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Plasma stability

So far you have seen some magnetic confinement schemes,
how plasmas are heated and fuelled, and some mechanisms for
energy loss

All of this assumes that the plasma is stable, and doesn’t
throw itself against the walls of the machine!

Historically the main challenge of magnetic confinement was
to find configurations which are stable at high plasma
pressures needed for fusion
– Edward Teller once said that confining plasmas with
magnetic fields was like “trying to confine jelly with rubber
bands”

From this work the tokamak has emerged as the most
promising approach. In the following few lectures we will look
at why this is.
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Pinches

Passing a current through a plasma leads to an inwards “pinch”
force which can be used to compress and heat to high
temperatures.

Theta pinch Z pinch
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Toroidal pinches

To avoid end losses, wrap the
pinch into a torus

By using a transformer coil, a
large current can be driven
transiently in the torus. This
compresses the plasma as in a Z
pinch.

The Perhapsatron, Los Alamos
1952. James L. Tuck.
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Toroidal pinches: Pinch ratio Θ

An initial toroidal field of magnitude Bφ is “frozen in” to the
compressing plasma, and so is amplified as the plasma
compresses

The magnetic pressure driving the compression is due to the
poloidal field Bp∮

Bθdlθ ' 2πaBθ = µ0I Bθ = µ0I/2πa

The compression of the plasma therefore depends on the ratio
of the toroidal and magnetic fields: the pinch parameter or
pinch ratio

Θ =
Bθ (r = a)

Bφ
' µ0I

2πaBφ
[Θ = 2I/aBφ in cgs units]
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Toroidal pinches: ZETA

ZETA was a large toroidal
pinch with R = 1.5m and
r = 0.5m.

Plasma currents of up to
200 kA driven by
transformer coil, and pulse
lengths of several
milliseconds

Early measurements
indicated temperatures of 1
- 5 million oC, and bursts of
neutrons were seen

The Zero Energy Toroidal
Assembly (ZETA) at Harwell, UK
1957
[Bodin and Newton Nucl. Fusion 20 (1980) 1255]

Ben Dudson Magnetic Confinement Fusion (6 of 26)



Kink instabilities

Unfortunately, the ZETA results were not what they appeared.
Instabilities were creating high energy ions which were then leading
to fusion reactions. Bulk of plasma much colder (∼ 500, 000oC)

Plasmas were observed to
wriggle or “kink” in smaller
devices

It was thought that by using
a conducting wall these
would be stabilised

1“Observations of the Instability of Constricted Gaseous Discharges” by
R.Carruthers, P.A.Davenport (1957)
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Kink instabilities

This instability had been predicted theoretically1 and are driven by
the plasma current

Magnetic field is compressed in some places, and expanded in
others

The magnetic field pressure ∝ B2 acts to enhance the motion

1“Some instabilities of a completely ionized plasma” by M.Kruskal and
M.Schwarzschild (1954)
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Plasma stability and Ideal MHD

To understand and predict large-scale instabilities, ideal MHD is
often used. Equations for mass density ρ, fluid velocity u, pressure
P and magnetic field B

Makes several assumptions

Timescales much longer
than the (ion) cyclotron
frequency

Length scales much longer
than gyro-radius

Collisional plasma, close to
Maxwellian

No dissipation

τ � 1

Ωci
L� ρi L� λ η = 0

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

ρ

[
∂u

∂t
+ u · ∇u

]
= J × B −∇P

∂P

∂t
+ u · ∇P = −γP∇ · u

∂B

∂t
= ∇× (u × B)

J =
1

µ0
∇× B
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Plasma stability and Ideal MHD

If Ideal MHD makes so many (dubious) assumptions, why use it?

Ideal MHD equations include the essential physics of plasma
instabilities in a (relatively) simple set of equations

Additional (non-ideal) effects tend to allow new types of
instability. Resistivity in particular allows field-lines to
reconnect, however:

Instabilities described by ideal MHD (ideal instabilities) tend
to be the fastest and most violent. A plasma which is ideally
unstable probably won’t last long.

Many non-ideal instabilities are variations on ideal instabilities,
and lots of the jargon is from ideal MHD
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Plasma stability and Ideal MHD

Main reason to use ideal MHD is: It works much better than it
should do, even in hot (i.e. nearly collisionless) plasmas

Perpendicular to the B field, movement is restricted and the
effective mean-free-path is approximately the gyro-radius
⇒ As long as perpendicular length-scales are long compared
with the gyro-radius then the fluid approximation is ok

Parallel to the field, the mean-free-path is very long.
Gradients in this direction also tend to be very small.

Kinetic modifications to MHD primarily modify parallel
dynamics.

As we shall see, parallel dynamics are not very important for
determining when linear instabilities start.
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Linearisation

To analyse the stability of an equilibrium, we can calculate the
evolution of small perturbations.

All quantities have an equilibrium value (which might vary in
space) e.g. ρ0 (x) , p0 (x) , . . .

Add a small perturbation e.g

ρ = ρ0 (x) + ερ1 (x , t)

If the ε is “small” then ε2 is extremely small, and terms can
be neglected. This is linearisation: Keep terms which are
linear in perturbations, but neglect higher order terms

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂ερ1

∂t
+ (u0 + εu1) ·∇ (ρ0 + ερ1) = − (ρ0 + ερ1)∇· (u0 + εu1)

∂ρ1

∂t
+ u0 · ∇ρ1 + u1 · ∇ρ0 = −ρ0∇ · u1 − ρ1∇ · u0 + . . .
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Fourier transform

It is often useful to Fourier transform in periodic directions

In a cylinder f (r , θ, z , t)→ f̂ (r ,m, k, t) e imθe−ikz

In a torus f (r , θ, φ, t)→ f̂ (r ,m, n, t) e imθe−inφ

In a linear system, different Fourier modes (k,m, n) can often
be decoupled, and solved separately

Note that in a tokamak the equilibrium is not symmetric in θ,
so in general the m modes are not independent

Linear systems can also be Fourier transformed in time:

f (. . . , t) = f̂ (. . .) e−iωt

where ω is the complex frequency
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Kruskal-Shafranov limit

Adding a magnetic field down the axis of a Z-pinch, or toroidally in
a toroidal pinch (tokamak) can stabilise the kink
Force balance from J× B:

∇⊥
(
p +

B2

2µ0

)
− 1

µ0
B · ∇B = 0

Bending a magnetic field gives rise to a tension force
1

µ0
B · ∇B

Kink distortions of the axial (toroidal) field produce a
restoring force

Short wavelength instabilities require more bending of the
magnetic field

Long wavelengths tend to be unstable to m = 1 kink modes
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Kruskal-Shafranov limit

In a torus, if the wavelength of the instability is too long to
fit, then it cannot be unstable

So for stability to the m = 1 mode we need

Ls =
2πrBφ
Bθ

> 2πR

And so

q =
rBφ
RBθ

> 1
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Internal kink modes: Sawteeth in tokamaks

Kink modes with m = 1, n = 1 can also occur when the boundary
of the plasma is held fixed: Internal kinks.

If q < 1 in the core an instability can occur

Caused by too high current density on axis

Result in repetitive drops in core temperature and density

Clearly seen on soft x-ray signals as a sawtooth pattern
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External kink with m > 1

Stability of modes
with m > 1 depends
on the current profile

Unstable modes are
aligned with magnetic
field (resonant) just
outside the plasma
edge

m = 2 perturbation Current profiles

j = j0
(

1− (r/a)2
)ν

qa/q0 = ν + 1

Need qa > 2 and preferably qa > 3 for stability

[“Tokamaks” by J.Wesson, “Introduction to Kink Modes” by S.Cowley]
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Wall stabilisation of external kink modes
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If there is no wall (wall is far away) then the flux-surface
perturbation goes like δψ ∼ r−m

An ideal wall is a superconductor which forces the
perturbation to zero at the boundary. This corresponds to a
current sheet which pushes back on the mode.

In real machines, the vessel walls always have some finite
resistivity. The current and hence radial magnetic field can
diffuse into the wall
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Wall stabilisation of external kink modes
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resistivity. The current and hence radial magnetic field can
diffuse into the wall

Ben Dudson Magnetic Confinement Fusion (18 of 26)



Wall stabilisation of external kink modes

r

δψ

p
la

sm
a

b
ou

n
d

ar
y

∼ r−m

W
al

l

If there is no wall (wall is far away) then the flux-surface
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Wall stabilisation of external kink modes

The resistive diffusion is the same as we’ve seen before

∂B

∂t
=

η

µ0
∇2B

and since we’re interested in diffusion into the wall:

∂B

∂t
=

η

µ0
∇2B

If the thickness of the wall is L and the time for diffusion into the
wall is τW then

B

τw
' η

µ0

1

L2
w

B

and so the wall time is τw '
L2
wµ0

η
. This is typically ∼ 10ms.
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Resistive Wall Modes (RWM)

In a real machine the walls are not ideal: they always have
some finite resistivity

A kink instability which would be stable for an ideal wall but
unstable without a wall can grow (relatively) slowly

Growth is limited by the rate at which magnetic field
perturbations can diffuse through the wall: the wall’s resistive
timescale

Hence called a Resistive Wall Mode (RWM)

These modes set limits on the pressure (β)
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Disruptions

So what happens when a tokamak hits one of these limits?

In a tokamak the position of the plasma is controlled using a
feedback system (see this week’s problem sheet)

If an event is violent enough it can move the plasma too
quickly for the system to respond. Distortions to the plasma
can also confuse the system so that it makes things worse

At this point the control system may fail and give up
(“FA cutout”)

The plasma then typically hits either the top or bottom of the
vessel. This is called a disruption.

These must be avoided in large tokamaks, so ways to arrange
a “soft landing” are being developed e.g. Massive Gas
Injection.
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ZETA quiescent period

In experiments on ZETA, it
was noticed that under some
circumstances fluctuations
were reduced for a period

During these “quiescent”
periods, confinement time
was improved Plasma current I and dI/dt

traces from ZETA.
Time marks are 1ms.
[Bodin and Newton Nucl. Fusion 20 (1980) 1255,

A.Gibson et al. Plasma Physics 9 (1967) 1]
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Taylor relaxation

J.B.Taylor studied how an unstable equilibrium might relax to a
minimum energy state, subject to constraints.

In ideal MHD, magnetic fields are “frozen” into the plasma,
and each field line is constrained.

If small deviations from ideal MHD occur, then field lines may
reconnect, and Taylor argued that there is then only a single
constraint on the magnetic field

This leads to a unique solution for the constrained minimum
energy (“Taylor”) state, in which

∇× B = µB

where µ is a constant which depends on the pinch ratio
Θ = µa/2.

“Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields” by J.B.Taylor (1974)
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Reversed Field Pinches

In a circular cross-section, large aspect-ratio torus, this relaxed
state has the solution

Br = 0 Bθ = αJ1 (µr) Bφ = αJ0 (µr)

where J0 and J1 are Bessel functions. Toroidal field reverses if
Θ > 1.2. Field-reversal ratio F = Bφ (a) / 〈Bφ〉
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Reversed Field Pinches

Internal kink modes stable

Require a close-fitting
copper shell, or active
feedback, to stabilise
external kinks

Smaller external field
relative to tokamaks
simplifies construction

Tend to be turbulent, and have poor confinement

At high pinch ratio, the plasma can form a helical equilibrium
(SHAx) with better confinement
Lorenzini et al., Nature Phys. 5, 570 (2009)
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Summary

Kink instabilities are driven by plasma current, and stabilised
by an applied toroidal magnetic field

Internal kinks occur even if the boundary is fixed when q < 1
in the core of tokamak plasmas, and limit the current on axis.

External kinks require a distortion to the plasma edge, and
require q > 2 and preferably q > 3 at the edge for stability.
These limit the total plasma current and often the maximum
plasma pressure.

Perfectly conducting walls can stabilise external kink modes

Resistive walls allow kink modes to grow on wall timescales:
Resistive Wall Modes (RWMs)

In tokamaks RWMs must be avoided at high β.
In RFPs external kinks must be controlled at all pressures
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