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Last time

Toroidal devices such as the Stellarator and Tokamak

Need for a rotational transform to short out the vertical
electric field caused by the ∇B drift

This can either be created using shaped coils (Stellarators) or
by running a current in the plasma (Tokamaks)

Calculated the “classical” transport of particles and energy
out of a tokamak. This gave a wildly unrealistic confinement

This lecture we’ll look at one reason why...
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Particle trapping

In a tokamak, the magnetic field varies with the major radius

R

Z

r
R

Bφ

Bφ ∼ 1/R

There is now a minimum in the B field at the outboard (large R)
side of the tokamak ⇒ Trapped particles.

The study of these particles and their effect is called
Neoclassical theory.
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Large aspect-ratio approximation

A useful approximation is that the variation in major radius R is
small, and that the toroidal field is much bigger than the poloidal
field.

R

Z
r

θ

For a circular cross-section of
radius r , the major radius varies
like

R = R0+r cos θ = R0 (1 + ε cos θ)

ε = r/R0 is inverse aspect

ratio
Hence

B ' B0

1 + ε cos θ

For small ε� 1
B ' B0 (1− ε cos θ)
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Particle trapping (redux)

If there is no electrostatic potential φ, Kinetic energy
1

2
mv2 is

conserved (i.e. speed is conserved)
Magnetic magnetic moment also conserved µ = mv2

⊥/2B

Define velocity at the outboard side (θ = 0): v⊥0 and v||0.
K.E. conserved

v2 = v2
|| + v2

⊥ = v2
||0 + v2

⊥0 ⇒ v2
|| = v2

(
1−

v2
⊥
v2

)
Conservation of µ

v2
⊥

B0 (1− ε cos θ)
=

v2
⊥0

B0 (1− ε)

v2
|| = v2

(
1−

v2
⊥0

v2

1− ε cos θ

1− ε

)
= v2

(
1−

v2
⊥0

v2
[1 + ε (1− cos θ)]

)
v2
|| = v2

(
1−

v2
⊥0

v2

[
1 + 2ε sin2 (θ/2)

])
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Particle trapping (redux)

v2
|| = v2

(
1−

v2
⊥0

v2

[
1 + 2ε sin2 (θ/2)

])
If v2
|| < 0 for any θ then a particle is trapped. Therefore,

if v2
|| (θ = π) ≤ 0 ⇒ Particle is trapped

v2
⊥0

v2
[1 + 2ε] ≥ 1 ⇒ v⊥0

v
≥ 1− ε For trapped particles

v||0

v⊥0

Slope ∼ 1√
2ε

Untrapped

v2

v2
⊥0

≤ 1+2ε ⇒
v2
⊥0 + v2

||0

v2
⊥0

≤ 1+2ε

v||0
v⊥0
≤
√

2ε
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Particle drifts

As particles move around the torus, their orbits drift. We have
already come across the ∇B drift:

v∇B =
v2
⊥

2Ω

B ×∇B
B2

but there is also the curvature
drift

R
C

In the frame of the particle, there
is a centrifugal force

FR =
mv2
||RC

R2
C

This therefore causes a drift

vR =
1

q

(
mv2
||RC/R

2
C

)
× B

B2

=
m

qB

v2
||RC × B

R2
CB

=
v2
||

Ω

RC × B

R2
CB
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Particle drifts

So how big are these drifts, and what direction are they in?

v∇B =
v2
⊥

2Ω

B ×∇B
B2

B ' B0eφ B0 ∝
1

R
⇒ ∇B ' −B0

R
∇R

B ×∇B
B2

'
−eφ ×∇R

R
=

eZ

R

⇒ v∇B =
v2
⊥

2ΩR
eZ

vR =
v2
||

Ω

RC × B

R2
CB

RC = R∇R

vR =
v2
||

Ω

∇R × eφ
R

=
v2
||

Ω

eZ

R
Total drift is therefore

v∇B + vR =

(
v2
|| + v2

⊥/2
)

RΩ
eZ

Note that the drift is in the vertical direction and opposite for
electrons and ions
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Banana orbits

R

Z
Without drifts

R

Z
With drifts

δrb

Characteristic shape of the orbits in the poloidal plane gives this
the name banana orbit. The width of this orbit is the banana
width, often denoted δrbj or ρbj with j indicating electrons or ions.
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Banana orbit characteristics

Let us calculate the banana width for a barely trapped particle
i.e. one with a bounce point at θ = π, on the inboard side

Time for half an orbit: Velocity along the field-line v|| ∼
√

2εv⊥ is
small. Total speed is therefore approximately v ∼ v⊥. This will be
approximately the thermal speed v ∼ vth.

⇒ v|| ∼
√

2εvth For trapped particles

θ

−π

0

π

2πR
φ

Bounce point

Bounce point
Distance travelled = 2πRq so
time for a trapped particle to
execute half an orbit

tb =
2πRq

vth

√
2ε
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Banana orbit characteristics

During this time tb = 2πRq/
(
vth

√
2ε
)

, the particle drifts to a new

flux surface, a distance δrb from the original one.

δrb = (V∇B + VR)
2πRq

vth

√
2ε

' 1

RΩ
[ 2εv2

th︸ ︷︷ ︸
v2
||

+
v2

th

2︸︷︷︸
v2
⊥/2

]
2πRq

vth

√
2ε

=
π√
2

vth

Ω︸︷︷︸
rL

(4ε+ 1)√
ε

q ' π√
2

rLq√
ε

Note that this is much larger than the Larmor radius rL
⇒ does this provide another transport mechanism?
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Collisions

We’ve already seen collisions, and come across the collision times

τei < τii ∼
√

mi

me

1

Z 2
< τie ∼

mi

me
τei

τjk average times it takes to change the velocity of particles of
species j by 90o , through scattering with species k .

To take a step of size δrb, a particle doesn’t need to be
deflected by 90o . It just needs to be scattered from a trapped
into a passing particle.
To do this, the parallel velocity needs to be changed by
∆v|| ∼

√
εvth

The effective collision time is therefore τeff ∼ τε

We can also define a collision frequency, which is just ν ≡ 1

τ
, and

so an effective collision frequency for trapped particles

νeff ∼
ν

ε
=

1

τε
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Collisionality

A useful quantity used in MCF is the collisionality ν∗. This is the
average number of times a particle is scattered into a passing
particle before completing a banana orbit.

ν∗ ≡
tb

τeff

=
ν

ε

Rq√
εvth

ν∗ =
νRq

ε3/2vth

Note that if ν∗ > 1 then trapped particles do not complete a full
banana orbit before being scattered. Thus trapped particles only
exist for ν∗ < 1.
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Collisionality

For electrons colliding with ions or electrons,

τe ∝
m

1/2
e T

3/2
e

n
⇒ ν∗e ∝

nRq

ε3/2T 2
e

For ions colliding with ions (ion-electron negligible)

τi ∝
m

1/2
i T

3/2
e

n
⇒ ν∗i ∝

nRq

ε3/2T 2
i

Note that

The ratio νi/νe ∼
√

me/mi � 1

Collisionality is independent of mass (∼ equal for ions and
electrons)

ν∗ ∝ n/T 2 ⇒ very low for hot tokamaks so trapped particles
become more important
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Neoclassical transport

At low collisionality When ν∗ � 1, trapped particles exist for many
banana orbits. This is called the banana regime.
After N steps in a random direction, particles or energy will diffuse
an average of

√
N steps

N ∼ t

τeff

√
2ε

Note that N is multiplied by the fraction of trapped particles.

The typical distance energy diffuses in a time t is

dneo ∼

√
t
√

2ε

τeff
δrb =

√
t

τ

√
2

ε
δrb '

π

21/4

q

ε3/4︸ ︷︷ ︸
∼10−30

√
t

τii
rLi︸ ︷︷ ︸

Classical result

Classical transport → needed minor radius r ∼ 14cm
Neoclassical transport increases this by ∼ 10.
ITER (expected Q = 10) has a minor radius of ∼ 2m.
Most transport in tokamaks is anomalous, due to turbulence
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Diffusion equations

Consider a volume of plasma containing a particle density n and
energy density nT

Flux of particles is Γ Flux of energy is Q

Continuity gives

∂n

∂t
= −∇ · Γ ∂

∂t
(nT ) = −∇ · Q

Diffusive process: flux ∝ gradient (Fick’s law)

Γ = −D∇n

∂n

∂t
= ∇ · (D∇n)

so if D is approximately constant:

∂n

∂t
= D∇2n

Q = −nχ∇T

∂

∂t
(nT ) = ∇ · (nχ∇T )

Assuming n constant:

∂T

∂t
= ∇ · (χ∇T )
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Diffusion equations

From the units of D and χ (L2/T ), they must be the step size
squared over the step time.

For classical transport,

Di = De ∼ r2
Le/τei ' 3× 10−4m2/s

χi ∼ r2
Li/τii ' 2× 10−2m2/s χe ∼ r2

Le/τei ' 3× 10−4m2/s

For neoclassical transport,

χi ∼
√

2εδr2
bi/τeff ∼ 0.4m2/s

χe ∼ χi
δr2

be

δr2
bi︸︷︷︸

∼me/mi

× τii

τei︸︷︷︸
∼
√

mi/me

= χi

√
me

mi
' χi/60 ∼ 7×10−3m2/s

What about neoclassical particle transport Di ,e?
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Neoclassical particle transport

For classical transport, collisions between particles of the same
species didn’t contribute to particle transport

In this case most of the particles a trapped particle is colliding
with are passing particles so this is no longer true

χi ∼ 60χe so does this mean that Di ∼ 60De ?

If this happened (and it does in some situations), the plasma
would start to charge up, creating an electric field which held
the ions back: this is called non-ambipolar transport

It turns out that due to momentum conservation, ions and
electrons actually diffuse at the same rate without an electric
field (intrinsically ambipolar)

Neoclassical particle diffusivity is comparable to χe

χe ∼ De ∼ Di ∼
q2

ε3/2
r2
Le/τei χi ∼

√
mi

me
χe

Dr Ben Dudson Magnetic Confinement Fusion (18 of 19)



Neoclassical particle transport

For classical transport, collisions between particles of the same
species didn’t contribute to particle transport

In this case most of the particles a trapped particle is colliding
with are passing particles so this is no longer true

χi ∼ 60χe so does this mean that Di ∼ 60De ?

If this happened (and it does in some situations), the plasma
would start to charge up, creating an electric field which held
the ions back: this is called non-ambipolar transport

It turns out that due to momentum conservation, ions and
electrons actually diffuse at the same rate without an electric
field (intrinsically ambipolar)

Neoclassical particle diffusivity is comparable to χe

χe ∼ De ∼ Di ∼
q2

ε3/2
r2
Le/τei χi ∼

√
mi

me
χe

Dr Ben Dudson Magnetic Confinement Fusion (18 of 19)



Summary

In toroidal machines, the variation in magnetic field strength
leads to particle trapping

The Grad-B and curvature drifts cause trapped particles to
follow banana orbits

Collisions scatter trapped particles into passing particles, and
collisionality ν∗ is the average number effective collision
times τeff ∼ τε per banana orbit

This leads to a diffusion with a step size of the banana width
δrb and time scale τeff : χ ∼ δr2

b/τeff

This neoclassical transport is the minimum possible in a
toroidal device

Measured diffusivities in tokamaks are typically ∼ 10− 100
times larger than neoclassical: they are anomalous

This is due to turbulence, which we’ll study later in the course
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