Coordinate systems
Contents

- Cylindrical coordinates
- Transforming vectors and derivatives
- Tangent and reciprocal basis vectors

$$
\begin{aligned}
& \underset{\sim}{P}=P_{x} \hat{x}+P_{s} \underline{\hat{v}}+P_{t} \underline{\underline{z}} \\
& e_{\underset{\sim}{x}}=\frac{\partial P}{\partial x} \quad e_{\underline{y}}=\frac{\partial \underline{p}}{\partial s} \quad e_{z}=\frac{\partial \underline{p}}{\partial z}
\end{aligned}
$$

Tangent
Cylindrical

$$
\begin{array}{ll}
x=R \cos \phi & R=\sqrt{x^{2}+y^{2}} \\
y=R \sin \phi & \tan \phi=3 / x
\end{array}
$$

Tangent vectors

$$
\underset{\sim}{P}=R \cos \phi \hat{x}+R \sin \phi \hat{\hat{y}}+z \hat{z}
$$

Tangent- basis
vectas

$$
\begin{aligned}
& e_{-}=\frac{\partial P}{\partial R}=\cos \phi \hat{x}+\sin \phi \underline{\hat{y}} \\
& e_{\phi}=\frac{\partial P}{\partial \phi}=-R \sin \phi+R \cos \phi \hat{y}
\end{aligned}
$$

$e_{R} \cdot e_{R}=1 \quad e_{\phi} \cdot e_{\phi}=R^{2}=h_{\phi}^{2}$ scale factor

$$
\underset{\sim}{P}=p^{R} \underline{e}_{R}+p^{\phi} \underline{e}_{\phi}+P^{t} \underline{e}_{z}
$$

Derivalives \rightarrow Reciprocd basis

$$
\begin{array}{r}
\nabla=\hat{x} \frac{\partial}{\partial x}+\hat{s} \frac{\partial}{\partial s}+\underline{z} \frac{\partial}{\partial z} \\
\nabla=\nabla x \frac{\partial}{\partial x}+\nabla_{s} \frac{\partial}{\partial s}+\nabla z \frac{\partial}{\partial x}
\end{array}
$$

cglindricel

$$
\nabla=\nabla R \frac{\partial}{\partial R}+\nabla \phi \frac{\partial}{\partial \varphi}+\nabla z \frac{\partial}{\partial \phi}
$$

Reciprocel basis
$\underline{e}_{R}, e_{q}, e_{7}$

$$
\underline{e}^{R}, e^{\varphi}, e^{z}
$$ tager

$$
{\underset{\sim}{e}}_{i} \cdot e^{-}=\delta_{i}^{j} \quad e_{R} \perp e^{\phi} \cdot e^{z}
$$

$$
\nabla R \cdot \underset{\sim}{P}=p^{R} \underset{\underline{R}}{ } \underline{R}^{\prime} e_{R}=p^{R}
$$

what are $\nabla R, \nabla \phi_{1} \nabla z$?

$$
\begin{aligned}
R=\sqrt{x^{2}+y^{2}} & \nabla R
\end{aligned}=\frac{\partial R}{\partial x} \hat{\hat{x}}+\frac{\partial R}{\partial s} \underline{\underline{s}}+\frac{\partial R^{2}}{\partial \hat{z}} .
$$

$\nabla R \cdot \nabla R=1$

$$
\nabla \phi \cdot \nabla \phi=\frac{1}{R^{2}} \quad\left[=\frac{1}{h_{\phi}^{2}}\right]
$$ orthogond

Two sets of basis vectars
tangent: $e_{R_{1}} e_{\phi}, \underline{e}_{z}$
Reciproce: $\underline{e}^{R^{2}}, \underline{e}^{\psi}, \underline{e}^{z} \quad[=\nabla R, \nabla \psi, \nabla z]$

$$
\begin{aligned}
& \underline{e}_{i} \cdot e^{j}=\delta_{i}^{j} \quad(=1 \text { if } i=j)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{u}=\sum_{c} u_{i} e^{i} \quad u_{i}=\underline{u} \cdot e_{i} \\
& \text { T covariant component }
\end{aligned}
$$

