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This lecture

We’ve looked at MHD instabilities, which tend to be the
fastest and most dangerous for confinement
In this lecture we’ll look at other instabilities which degrade
confinement but don’t lead to catastrophic results.
These result from treating electrons and ions separately and
so are two-fluid or kinetic effects
They are essentially electrostatic, and are driven by gradients
in temperature and density
These are thought to be the origin of turbulence in
confinement devices, and so anomalous transport

References:

J. Wesson “Tokamaks”, sections 8.2 - 8.5
J.W.Connor, H.R.Wilson “Survey of theories of anomalous
transport” Plasma Phys. Control. Fusion 36 719-795 (1994)
B.D.Scott “Computation of turbulence in magnetically
confined plasmas” Plasma Phys. Control. Fusion 48 B277
(2006)
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Electron response

Because electrons move quickly along magnetic fields, they
are often assumed to quickly reach equilibrium on the
timescale of instabilities.

This simplifies the analysis as we can concentrate on the ions,
and assume that the electrons follow.

The momentum equation for electrons is

neme

(
∂v e
∂t

+ v e · ∇v e
)

= −∇pe − nee (E + v e × B)

Parallel to the magnetic field, and setting the left side to zero

neeE|| +∇||pe = 0
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Electron response

Linearising this equation, neglecting temperature variations
because parallel thermal conduction is fast (so ∇||T ' 0), and
assuming electrostatic perturbations so E|| = −∇||φ

− (n0 + δn) e∇|| (φ0 + δφ) +∇|| [T0 (n0 + δn)] = 0

−n0e∇||δφ− δne��
��*0

∇||φ0 +∇|| (δnT0) = 0

Since there are no parallel gradients of equilibrium φ0 and n0, this
becomes

−∇|| (n0eδφ) +∇|| (δnT0) = 0

and so:

n0eδφ = δnT0 ⇒ δn

n0
=

eδφ

T0

This is called the adiabatic or Boltzmann response
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Electron drift waves

Consider a slab of plasma with the B into the page, and density
increasing from right to left
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A small density perturbation

The electrons move along
the field and establish force

balance and so δφ ' T0

e

δn

n0

This gives an E × B velocity
which is 90o out of phase
with the density

This is a wave which
propagates perpendicular to
∇n and B

Because δv and δn are out
of phase, there is no net
radial transport.
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Electron drift waves

Consider a slab of plasma with the B into the page, and density
increasing from right to left

Velocity
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Electron drift waves

We can derive the dispersion relation of this wave using the ion
density (continuity) equation

∂δni
∂t

= −∇ · [(n0 + δni ) δv ]

As before, put in a solution δni ∝ exp (−iωt). so that
∂δni
∂t
→ −iω. For the ions, assume that radial E × B is the

dominant motion (not true for electrons!)

⇒ −iωδni = vExB,r
dn0

dr
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Electron drift waves

The radial E × B velocity is given by the poloidal gradient of the
electrostatic potential (since B field is mainly toroidal).
Taking a single wave of the form exp (ikθrθ)

vExB,r = − 1

B

∂δφ

∂rθ
= − 1

B
ikθδφ⇒ ni =

kθδφ

ωB

dn0

dr

Using quasi-neutrality, ni ' ne and so

kθ��δφ

ωB

dn0

dr
=

n0e��δφ

T0

The wave frequency is therefore

ω =
kθT0

eBn0

dn0

dr
=

kθ
eBn0

dp0

dr
= kθv∗ = ω∗

This velocity v∗ is the diamagnetic drift velocity, and is the
reason why this category of waves are known as drift waves.
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Electron drift wave growth

If velocity and density perturbations are out of phase then
there is no net radial transport and the wave doesn’t grow.

If the electrons can’t keep up with the wave then this leads to
a phase shift and growth of the mode

Finite electron mass, or just about any form of dissipation e.g.
resistivity or Landau damping will have this effect.

This is often called the Universal instability because all
useful plasmas have density gradients and some dissipation.

In fact magnetic shear (change in q with radius) can stabilise
these modes

In toroidal geometry these waves are destabilised by trapped
particles and become unstable above a threshold given by the
magnetic shear
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Ion Temperature Gradient (ITG or ηi) mode

Start with a small
fluctuation in temperature

The sum of curvature and
grad-B drifts is

v∇B +vR '

(
v2
⊥/2 + v2

||

)
RΩ

ez

so hotter particles drift
faster

This leads to regions of
higher and lower density

Using the electron adiabatic
response, this gives an
E × B drift which amplifies
the original perturbation

Figure: D.Applegate’s thesis
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Ion Temperature Gradient (ITG or ηi) mode

The ITG mode is stabilised by
magnetic shear, but less so than
the electron drift wave

A proper analysis gives a threshold
for stability (see figure)

The mode gets its name because
there is a threshold in ion
temperature gradient at a given
density gradient

This is thought to be why tokamak
profiles are “stiff” - the gradient
tend to be fixed.

Figure: Wesson 8.3.3
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Electron Temperature Gradient (ETG)

Because the ITG instability depends on the ion ∇B and
curvature drift, it has wavelengths of a few ion Larmor radii.

There is another instability which has a scale between the
electron and ion Larmor radii.

Because it is smaller than the ion Larmor radius, the
instability doesn’t “know” that ions are on orbits. Instead, it
sees a Boltzmann-like response for the ions, similar to the
electron behavior in the ITG mode.

The ETG mode is therefore very similar to the ITG mode, but
with the roles of the electrons and ions reversed

Sidenote: there has been a long and ongoing debate over
whether ETG or ITG is more important for tokamak transport
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Trapped particle modes

Particle trapping in toroidal plasmas means there are two
populations of particles:

passing particles which have a net parallel velocity and which
explore all parts of the torus

trapped particles which have little net parallel motion, and
which only explore part of the torus

This leads to an instability similar to sausage / interchange modes

+

+

+

-
-

κ×B

-

κ

B

E

E

E×B

E×B

For passing particles the
good and bad curvature
averages out and is stable

Trapped particles only see
the bad curvature side so
have a net drift

The passing particles act like
a background with a
Boltzmann response
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Small-scale instabilities and turbulence

Problem: The full 6-D Vlasov equation is too difficult to solve in
most situations of interest, but the plasma core is not collisional
enough for a fluid (MHD-like) model to be valid

How is plasma turbulence calculated?

Gyrokinetics: Remove fast timescales and reduce number of
dimensions

Numerical tricks: Speed up calculations by many orders of
magnitude

High Performance Computing: Algorithms needed to
parallelise efficiently across thousands of processors
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Gyrokinetics

Recall that the Vlasov equation describes a collection of
particles, each with a position x and velocity v. Both are 3D,
so this is a 6D problem.

In a strong field, these particles are gyrating quickly (∼ GHz)
around the magnetic field, much faster than the turbulence we
want to calculate (∼ 100 kHz)

We can think of these particles as small current loops

Y

X

V⊥ IZe

µ = mV⊥
2B

Current loopParticle orbit

Gyrokinetics describes the dynamics of these current loops
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(Short) History of Gyrokinetics

One of the major achievements in plasma theory

Early work on linear theory e.g. J.B. Taylor, R.J. Hastie
(1968), Rutherford and Frieman (1968), P.Catto (1978)

Nonlinear theory: Frieman & Chen (1982), and first
simulations: W. W. Lee (1983)

Hamiltonian formulation: R.G.Littlejohn (1979,1982), Dublin
et al. (1983) ensures conservation of energy

Modern gyrokinetics uses sophisticated mathematics of
differential geometry and field theories

Here I will give only a brief outline of the basic versions
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Re-writing Vlasov equation

Consider a particle at position x
with velocity v

We need 6 numbers to
describe the position of this
particle in phase space

We’re free to choose what
coordinates to use:

(x, v)→
(
x, v||, v⊥, φ

)
where x is the middle of the orbit, v|| is the velocity along the
magnetic field, v⊥ the speed around the magnetic field, and φ is
the gyro-phase.
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Average around an orbit

Averaging over gyro-angle φ (gyro-averaging) removes the
dependence on φ, and reduces the number of dimensions to 5.

Starting with a distribution of particles f , so that the number
of particles within a small volume of phase space is

δn = f (x, v) δxδv

We re-write this in terms of gyro-centre x and gyro-angle φ

δn = f̂
(
x, v||, v⊥, φ

)
δxδv||δv⊥δφ

Integrate over gyro-phase

f
(
x, v||, v⊥

)
=

1

2π

∮
f̂
(
x, v||, v⊥, φ

)
dφ

⇒ δn = f
(
x, v||, v⊥

)
δxδv||δv⊥
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Equation for f

To derive an equation for gyro-averaged distribution function f ,
take the Vlasov equation and gyro-average
→ many many pages of maths.

A simple “derivation” is by analogy to the Vlasov equation:

d

dt
f (x, v, t) = 0

Using the chain rule:

∂f

∂t
+
∂x

∂t
· ∂f
∂x

+
∂v

∂t
· ∂f
∂v

= 0

and finally putting in
∂x

∂t
= v and the force to get

∂v

∂t
gives

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v × B) · ∂f

∂v
= 0
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Equation for f

For the distribution of current loops we now have f
(
x, v||, v⊥

)
We can choose to use the total kinetic energy K rather than
the parallel velocity, and magnetic moment µ rather than
perpendicular velocity

→ f (x,K , µ)

K =
1

2
m
(
v2
|| + v2

⊥

)
µ = mv2

⊥/ (2B)

NB: Not the only possible choice

Now write down total derivative as before:

d

dt
f (x, v, t) = 0 ⇒ d

dt
f (x,K , µ, t) = 0
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Equation for f

From total derivative:

d

dt
f (x,K , µ, t) = 0

Expand using chain rule

∂f

∂t
+
∂x

∂t
· ∂f
∂x

+
∂K

∂t

∂f

∂K
+
∂µ

∂t

∂f

∂µ
= 0

∂

∂t
x is the motion of the gyro-center

∂

∂t
K is the change in energy of the particle

∂

∂t
µ ' 0 due to conservation of µ
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Equation for f

The motion of the gyro-center is the motion along the magnetic
field and the drifts across the magnetic field:

∂x

∂t
= vg = v||b +

E× B

B2
+

1

Ω

[
v2
||b× (b · ∇)b + µb×∇B

]
The energy of a particle changes due to electric fields:

∂K

∂t
= qvg · E + µ

∂B

∂t

Putting this together gets us...
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The Drift-Kinetic equation (DKE)

An equation for particle gyro-centers (current loops)

∂f

∂t
+ vg ·

∂f

∂x
+

(
qvg · E + µ

∂B

∂t

)
∂f

∂K
= 0

These move along, and drift (relatively) slowly across,
magnetic fields

The fast gyro-frequency timescale has been removed, so time
steps in a simulation can be much larger than for the Vlasov
equation

One velocity dimension removed, reducing the problem to 5D

But: This is not the gyro-kinetic equation!
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From drift kinetics to gyro-kinetics

We have neglected the finite size of the Larmor orbits, so
assumed that the E× B is just given by the E field at the
gyro-center position x
→ Need to average drift around the orbit

We have not considered how to calculate the E and B fields
→ This is done using Poisson and Ampére laws. Calculation
of electric field complicated: determined by polarisation, not
charge separation

There are many subtleties in deriving and using gyro-kinetics,
particularly for nonlinear calculations
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Gyro-kinetic simulations

Whilst the details are more complicated, the principles of
gyrokinetic PIC codes are the same as the 1D electrostatic code
studied in Comp Lab:

1 Gather electrons and ions to calculate gyro-center densities
and velocities on grid cells

2 Solve for the electric (and magnetic) fields

3 Scatter the E and B fields on to the particles. This now
involves averaging around a gyro-orbit, typically done by
sampling several points on the orbit.

4 Calculate the particle drifts, and move the particles

5 Go to (1)

Many tricks have been developed to reduce the computational cost
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Results - Turbulence

Simulations of DIII-D using GYRO (left), and of MAST using GS2 (right)

Figures: Waltz et al. Phys. Plasmas (2006), and Hammett PPPL (2002)
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Results - Dimits shift

The threshold temperature gradient for significant transport
due to ITG turbulence is higher than linear theory predicts
Non-linear simulations show an initial burst of turbulence,
which then dies down to a low level
Self-regulation of turbulence through generation of mean
“zonal” flows
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Results - Transport

For core turbulence, gyro-kinetic codes can now get very close
e.g. ITG threshold gradient within 5%

Fluxes a strong function of gradient, so harder to predict

Models like TGLF use fits to G-K simulations, and produce
quite good results

A “shortfall” is often observed near the edge, and the cause is
still being debated
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Summary

There are many instabilities in plasmas which arise because
the plasma is composed of different populations of particles,
rather than a single homogenous fluid

These instabilities are mainly electrostatic: magnetic
fluctuations are present, and can be an important effect at
high β, but are not essential.

Drift-kinetics and gyro-kinetics average over gyro-motion,
removing a fast timescale (cyclotron frequency) and a velocity
dimension, making realistic 3D simulations possible

Still lots of work needed, particularly in extending towards the
plasma edge
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