to w : [pre, inv ∧ ¬ guard ] do

law strPost(inv ∧ invBound ∧ ¬ guard) ;

law seqComp(inv ∧ invBound) ;

(law assign(lstVar , lstVal) ; law iter(〈guard〉, variantExp))

proof obligations

(1) inv ∧ invBound ∧ ¬ guard ⇒ inv ∧ ¬ guard (from strPost)

(2) pre ⇒ (inv ∧ invBound) [lstVar\lstVal ] (from assign)

generates

lstVar := lstVal ;

do guard → w :


inv ∧ invBound ∧ guard ,

inv ∧ invBound ∧ 0 ≤ variantExp < variantExp[w\w0]


 od

end

The iter law is presented in Section 3.3. It refines a specification statement w : [inv , inv ∧ ¬ GG] into an
iteration do [] i • Gi → w : [inv ∧ Gi , inv ∧ 0 ≤ V < V0] od. Here, inv is the invariant of the loop, and GG
the disjunction of the guards Gi . To apply this law, we have to provide a list of guards 〈G1,G2, . . . ,Gn〉 as
well as a strictly decreasing expression V serving as the loop variant.

The tactic is parameterised by an additional invariant constraint invBound that bounds the range of
the variables used in the variant, the (list of) variable(s) lstVar to be initialised, the (list of) corresponding
expression(s) lstVal to be assigned, and the variant expression variantExp. The use of applies to do
requires the program to be of the form w : [pre, inv ∧ ¬ guard ] for the tactic to be applicable. Its body
applies the laws strPost, seqComp, assign and iter; the definitions of the first three are given in Table 4.

As explained in Section 5.1.2, GG is an abbreviation for a predicate: semantically, a function mapping
sequences of predicates to predicates. In the theorem below for iter we use the encoding of GG in Appendix B.

⊢∀ a : MORGAN ALPHABET ; w : seqM VAR; inv : MORGAN CONDITION ;

guards : seqMORGAN CONDITION ; V : EXPRESSION |

(a,w , inv , inv ∧
P
¬P (GG guards)) ∈ WF SpecStmtM ∧

(a,w , inv , guards ,V ) ∈ WF iterLawGCmds •

SpecStmtM (a,w , inv , inv ∧ ¬ (GG guards)) ⊑ doM iterLawGCmds (a,w , inv , guards ,V ) odM

The two parameters of the law are provided through guards specifying the sequence of guards, and V specify-
ing the variant expression. In the antecedent, the memberships to WF SpecStmtM and WF iterLawGCmds
constitute well-definedness conditions. The latter establishes, for example, that the alphabet of every predi-
cate is a subset of the alphabet a of the specification statement. The rôle of iterLawGCmds is to construct
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a sequence of guarded commands whose guards Gi are obtained from guards , and whose command is of the
form Gi → w : [inv , inv ∧ (0 ≤ V < V0)]. We omit its encoding here, but include it in Appendix B.

Certain steps of the application of iter, namely, the evaluation of the applications of the functions GG
and iterLawGCmds , are implicitly assumed to be syntactic operations. The necessary pre and postprocessing
steps require additional effort that is not catered for in the mere application of the law. We solve this problem
with the support for conversions in tactics as discussed in Section 3.3. Here, in particular, two conversions
are required: one that rewrites a disjunction of predicates into an application of GG to a sequence, and
another that eliminates iterLawGCmds using its (recursive) definition after application of the law.

To implement the conversions in ProofPower, we first realise general conversions that rewrite applica-
tions of recursively-defined functions over sequences, providing the arguments are explicitly enumerated
sequences (sequence displays). The introduction of GG is realised by a general conversion that gradually
rewrites each disjunction of a predicate, starting with the right-most one. It uses laws such as GG 〈〉 = false
and p1 ∨ GG 〈p2, p3, . . .〉 = GG〈p1, p2, . . .〉. The elimination of iterLawGCmds is realised by the general
conversion for rewrite of recursive functions. These conversions are declared for use in our implementation
using the TConvDecl function. Namely, we declare the conversion for preprocessing as follows.

TConvDecl "iter_pre" iter_GG_intro_conv;

The conversion iter GG intro conv applies GG intro conv, the conversion to introduce GG, to a partic-
ular term in a specification statement. The conversion tactic is iter pre. Similarly, we declare a conversion
iter post to eliminate application of the function iterLawGCmds from any term.

Finally, we define a tactic that executes the law iter and performs the pre and postprocessing as follows.

TTacDecl "iter" [pZ V
⊕

⊕ EXPRESSION q ]
((TConv "iter_pre" []) TSeq (TLaw "iter" [pZ V q ]) TSeq (TConv "iter_post" []));

Since the sequence of guards can be matched by the right-hand of the iter law, it is not strictly required
as an argument, hence the only argument is the variant expression. It is propagated to the law application.
Conversion tactics may in general have arguments, however the ones used here do not require any.

The encoding of iter illustrates how the new conversion mechanism supports the encoding of more general
laws in our implementation, and accommodates the implicit steps in processing law applications. We omit
the encoding of the two remaining laws used in takeConjAsInv as it is conventional.

We now declare the compound tactic whose body invokes the four previously declared laws.

TTacDecl "takeConjAsInv" [

pZ invBound
⊕

⊕ ALPHA PREDICATE q , pZ lstVar
⊕

⊕ seq M VARq ,

pZ lstVal
⊕

⊕ seq EXPRESSION q , pZ variantExp
⊕

⊕ EXPRESSION q ] (
TAppliesTo pZ SpecStmtM (a, w , preC , invConj ∧

P
(¬P guard))q TDo (

(TLaw "strPost" [pZ (invBound ∧
P

invConj ) ∧
P

(¬P guard)q ]) TSeq
(TLaw "seqComp" [pZ invBound ∧

P
invConj q ]) TSeq

((TLaw "assign" [pZ lstVar q , pZ lstVal q ]) TSCSeq (TLaw "iter" [pZ variantExpq ]))
)

);

As with law declarations, tactic declarations have to provide a name for the tactic, and then a list of terms
for the formal arguments: variables with fully qualified type information. The third argument specifies the
body of the tactic. The translation that encodes the tactic is very direct, simply replacing ArcAngel operators
and structural combinators by their corresponding SML functions.

Variables introduced in a tactic declaration via TTacDecl or the TAppliesTo construct become local and
can be used in the body of the respective construct, for example, when specifying arguments of law and
tactic applications. For instance, the local variable invBound is introduced by the tactic declaration, and
used in the specification of the arguments for the applications of the laws strPost and seqComp. Similarly,
the TAppliesTo construct introduces the local meta-variables a, w , preC , invConj , and guard , of which
invConj and guard are furthermore used (in arguments) in some of the law applications.

To illustrate application of the tactic, we first create a program that encodes the specification statement

q, r : [a ≥ 0 ∧ b > 0, (a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b]

It calculates the quotient and remainder of two numbers a and b; they are recorded in the variables q and
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r . Its encoding is slightly tedious using the functions in Section 5.1.1.
To apply takeConjAsInv to the above program, we use the function aa_rule as shown below, where ss

refers to the encoding of the specification statement above. The function aa_rule expects an ArcAngel tactic
and a program expression, and creates an initial refinement theorem ⊢ P = P to which it applies the tactic.

aa_rule (TTactic "takeConjAsInv" [pZ TrueP uq , pZ 〈q, r〉q , pZ 〈Val(Int(0)),Var(a)〉q ,pZ Var(r)q ]) ss

Analogously to TLaw, the TTactic function applies declared tactics. The parameters provided are TrueP u
for invBound , 〈q, r〉 for lstVar , 〈Val(Int(0)),Var(a)〉 for lstVal , and Var(r) for variantExp. They encode
expressions in the semantic model. The result is the following refinement theorem.

. . . ⊢

SpecStmtM (u, 〈q, r〉,

RelP (( ≥V ),Var(a),Val(Int(0))) ∧
P
RelP (( >V ),Var(b),Val(Int 0)),

((Var(a) =P Fun2(( +V ),Fun2(( ∗V ),Var(q),Var(b)),Var(r))) ∧
P

RelP (( ≤V ),Val(Int(0)),Var(r))) ∧
P
¬P (RelP (( ≥V ),Var(r),Var(b))))

⊑

AssignM (u, 〈q, r〉, 〈Val(Int(0)),Var(a)〉) ;M
doM (〈RelP (( ≥V ),Var(r),Var(b))〉,

〈SpecStmtM (u, 〈q, r〉,

(TrueP u ∧
P
(Var(a) =P Fun2(( +V ),Fun2(( ∗V ),Var(q),Var(b)),Var(r))) ∧

P

RelP (( ≤V ),Val(Int(0)),Var(r))) ∧
P
RelP (( ≥V ),Var(r),Var(b)),

(TrueP u ∧
P
(Var(a) =P Fun2(( +V ),Fun2(( ∗V ),Var(q),Var(b)),Var(r))) ∧

P

RelP (( ≤V ),Val(Int(0)),Var(r))) ∧
P

RelP (( ≤V ),Val(Int(0)),Var(r)) ∧
P
RelP (( <V ),Var(r), SubstE (Var(r), zero)))〉)

odM

which encodes the program refinement

q, r : [a ≥ 0 ∧ b > 0, a = q ∗ b + r ∧ ¬ r ≥ b] ⊑

q, r := 0, a;

do r ≥ b →

q, r :


 a = q ∗ b + r ∧ 0 ≤ r ∧ r ≥ b,

a = q ∗ b + r ∧ 0 ≤ r ∧ 0 ≤ r < r0




od.

For readability, the assumptions of the theorem have been omitted. Most of them carry constraints regard-
ing the well-definedness of operator applications, which are accumulated through application of the laws. In
practice, we anticipate that most of these assumptions are provable automatically without any user inter-
vention (and the work in [ZC10a] develops an approach to discharge them as we go along.) The remaining
assumptions encapsulate the provisos of the laws. For example, we find the following assumption encoding
the first proof obligation of takeConjAsInv, that is, the proviso of strPost.

Tautology(

((TrueP u ∧
P
(Var(a) =P Fun2(( +V ),Fun2(( ∗V ),Var(q),Var(b)),Var(r))) ∧

P

RelP (( ≤V ),Val(Int(0)),Var(r))) ∧ ¬P (RelP (( ≥V ),Var(r),Var(b)))) ⇒
P

((Var(a) =P Fun2(( +V ),Fun2(( ∗V ),Var(q),Var(b)),Var(r))) ∧
P

RelP (( ≤V ),Val(Int(0)),Var(r))) ∧
P
¬P (RelP (( ≥V ),Var(r),Var(b))))

The proof of this proviso can be automated using the new discharge tactic. For this, we require the fact that
Tautology(TrueP a ∧

P
p ∧

P
q ⇒

P
(p ∧

P
q)) holds, for all p and q from ALPHA PREDICATE and a from

ALPHABET ; this is a theorem called tautology law in the mechanisation. With that, in takeConjAsInv we
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can apply the strPost law as part of an application of the discharge tactic as follows.

(TDischarge (TLaw "strPost" [pZ (invBound ∧
P
invConj )⇒

P
(¬P guard)q ])

[TSkip, TSkip, TSkip, TSkip, TSkip, TSkip, TSkip, TSkip, TLaw "tautology_law" []])

The TSkip tactics are for the proof obligations that we do not touch; they are all well-definedness constraints
of the semantic model. The last tactic applies the previous law. This results in the proof obligation being
removed. This tactic always succeeds due to the fixed structure of the provisos.

The refinement theorem obtained can be subject to further tactic applications. For example, using an
encoding of the law assignIV (see Table 4), we can refine the guarded command within the loop to the
assignment q, r := r , r − b. The encoding of the law is similar to the ones we already presented. It is applied
using structural combinators for sequential composition and loop.

(TSkip TSCSeq (TSCdood
[TLaw "assignIV" [pZ 〈q, r〉q , pZ 〈Var(r),Fun2( −V ),Var(r),Var(b))〉q ]]));

Since there is only one guarded command, the sequence of tactics supplied to TSCdood has only one element.
The tactic TSkip ensures that the first operand of the sequential composition remains unchanged. The
resulting refinement conjecture then encodes the following program refinement.

q, r : [a ≥ 0 ∧ b > 0, a = q ∗ b + r ∧ 0 ≤ r ∧ ¬ r ≥ b] ⊑ q, r := 0, a; do r ≥ b → q, r := r , r − b od

This example, although simple, already illustrates the interaction of native mechanisms, namely, the conver-
sion framework, and our high-level tactic language. They are seamlessly integrated, and their joint use raises
no issues of soundness. The gap between syntactic transformations and semantic rewriting is thus closed.

7. Conclusion

We have presented an implementation of ArcAngel that can be used to carry out refinements guaranteed to
be sound. Our tool automates all the low-level steps involved in instantiating laws, using transitivity and
monotonicity theorems, and so on. Although ProofPower has been our target platform, most of our work,
and certainly our approach, is equally relevant to similar integration endeavours in other theorem provers.
In essence, what we require is a functional language, a prover interface that permits the sound application
of elementary rules of classical logic, and standard rewrite mechanisms to support the conversion tactics.
Higher-order logic is needed to integrate the program model for Angel and implement discharge.

In the design of our tool, we have adopted a very direct translation of the ArcAngel semantics in which
refinement cells in the semantic model are identified with refinement theorems in ProofPower. A faithful im-
plementation of partial and infinite lists is achieved through the use of lazy evaluation. To acquire confidence
that the design respects the semantics, we have conducted a series of tests based on the laws of ArcAngel,
for which we have a proof of soundness. We have verified that tactics in the test set that are equal in the
semantics also exhibit similar behaviour in the implementation. This provides some empirical evidence for
the correctness of the implementation, and besides has revealed deficiencies in earlier designs.

Extensions and generalisations to ArcAngel have been suggested by the implementation of our tool. Most
significantly, we have introduced the notion of a program model. This unifies the application of ArcAngel
tactics to various kinds of objects, not only programs of Morgan’s refinement calculus. We have identified
the essential requirements for the sound application of the implementation mechanisms; they are captured
by a number of required theorems for the program operators and the refinement relation.

Factoring out the program model retains the flexibility of ArcAngel as a general method for transforming
terms, and provides opportunities for its use in a wider context. An additional benefit is the support to
handle both proofs of equivalence and refinement. In ProofPower, the application of ArcAngel tactics results
in the generation of refinement theorems that make the refinement relation explicit. Our implementation
provides the strongest possible result, that is, equivalence rather than refinement, whenever possible.

Another extension supports the use of ArcAngel tactics to discharge proof obligations. To incorporate
this feature seamlessly into the semantics, we use a predicative program model. It constitutes a unification
of ArcAngel with its predecessor Angel, and makes proof goals amenable for reduction via ArcAngel tactics.
This, in particular, allows us to use ArcAngel tactics to discharge proof obligations that are refinements
themselves, and to do this without having to step outside the tool and ArcAngel tactic formalism.

A pragmatic extension has been developed to deal with the evaluation of expressions in tactics. Related
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to that, implicit pre and postprocessing steps in the application of laws and tactics have also been addressed.
This uses our approach to integrate ArcAngel tactics with native rewrite facilities in a clean and sound way.

A final extension provides extra tactic constructors for iteration; they deal with the possibility of non-
termination. Tactics that become trapped in nonterminating loops are not uncommon in theorem provers,
for example, if repetitive rewrites of expressions successively succeed. In our tool, it is possible to deal with
nontermination by limiting the number of recursive calls in a tactic.

We have also presented the definition of a programmodel for Morgan’s calculus using the mechanisation of
the UTP in [ZC08]. It is an extension of existing work on the UTP theory of designs, but includes constructs
(like guarded conditionals and loops) and theorems specific for the use of Morgan’s calculus. We have also
provided full support for the ArcAngelC language, including program and process structural combinators.

Closely related work, apart from the refinement editor in [OXC04], is the implementation of Angel in
Ergo [UW94], a theorem prover developed in Prolog. A major difference between Ergo and ProofPower is
that Ergo does not have a core object logic, whereas ProofPower is based on a formalisation of HOL. The
implementation of Angel in Ergo does justice to its generality: it allows tactics to be applied not just to
single goals, but sequences that may result from the application of tactics.The Ergo implementation of Angel
is otherwise too specific to give heed to ArcAngel models: it assumes tactics to be applied to sequents.

The Program Refinement Tool (PRT) [CHN+98] is based on Ergo and originally inherited its tactic
language. Later developments use Gumtree [MNU97a, MNU97b], a tactic language based on Angel.

Groves, Nickson, and Utting present in [GNU92, Nic94] a refinement tool implemented in Prolog; it has
a special emphasis on tactics. The encoding of various development patterns is in Nickson’s thesis [Nic94].
The tactics are not expressed in any special language, but in Prolog. As a consequence, they use Prolog’s
control mechanisms and arbitrary computations in deciding what steps to take, and in constructing new
components. Modifications to the program being constructed, however, are done by applying refinement
rules.

The Red refinement tool is also implemented in Prolog [Vic90]. The developers of Red define a language to
describe the refinement tree [VG94]. In this language, each construct of the target programming language has
a corresponding construct in the transformation language. This work was the inspiration for Angel’s structural
combinators [MGW93]. The language’s purpose, however, was not to describe tactics, but refinements. For
instance, no constructs for alternation or recursion is present in the Red language.

The refinement tool presented in [Gru92] is based on the HOL theorem prover. It is programmable and
we can add commands to automate refinements that are frequently repeated. For that, ML tacticals can be
used. This work is extended in [BGL+97] to provide a user-friendly GUI. In this tool, ML can be used to
package transformations; this poses the difficulty of requiring expertise in ML. Another, proof-based tool is
described by von Wright in [Wri94]. Like the aforementioned, it does not provide a high-level tactic language
but requires low-level interaction with the underlying window-inference package to steer the refinement.
Neither of the works address the handling of provisos arising, and high-level strategies.

More recent work has been done by the B community to support the specification and refinement-based
development of complex systems. The Event-B [Abr10] notation is primarily used here, and the RODIN
platform [ROD] is the state-of-the-art tool to support it. The method and tools show often impressive results
in handling large developments, but they do not support well high-level strategies and transformational
approaches. The work in [ITLR10] investigates the use of refinement patterns. It is not clear though how
soundness of the patterns is established, and how we guard against instantiation of unsound patterns.

Future work first consists of providing a larger collection of proved laws for the refinement calculus in our
UTP-based ProofPower-Z embedding. Based on that, we can also build a working collection of mechanised
general-purpose tactics that can be used for practical program derivation.

A second area for future work is the development of a variety of case studies for realistic applications, with
relevance to industry. In this respect, initial results concerning the mechanisation of the refinement strategy
for control law implementations presented in [CC06] are reported in [OZC11]. We have a collection of tactics
that automate the application of the refinement strategy, whose mechanisation builds on the framework
presented here. Without the support provided by a mechanised (refinement) tactic language, automation
of such a strategy would have to rely on ad hoc implementations. That could lead to tailored treatment of
inputs and error messages, but, if soundness is to be guaranteed, use of a theorem prover is essential.

ArcAngel has so far proved to be very expressive, and can cope, for instance, with the quite elaborate
refinement strategy in [CC06, OZC11]. With the use of our mechanisation, we completely eliminate the
need for any interaction for application of refinement laws. Practical concerns, however, still arise from the
accumulation of associated proof obligations. For the particular case study reported in [OZC11], this issue is
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partially addressed in [ZC10a]. Ultimately, the application of a refinement strategy at an industrial scale has
to rely on both the automation afforded by the use of ArcAngel and on automation of the discharge of the
associated proof obligations. Our work addresses automation in discharging proof obligations by providing a
way of taking advantage of the native automation facilities of the prover without compromising soundness.
In our case study, constraints on the architecture of both specifications and programs enable a very high
level of automation of both refinement and proof. In a more general setting, the use of SMT solvers can be
very helpful, and we are currently exploring this option as well.

Finally, a complementary strand of work is the mechanisation of the formal semantics of ArcAngel in
ProofPower-Z. This will support reasoning about ArcAngel tactics. An interesting application is an integrated
environment that supports the translation of semantically-encoded tactics into SML for our tool.
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A. Partial and infinite lists

The model adopted for infinite lists in ArcAngel is essentially that of [Mar96], including a few cosmetic
adjustments. It is formalised in Z. Here, we only give the fundamental definitions regarding the types of lists
and their refinement ordering, as well as of those operators primarily used in the paper. A comprehensive
account of operator definitions on infinite lists can be found in [Mar96] and [OCW03].

http://www.event-b.org/
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Partial lists A free type pfseq is used to record whether a list, modelled by a finite sequence, is finite or
partial.

pfseq X ::= finite 〈〈seqX 〉〉 | partial 〈〈seqX 〉〉

We define a refinement ordering on partial and finite lists as follows.

[X ]
⊑ : pfseq X ↔ pfseq X

∀ gs , hs : seqX •
finite gs ⊑ finite hs ⇔ gs = hs ∧
finite gs ⊑ partial hs ⇔ false ∧
partial gs ⊑ finite hs ⇔ gs ≤ hs ∧
partial gs ⊑ partial hs ⇔ gs ≤ hs

Above, the relation ≤ denotes the standard prefix operator on sequences.

Infinite lists Infinite lists are represented by prefix-closed chains of partial lists.

The set chain contains all chains of partial lists.

[X ]
chain : P (P (pfseq X ))

chain = {c : P (pfseq X ) | ∀ x , y : c • x ⊑ y ∨ y ⊑ x}

The set pchain contains all chains which are also prefix-closed.

[X ]
pchain : P (chain[X ])

pchain = {c : chain[X ] | ∀ x : c; y : pfseq X • y ⊑ x ⇒ x ∈ c}

Infinite lists are now represent as elements from pchain.

pfiseq X =̂ pchain[X ]

The information ordering on infinite lists is characterised by subset inclusion.

[X ]
⊑∞ : pfiseq X ↔ pfiseq X

∀ x , y : pfiseq X • x ⊑∞ y ⇔ x ⊆ y

Definition of the function combine∞ for combination of the elements of lists of infinite lists. This uses map2,
which is similar to the mapping function ∗, but takes two lists as arguments and a binary function, which is
mapped over all possible combinations of arguments of elements from the two lists.

[X ,Y ,Z ]
map2 : (X ×Y → Z )→ pfiseq X → pfiseq Y → pfiseq Z

∀ f : X ×Y → Z ; s1 : pfiseq X ; s2 : pfiseq Y •
f map2 (s1, s2) = let g == (λ x : X • (λ y : Y • f (x , y))∗ s2) •

∞
a/ (g ∗ s1)
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[X ]
combine∞ : seq(pfiseq X )→ pfiseq(seqX )

combine∞ 〈〉 = 〈〈〉〉∞
∀ l : pfiseq X ; rest : seq(pfiseq X ) •

combine∞ 〈l〉a rest = (λ x : X ; y : seqX • 〈x 〉a y)map2 (l , combine∞ rest)

B. Mechanisation of the UTP

In this appendix, we present some of the missing definitions discussed in the presentation of our mechanisation
of the UTP framework, and of Morgan’s program model as a UTP theory.

Semantic domain for variables The free type SUBSCRIPT is used to record a possible subscript.

SUBSCRIPT ::= Sub(N) | SubNone

Variables are characterised by a Z schema.

VAR
name : STRING;
dashes : N;
subscript : SUBSCRIPT ;
type : TYPE

The components of the schema specify the name of the variable as a string, the number of dashes as a natural
number, a possible subscript, and the type of the variable. (The definition of TYPE is P

1
VALUE .)

Definitions for the predicate model The definition of BINDING guarantees that bindings are well-
typed. Here it means that variables are only associated with values in their type.

BINDING =̂ {b : VAR 7→VALUE | (∀n : dom b • b(n) ∈ n.type)}

The set ALPHA FUNCTION contains all partial unary functions on ALPHA PREDICATE that preserve
compatibility as implied by membership to WF ALPHA PREDICATE PAIR.

ALPHA FUNCTION =̂ {f : ALPHA PREDICATE 7→ ALPHA PREDICATE |
∀ p1, p2 : ALPHA PREDICATE | (p1, p2) ∈ WF ALPHA PREDICATE PAIR ∧

{p1, p2} ⊆ dom f • (f (p1), f (p2)) ∈ WF ALPHA PREDICATE PAIR}

This definition states that, for f to be a member of the type ALPHA FUNCTION , any two compatible
predicates in the domain of f have to be mapped to predicates which are also compatible.

The Tautology function.

Tautology : ALPHA PREDICATE → B

∀ p : ALPHA PREDICATE • Tautology p ⇔ p = TrueP p.1

It determines if a given predicate is universally true: equal to true over its alphabet.

Definitions for the theories of relations and designs

Set of predicates that are (relational) conditions.

REL CONDITION =̂ {p : REL PREDICATE | outA p.1 ∈ unrestVars p}

A condition is a relational predicate in which the variables of the output alphabet (given by outA) are
unconstrained. The function unrestVars generally yields all unconstrained variables in a predicate.
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Alphabet for design predicates.

DES ALPHABET =̂ {a : REL ALPHABET | ALPHABET OKAY ⊆ a}

In the above definition, ALPHABET OKAY includes the auxiliary variables ok and ok ′.

Instantiation function for design theories.

InstDesTheory : DES ALPHABET →UTP THEORY

∀ a : DES ALPHABET • InstDesTheory a = SpecialiseTheory (InstRelTheory a, {H 1,H 2})

A design theory instance is obtained by specialising a relational theory with the healthiness conditions H 1
and H 2. The alphabet must be a valid design alphabet, that is an element from DES ALPHABET .

Set of valid design predicates.

DESIGN =̂ {p : ALPHA PREDICATE | (∃ th : DES THEORY • p ∈ TheoryPredicates th)}

For p to be a valid design, some design theory instance must exist such that p is a member of its predicates.
The design Skip.

IID : REL ALPHABET HOM →DESIGN

∀ a : REL ALPHABET HOM • IID a = TRUEP ⊢
D
(IIR a)

It has a true precondition (TRUEP ), and leaves the variables of the alphabet unchanged, which is achieved by
the relational Skip IIR in the postcondition. The operator ⊢

D
is our encoding of the UTP design constructor.

The design assignment.

AssignD : WF AssignD →DESIGN

∀ a ns es : WF AssignD • AssignD a ns es = TRUEP ⊢
D
(AssignR a ns es)

As with the design Skip, we express the design assignment by virtue of a design with a true precondition,
and a relational assignment in the postcondition.

The top of the design lattice.

MagicD : DES ALPHABET → DESIGN

a : DES ALPHABET • MagicD a = (¬P OKAY ) ⊕
P
a

The function MagicD encodes the definition of the top of the design lattice (magic). The ⊕
P

encodes the
UTP alphabet extension operator, and above it is used to add a to the alphabet of ¬P OKAY . The predicate
OKAY is an encoding of ok = true or simply ok , in the UTP notation.

Semantic restriction for a valid list of guarded commands.

GUARDED CMDS =̂ {gs : seqMORGAN CONDITION ; cmds : seqMORGAN PROGRAM |
# gs = # cmds ∧ (∀ i : dom gs • (gs(i), cmds(i)) ∈ GUARDED CMD)}

Above, GUARDED CMD captures the semantic restriction of a guarded command. Thus, each correspond-
ing pair of elements in the gs and cmds sequences has to be a valid guarded command.

Definitions for Morgan’s program model

Permissible variables in Morgan programs.

M VAR : PVAR

M VAR ⊆ (undashed ∩ plain) \ {ok}
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Predicates used in conditions of Morgan programs.

MORGAN CONDITION =̂ {p : ALPHA PREDICATE | p.1 ⊆ M VAR}

The predicates in MORGAN CONDITION do not represent computations themselves. They are used, for
example, as arguments when constructing specification statements or guards in conditionals and loops.

Predicates used in postconditions of specification statements.

MORGAN POSTCOND =̂ {p : ALPHA PREDICATE | p.1 ∈ M VAR ∧ zero L M VAR M}

Here zero is a variable substitution operator that adds a 0 subscript to all variables.

Characterisation of variable substitutions.

VAR SUBST =̂ {f : VAR 7֌ VAR | (∀n : dom f • n.type = (f n).type)}

Substitution of variable names of a predicate.

VarSubstP : (ALPHA PREDICATE ×VAR SUBST )→ ALPHA PREDICATE

∀ p : ALPHA PREDICATE ; f : VAR SUBST •
VarSubstP (p, f ) = (SubstA (p.1, f ), {b : p.2 • SubstB (b, f )})

The above function makes use of two utility functions, SubstA and SubstB . Namely, SubstA substitutes the
variables in an alphabet, and SubstB substitutes the variables of a binding.

The substitution used in the operator definition for the specification statement is as follows.

SubstM : VAR SUBST

domSubstM = undashed ∪ ran zero ∧
(∀ n : VAR • (n ∈ undashed ⇒ SubstM n = dash n) ∧ (n ∈ ran zero ⇒ SubstM n = (zero ∼) n)

The inverse of the zero function is written zero ∼.

The quintessential construct in Morgan’s refinement calculus is the specification statement w : [pre, post ].
The function below encodes this operator.

SpecStmtM : WF SpecStmtM →MORGAN PROGRAM

∀ a : MORGAN ALPHABET ; w : seq M VAR;
preC : MORGAN CONDITION ; postC : MORGAN POSTCOND |

(a,w , preC , postC ) ∈ WF SpecStmtM •
SpecStmtM (a,w , preC , postC ) =

preC ⊢
D
(VarSubstP (postC , SubstM ) ∧

P
IIR (a \ (ranw ∪ dash L ranw M)

We use the semantic characterisation pre ⊢ post [w0,w\w ,w ′] ∧ IIA \w of the specification statement as
a design. The alphabet A is the complete set of variables occurring in either the pre or postcondition,
with possible 0 subscripts removed. The conjunction with IIA \w in the postcondition ensures that vari-
ables outside the frame retain their value. For example, x : [y ≥ 0, x = x0 + 1] is encoded as the design
y ≥ 0 ⊢ x ′ = x + 1 ∧ y ′ = y with alphabet {x , x ′, y, y ′, ok , ok ′}.

Definition of the function GG used in the encoding of the Morgan conditional and iteration.

GG : seqMORGAN CONDITION →MORGAN CONDITION

∀ gs : seqMORGAN CONDITION •
GG gs = if # gs = 0 then FALSEP else (head gs) ∨

P
GG (tail gs)
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The var x • p construct.

varM : WF varM →MORGAN PROGRAM

∀n : M VAR; p : MORGAN PROGRAM | (n, p) ∈ WF varM •
varM (n, p) = varR (p.1, n) ;

M
p ;

M
endR (p.2, n)

Definition of the iterLawGCmds function used in the encoding of the iter law.

iterLawGCmds : WF iterLawGCmds →GUARDED CMDS

∀ a : MORGAN ALPHABET ; f : seqM VAR; inv : MORGAN CONDITION ;
guards : seqMORGAN CONDITION ; V : WT EXPRESSION |

(a, f , inv , guards ,V ) ∈ WF iterLawGCmds •
iterLawGCmds (a, f , inv , guards ,V ) =

if # guards = 0
then (〈〉, 〈〉)

else (〈head guards a (iterLawGCmds (a, f , inv , tail guards ,V 〉)).1,
〈SpecStmtM (a, f , inv ∧

P
(head guards),

inv ∧
P
RelP (( ≤V ),Val(Int(0)),V ) ∧

P
RelP (( <V ),V , SubstE (V , zero)))〉a

(iterLawGCmds(a, f , inv , tail guards ,V )).2)

Monotonicity theorem.

⊢∀n : M VAR; p, p′ : MORGAN PROGRAM |

(n, p) ∈ WF varM ∧ (p, p′) ∈ WF MORGAN PROGRAM PAIR •

p ⊑ p′ ⇒ varM (n, p) ⊑ varM (n, p′)

Some of the monotonicity theorems have additional provisos that ensure well-definedness of the opera-
tor applications and refinement relations. Above, these are first that (n, p) is a member of WF varM ,
the domain of the varM function; it ensures that the application varM (n, p) is well-defined. Additionally,
(p, p′) ∈ WF MORGAN PROGRAM PAIR ensures that p ⊑ p′ is a meaningful (HOL) predicate. These
assumptions are vital to establish the provability of the theorem.


