Fluid Equations
conservation mass momentum energy
flow through S

$$
\begin{aligned}
= & \int_{S}^{e_{S}^{e r}} \cdot \mathrm{~kg} / \mathrm{s} / \mathrm{m}^{2} \\
\frac{\partial m}{\partial t} & =\frac{\partial S_{V}}{\partial t} e_{V} d v=-\oint_{S} \rho \underset{\sim}{u} \cdot d S=-\int_{V} \nabla \cdot\left(\rho\left(\mathrm{~m}^{\mathrm{u}}\right) d v\right. \\
\text { Volume } & \rightarrow 0 \\
\frac{\partial}{\partial t} e & =-\nabla \cdot(e u)
\end{aligned}
$$

$$
\frac{\partial p}{\partial t}=-\nabla \cdot(\rho \underset{\sim}{u})+S_{\text {so }}
$$

source or sink
momention $m u=\int_{V} \rho u d V$

$$
u=\left(u_{x}, u_{y}, v_{z}\right)
$$

x direchon: $m u_{x}$

$$
\begin{aligned}
& x \text { direchon: } m u_{x} \\
& \frac{\partial}{\partial t} \int_{V} \rho u_{x} d V=-\oint_{V} \rho u_{x} u_{\sim} \cdot d \underset{\sim}{S} \\
&=-\int_{V} \nabla \cdot\left(\rho u_{x} \underline{u}\right) d V+\text { Force } \\
& \frac{\partial}{\partial t}\left(\rho u_{x}\right)=-\nabla \cdot\left(\rho u_{x} u_{\sim}\right)+F \\
& \text { area }
\end{aligned}
$$

$$
\begin{aligned}
\text { Force } & =p(x) A \\
& -p(x+d x) A
\end{aligned}
$$

$$
F=\frac{\text { force }}{\text { volure }}=\frac{(P(x)-P(x+d x)) A}{A d x}
$$

$$
\begin{aligned}
& \text { volome }=A \times d x=-\frac{d P}{d x} \\
& \frac{\partial}{\partial t}\left(\rho u_{x}\right)=-\nabla \cdot\left(\rho u_{x} u\right)-\frac{d P}{d x} \\
& \frac{\partial}{\partial t}(\rho u)=-\nabla \cdot(\rho u \underline{u})-\nabla p
\end{aligned}
$$

Energy $E=e+\frac{1}{2} p u^{2}$
intend energy $e=\frac{1}{\gamma-1} p=\frac{3}{2} p$
rato of specific heat

$$
\begin{aligned}
\frac{\partial}{\partial t} \int d v=-\oint E u \cdot d S & + \text { Source of energy } \\
& =\text { work clone } \\
& + \text { Heat }
\end{aligned}
$$

tote work done $=\oint_{s} p u \cdot d s$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int E d V=-\oint E \underline{u} \cdot d s-\oint p \underset{\sim}{u} \cdot d s \\
& \frac{\partial E}{\partial t}=-\nabla \cdot(E \underline{u})-\nabla \cdot(\rho \underline{u})+\text { heat }
\end{aligned}
$$

closure problem: Each equation clepends on the next
heat $f l o u \rightarrow 0$ adiabolie
Euler equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{u})=0 \quad \text { mass density } \\
& \frac{\partial}{\partial t}(\rho \underline{u})+\nabla \cdot(\rho \underline{u})=-\nabla P \quad \text { momentum } \\
& \frac{\partial}{\partial t} E+\nabla \cdot((E+P) \underline{u})=0 \text { energs }
\end{aligned}
$$

