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INTRODUCTION

The notion of entanglement was introduced in discussions of the founda-
tions of quantum mechanics, but in recent years it has been realised that it
can have great practical power. The first part of this talk is a review of the
concept of entanglement and some of its potential practical applications. In
the second part T will describe recent joint work (with Lieven Clarisse, Si-
mone Severini and Sibasish Ghosh) [7] on the power of quantum operations
to generate entanglement.

Part I: Powerful Entanglement

Entanglement is Schrodinger’s term for the physical consequences of the
mathematical fact that the the tensor product V4 ® Vp of two vector spaces
V4 and Vg is larger than their Cartesian product V4 x Vg, and the same is
true of the corresponding projective spaces. Not every element of the tensor
product can be factorised as v4 ® vg with vy € Vx. The physical interest
lies in taking V4 and Vp to be the state spaces of quantum objects A and B.
A pure state |¥) € V4 ® Vi of the combined system is separable if it can be
factorised as |U) = [14)|¥p). By the principle of superposition there are also
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states of the form a|p4)|dp) +b|tba)|1p), which in general are not separable.
When the combined system is in such a state the individual objects cannot
be assigned independent pure states, and are said to be entangled with each
other.

A familiar example of an entangled state is the singlet state

@) = S(IDH =1L 1)

of two (distinguishable) spin—% particles. In a singlet each individual particle
has no definite direction of spin; the state of the particle A is the mixed state

pa=trp [UN(T) = 5( D[+ DD (1)

representing total ignorance of the spin state.
ENTANGLEMENT AND LOCALITY

Einstein argued that spatially separated objects must have separate de-
scriptions; the quantum-mechanical description of objects in an entangled
state must therefore be incomplete. This is the content of the famous paper
by Einstein, Podolsky and Rosen [8], which brought out the fundamental na-
ture of entanglement (indeed, Schrédinger introduced the term in the course
of a commentary on the EPR paper [17]). The EPR argument is that in
the state (1), a measurement of s, for one of the particles reveals the value
of s, for the other particle; if the particles are separated, this, by a princi-
ple of locality which was axiomatic for Einstein, implies that the value of s,
for the second particle must already exist. Such a value is not contained in
the quantum-mechanical state, which must therefore be completed by some
“hidden variables”. Thus

entanglement + locality == hidden variables. (2)

On the other hand, John Bell, looking more thoroughly at the measure-
ments that can be made on two particles in an entangled state, showed that
the predictions of quantum mechanics were incompatible with the existence
of such hidden variables [1]. He considered the possible results of spin mea-
surements in two different directions for each particle. Let P;(a,b) be the
probability that if the spin of A is measured in direction ¢ and the spin of
B is measured in direction j, then the results are a and b respectively. If
the particles have independent states, as required by the EPR argument,
then, even if the underlying theory is indeterministic, the probabilities must
factorise as

Bija,b) = Qi(a) B; (D).
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Even if we don’t know what the individual states are, there will be a dis-
tribution over various possibilities and the joint probabilities will be of the

form
A
zg az; Zp i ( )<bj>' <3)

Bell showed that in the singlet state there are measurements for which the
probabilities predicted by quantum mechanics cannot be written in this form.
Later, Gisin showed that this is true in any entangled state [12]. Thus

Entanglement — nonlocality.

There is a useful geometrical representation of Bell’s proof [15, 16]. The
sixteen probabilities P;;(a, b) can be taken as coordinates of a vector in R'S.
Bell’s inequalities are the conditions for this vector to lie in the convex hull
of the vectors of the form P;;(a,b) = Q;(a)R;(b), which is a polytope whose
vertices are obtained by taking the functions ); and R; to be (0,1) functions.
Points inside this polytope satisfy inequalities which become equations on the
faces of the polytope; the Bell inequalities are therefore linear in P;;(a,b).
This condition on the probabilities is equivalent [11] to the statement that the
four two-variable probability distributions F;; are marginals of a four-variable
distribution P(aq, as, by, be) (for example,

Plgab ZP(ICLQJM, )

az,b1

This is an example of a problem in probability theory; given probability
distributions on subsets of a set of binary variables, what are the conditions
for them to be the marginals of distribution on the full set of variables? The
general case appears to be open. Other particular cases, and some examples
of the corresponding problem for quantum states of a set of qubits, are studied
in [6].

ENTANGLEMENT KILLED THE CAT

The concept of entanglement can be used to solve a notorious problem in
the interpretation of quantum mechanics which was graphically illustrated
in the same paper by Schrodinger [17]. This is the problem of Schrédinger’s
cat, often stated as follows: “Quantum mechanics predicts that, since a cat
can be alive and it can be dead, it can also be in a superposition state
alalive) + b|dead). Why, then, do we never see such superposition states?”
The answer [10, 20] is that if we are to determine what the theory predicts
about what we see, then we must put ourselves into the theory. We know



that the laws of physics will evolve a state of a live cat and an inquisitive
observer into a state of a live cat and a happy observer seeing a live cat;
similarly, they will evolve a state of a dead cat and an inquisitive observer
into a state of a dead cat and an unhappy observer seeing a dead cat. A state
of a cat in the superposition alalive) + b|dead), together with an inquisitive
observer, will therefore evolve to

alalive)cat | “T see a live cat”)opserver + bjdead)cat| “I see a dead cat”)opserver-

The cat becomes entangled with the observer. Nowhere in this entangled
state is there a state of an observer seeing a superposition state of the cat;
the theory tells us that the only states that the observer can experience are
those of seeing a live cat and seeing a dead cat.

QUANTUM CRYPTOGRAPHY

The context in which entanglement was first introduced and explored
was purely theoretical, not to say philosophical. It is only in the last fifteen
years that it has been realised that the ideas described above have practical
applications. I will now describe three examples of the practical power of
entanglement.

The first is a novel solution to the cryptographic problem of key distri-
bution [9]. Tt is well known [18] that the only perfectly secure method of
encoding a message is to use a key as long as the message, and to use a dif-
ferent key for each message. A message can always be written in an alphabet
of two symbols (say 0 and 1), when it becomes a string of binary digits, i.e.
a vector m in ZY for some N. A key is another vector k € Z). The coded
message is the vector (or bitwise) sum ¢ = m + k (mod 2); knowing k, one
can recover m from c. But one wants to be sure that nobody else can read
the message, so one is faced with the problem of distributing the key so that
nobody can intercept it, or keeping it so that nobody can steal it. The so-
lution offered by entanglement is often called “quantum key distribution”,
but it is in fact a process of quantum key generation. The key is safe from
burglary because it does not exist until the moment of use.

The sender Alice and the receiver Bob obtain the digits of their key from
an ordered collection of pairs of qubits. Each qubit is a quantum object with
a two-dimensional state space (e.g. a spin—% particle), so that it has an or-
thonormal “computational” basis which can be labelled |0) and |1). Measur-
ing an observable which has these states as eigenstates is called “measuring
in the computational basis”. Each pair of qubits, one held by Alice and one
by Bob, is in the entangled state |¥.) = \%(|0)|0> + |1)|1)). When they
want to generate their key, Alice and Bob both measure their qubits in the
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computational basis. The result (0 or 1) is unpredictable, but the entangle-
ment of each pair guarantees that Alice and Bob will get the same result for
corresponding qubits. These results are the digits of their key.

(QUANTUM CODEBREAKING

In practice we already have secure cryptography; commercial commu-
nication generally uses encryption based on the RSA system which can in
principle be broken, but only by solving the problem of finding the prime
factors of a large integer. In theory this can be done, and there is no proof
that it cannot be done quickly; but in practice it appears to be impossible.
The key for the RSA code consists of a pair of large primes p, ¢ (having, say,
N binary digits each). Encoding a message uses the integer pg, which can
be found by performing about N? multiplications and additions. Decoding,
however, requires finding p and ¢ given the 2N-digit number pq, which re-
quires dividing by all candidate factors up to ,/pq, therefore doing about 2N
divisions. There are faster methods, but they are still exponential in N1/3,
and it is easy to make NN large enough that the time required on the fastest
computer is comparable to the age of the universe.

So the description of quantum key generation by Ekert in 1991 was a so-
lution to a non-existent problem.! But it became a potentially real problem
in 1994, when Peter Shor showed that the basis of RSA coding could be un-
dermined by a quantum computer. He discovered an algorithm which could
factorise a 2N-digit number using less than N® quantum operations, running
on a quantum computer — which makes essential use of entanglement.

QUANTUM COMPUTING

In essence, a quantum computer harnesses the power of superposition
(of which entanglement is just one example). A highly stylised picture of
a quantum computer can be obtained by thinking of a classical computer
in a superposition of a number ) of orthogonal states, in each of which it
is performing a different calculation. One could then say that in the time
needed for a classical computer to do one calculation, the quantum computer
is performing () calculations. But this speed-up is only apparent, since we
only have access to the result of one of these calculations — in fact the
quantum computer performs worse, since we have no control over which

!The history of quantum cryptography is actually a little more complicated than this.
The entanglement-based quantum key described here was first devised by Wiesner in the
1960s, before the RSA system, but it was not accepted for publication. A different quantum
scheme, not using entanglement, was published by Bennett and Brassard in 1984.



calculation we learn the answer to. The power of quantum computation
results from the possibility of asking different questions. For example, by
making a different measurement we could obtain the answer to the question
“Are the results of the calculations all the same?” To answer this question
on a classical computer, we would have to run all () calculations, taking ()
units of time. On a quantum computer we could obtain the answer in one
unit.

Shor’s factorisation algorithm uses quantum superposition to find the
period of a function by evaluating the function just once, but applying this
evaluation to a superposition of all input states. This results in a state in
which the input system (or “register”) is entangled with the output register.
It has been shown that this entanglement is essential for the exponential
speed-up over classical algorithms.

SUPERDENSE CODING

Entanglement makes it possible to transmit two bits of information by
sending one qubit. Thus it doubles the classical capacity of a channel: a
bit (in the sense of an object which can be in just one of two states) can
carry only one bit of information (in the sense of an answer to a yes/no
question, e.g. 0 or 17) But suppose Alice and Bob share a pair of qubits
in the entangled state |¥,) = —=(]0)|0) + [1)[1)). Alice encodes two bits of

V2
information by specifying one of the four operators

Ur = [0)O[ £ [1)(1], Ve = [0)(1] £ [1)(0]. (4)

When one of these operators is applied to Alice’s qubit, the two-qubit state
becomes

(Ur @ 1)) = 5(10)]0) £ [1)[1)) = [P) (5)
or  (Vi®1)|¥,) = 7(|0)[1) & [1)]0)) = [P). (6)

She transmits the message by sending her single qubit to Bob, who now holds
one of the four states |¥U.), |®L). A single measurement then tells him which
message Alice sent.

QUANTUM TELEPORTATION

The idea of teleportation is to transmit a material object by transmitting
the information needed to assemble the object. In a favourite science fiction
comic strip of my boyhood [13], Dan Dare is transported from the northern



to the southern hemisphere of Venus by stepping into a box where the con-
stitution of his body is precisely measured. The measurements are sent by
radio to his destination, where there is a supply of body parts which are re-
assembled according to the information in the radio transmission. Although
the idea arose in science fiction, there is nothing remarkable about this pro-
cess for classical objects. In fact we already have teleportation devices — we
call them fax machines. But for quantum objects the process is blocked at
the measurement stage: it is impossible to obtain the full information about
the quantum state of an object by measuring it. The discovery of quantum
teleportation in 1993 [4] was therefore a great surprise.

In quantum teleportation the channel for the transmission of information
is not radio but entanglement. In order for Alice to transmit Dan Dare
to Bob, both Alice and Bob must have stores of body parts, with the two
stores in an entangled state. Alice makes a joint measurement of Dan Dare
and her store; this has an immediate effect on Bob’s supply of body parts,
assembling them into something related to Dan Dare. But in order to convert
this preliminary version into a precise copy of Dan Dare, Bob needs more
information which Alice can only transmit to him by radio or some other
method of classical communication.

To show exactly how this works, let us replace Dan Dare by a qubit.
Alice and Bob share a pair of qubits in the standard entangled state |V, ) =
\%(!O)\O) +11)[1)); Alice also holds the message qubit (Dan Dare) in the state

IDD) = a|0) + b|1)

which is to be transmitted. Thus the initial state of the three qubits is

9041z = = (@l0)a + HD.a) (0040 + 114l

— L0 ) 4 (a]0) + B1)) , + 11T ) a(al0) —BJ1)) ,
4 %|CI)+>A(Q|1> -+ b|0>)B + %|(I)—>B(a|1> - b|0>)B

= 5(I4)U4[DD) + [¥_)U_|DD) + [®,)V4|DD) + [¢_)V_[DD)

where the states |®1) and |¥4) and the operators Uy and V4 are as defined
in (4) and (5). Alice measures her two qubits in the basis {|¥4), |®4)}. This
projects Bob’s qubit into one of the four states Uy|DD), V,|DD). In order
to recover the state [DD), he must apply one of the “Bell rotations” UL'
or V!, depending on the projection caused by Alice’s measurement; he will
only know what this was when Alice tells him the result of the measurement.
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It is amusing to note that the authors of the Dan Dare story already,
in 1950, realised the part played by the final Bell rotation in the telepor-
tation procedure: by a technical hitch, the Bell rotation is omitted in the
teleportation of Dan Dare’s companion Digby, who arrives at the destination
upside-down.

Part II: The Power to Entangle
QUANTIFYING ENTANGLEMENT

If entanglement is so useful, we want to know how to create it, and as
much of it as possible. In this part of the talk we will examine the question
“What operations on two quantum objects are best at entangling them?” In
order to answer this, we need to quantify the entanglement in a state of the
two objects.

The mark of an entangled state of two objects A and B is that each
individual object does not have a definite (pure) state, but is in a mixed state.
Consider a pure state |¥) 45 of two qubits. By the Schmidt decomposition
we can always find orthonormal bases |0} 4 g, |1) 4,5 such that

(W) 4B = al0)4]0)5 + b[1) a[1) 5.

The entanglement of this state can be equated with the lack of knowledge of
Alice’s state, or the lack of purity in her density matrix

pa = lal*[0){0] + [BI*|1)(1].

Such lack of knowledge (the information needed to specify the state |0) or
|1) when they occur with probabilities |a|? and |b|?) is measured by the von
Neumann entropy of p,, which is equal to the von Neumann entropy of pg
and also called the entanglement entropy of |¥) 4p,

E(|¥)ap) = Six(pa) = —tr(palog, pa) = —tr(pplog, ps)

= _’“‘2 log, WQ - ’bP log, ‘b|2-

This has its maximum value when |af> = [b]> = 3, e.g. for the state
(10}|0) 4 |1)]1)), often called a “singlet” because

71010 +[1D1) = (1 @ioy) 5(10)[1) = [1)[0))

i.e. it differs from the usual singlet only by an operation on Bob’s qubit. The
entanglement of the state, being a joint property, is unaffected by such local
operations U @ V.

L
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A more financial approach to quantifying the amount of entanglement in
a state is to regard this maximally entangled state as a gold standard and to
ask how much the state |¥) 45 is worth in gold units. If Alice and Bob have
N copies of |¥), how many singlets can they make using local operations and
classical communication? The answer [3] is at most M, where

M B(w)) as N = .
N
It can also be shown that this is the cost of |[¥), in the sense that at least
M singlets are needed to make N copies of |W). However, this equality holds
only for pure states.

Thus the entanglement entropy, based on the von Neumann entropy, is
a natural measure of entanglement. But the log functions make it difficult
to work with, and for qualitative purposes (such as finding the maximum)
we can equivalently work with any monotonic function of it. A convenient
alternative is the “linear entropy”

Su(|®)) = 2tr (pa — p) = 4laf*[b]*

which clearly measures the departure of p4 from purity (when p% = pa).
Generalising to the case where A and B are not qubits but have state spaces
Ha and Hp of equal dimension d, we define

d

S = 75 (-t sd). g

This is normalised to lie in [0, 1].
ENTANGLING POWER

We can now quantify the entangling power of a joint operation on A and
B, in the form of a unitary operator U : H4 ® Hp — Ha ® Hp, by asking
“How much entanglement does U create when acting on an unentangled
pure state (on average)?” Measuring the entanglement of a pure state |¥) €
Ha ® Hp by the linear entropy (7), this gives the entangling power of U as

sw)= [ L[] dlé)ale) ®)
S(HA)xS(HB)

where S(H) is the unit sphere of normalised vectors in the Hilbert space H,
and d|¢) is the unitary-invariant measure on S(#), normalised so that the
measure of the whole sphere is 1.



CALCULATION OF ENTANGLING POWER

The integral in (8) has been calculated by Zanardi [19], using a correspon-
dence between operators X : H — H and pure bipartite states |X) € HQH,
defined relative to an orthonormal basis |7) for any Hilbert space H:

Xy =Y el = 0= il 0

We are interested in operators U : Ha ® Hp — Ha ® Hp, for which we
define a slightly different correspondence: such an operator can be expanded
as U = > X, ®Y,, where the X,, and Y}, are operators on H4 and Hp
respectively, and we define the corresponding (non-normalised) state to be

U) = | X)) |Yin) € (Ha @ Ha) @ (Hp @ Hp)

where the states |X,,) and |Y;,) are given by (9). Then, for example, the
identity operator I =3, [ij){ij| on H4 ® Hp corresponds to

1) = [0 )alU)s where [0y )a= Y )10

If Hy = Hp, we also have the swap operator S = Zij lij)(ji|, which corre-
sponds to

1) = [0 as = S 1id) i)

Zanardi [19] gives the entangling power of a bipartite operator U in terms
of the entanglement entropies of the corresponding state, as follows:

£(U) = L [5.00)) + 5,(1U8) — Si15))] (10

where S is the swap operator, as above.
THE MOST ENTANGLING

It follows fairly immediately from Zanardi’s formula (10) that

d
EU) < —— 11
)< 4 (1)
and
d
EWU) = i1 <= |U) and |US) are both maximally entangled

= tra [UNU| = tra [USHUS| = 1.
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Here

|U) = Z Wi |25)]51)

ijkl
and |US) = Zuij,kl|il>|jk>
ijkl
where U= Z wijpt|2g) (kL.
ijkl

Is the bound (11) attained? The above shows that this is equivalent to
the existence of a four-party state which is maximally entangled as a state
of two pairs, for each of the splits 12|34, 13|24, 14|23. This can be expressed
as a matrix problem: given a d? x d? matrix U whose matrix elements form
a 4-index tensor u;; x, define the d* x d* matrices V and W by

Vijkl — Uik, jl, Wikl = Uil jk-

Can the three matrices U, V, W all be unitary? It is known [14] that for d = 2
the answer is No. However, we will show that for all other d except possibly
d = 6, the answer is Yes.

PERMUTATIONS

A convenient class of unitary operators in which to search for maximal en-
tanglers is the class of permutation operators relative to a given orthonormal
basis, which permute elements of the basis:

Uiy = |o(i)) (0 € Sy, n=dimH)

where S, is the set of permutations of N = {1,...,n}. We are interested in
the case H = Hi @ Hp with dimH 4 = dimHp = d, so n = d?; then N is
the set of pairs (7,j) with 1 < i, < d, a permutation o € Sg is given by
o(i,7) = (kij, lij, and the corresponding operator P = U, acts as

Pli)|7) = ki) |Lij) (12)

with k;;,0;; € {1,...,d}. It is known that such an operator is non-entangling
if and only if it is of one of the forms U®V or (U ® V)S where U and V are
permutation operators on H 4 and Hp respectively. It follows that for large
d, most permutations create entanglement: the probability that a randomly
chosen permutation is non-entangling is

2(d!)?
(d?)!

—0 asd— 0.
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ENTANGLING POWER OF PERMUTATIONS

Zanardi’s formula gives the entangling formula of a permutation P as

P (d*+1)—Qp — Qps

EP) = d(d—1)(d + 1)

where
Qp = E aijmaijnbimnbjmm

iymmn

Gijm = (lim|Ljn)
= 1 only if P takes the vertical pair (|im),|jm))

to another vertical pair,

= 1 only if P takes the horizontal pair (|im), |in))

to another horizontal pair.

(Here the terms “horizontal” and “vertical” refer to position in the d x d
square of basis elements |ij).) Hence the summand 7jmn = @ijm@ijnbimnbjmn
in Qp satisfies

Tijmn = 1 only if P takes the rectangle (|im), |in), [jm),|jn))

to another rectangle in the same orientation.

Similarly,
Qps = Z r Qjmn
iymn
where
Tijmn = 1 only if P takes the rectangle (|im), |in), [jm),|jn))

to a rectangle in the opposite orientation.
MAXIMALLY ENTANGLING PERMUTATIONS

To maximise the entangling power £(P), we have to minimise @p and
Q) ps. Now the summands 7j,, and rgjmn, each 0 or 1, are certainly equal to
1 when ¢ = j and m = n; minimum values of Qp and (Qps will be attained
if P is such that 7y, = ri;,, = 0 for all other values of i, j,m,n. If this is

the case, Qp = Qps = d? and so £(P) takes its maximum value d/(d + 1).
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Thus P should not take any rectangle to a rectangle, i.e. it should not take
any pair of elements in the same row or column to elements in the same row
or column. This implies that the matrix of row numbers k;; is a latin square,
as is the matrix of column numbers /;;. Finally, the map (i,7) — (kij, li;)
must be a permutation; this means that the k;; and l;; are orthogonal latin
squares.

Orthogonal latin squares were first considered by Euler, who gave con-
structions for d x d squares when d = 0,1 or 3 (mod 4) but, being unable to
do so for d = 2( mod 4), conjectured that orthogonal latin squares of these
sizes did not exist. However, he was wrong; in 1960 it was proved [5] that
orthogonal d x d latin squares exist for all d except d = 2 and d = 6. It
follows that there exist permutation operators attaining Zanardi’s bound for
the entangling power of bipartite unitary operators, in all dimensions except
these two. For d = 2 we have already seen that the bound is not attained; in
fact the maximum entangling power of a two-qubit unitary operator is not
d/(d+ 1) = 2/3 but 4/9, which is attained by the permutation cNOT. For

28
d = 6 the greatest entangling power of a permutation is maE [7]. We do not

. 6 . . .
know whether Zanardi’s bound of - is attained by some non-permutation
operator.
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