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Last time

Ideal MHD gives the relation J × B = ∇p for equilibrium

This lead to the Grad-Shafranov equation which is used to
design and interpret tokamak experiments

This relation determines the perpendicular current, but says
nothing about the parallel current

In this lecture we’ll look in more detail about currents in tokamak
plasmas
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Diamagnetic current

You have already seen one current in MHD equilibrium

J × B = ∇P ⇒ JDIA
⊥ =

B ×∇P
B2

This is called the Diamagnetic current (Recall that this also
means that B · ∇P = 0 so P = P (ψ) ;P = poloidal flux)

∇n
B

No other current can flow
perpendicular to the magnetic
field lines (in ideal MHD at least)
⇒ All other currents must be
along the magnetic field.

Note that JDIA is a classical
current - it exists in a cylinder or
slab as well as a torus.
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Divergence of diamagnetic current

Consider the divergence of the diamagnetic current:

∇ · JDIA
⊥ = ∇ ·

[
B ×∇P

B2

]
Noting the vector identity

∇ · (A× B) = B · (∇× A)− A · (∇× B)

then we have

∇ · JDIA
⊥ = (B ×∇P) · ∇

(
1

B2

)
+

1

B2
∇P · ∇ × B︸ ︷︷ ︸

µ0J

−B · (∇×∇P)︸ ︷︷ ︸
=0 (identity)

⇒ ∇ · JDIA
⊥ = (B ×∇P) · ∇

(
1

B2

)
+
µ0

B2
∇P · J︸ ︷︷ ︸

=0

∇ · JDIA
⊥ = (B ×∇P) · ∇

(
1

B2

)
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Return current

Recall from last lecture that p = p (ψ), so ∇p =
dp

dψ
∇ψ. Using

the expression B = f (ψ)∇φ+∇φ×∇ψ, we can write

B ×∇p = (f (ψ)∇φ+∇φ×∇ψ)× dp

dψ
∇ψ

=
dp

dψ

f (∇φ×∇ψ) + (∇φ · ∇ψ)︸ ︷︷ ︸
=0

∇ψ− |∇ψ|2︸ ︷︷ ︸
R2B2

θ

∇φ]

=
dp

dψ

[
f (B − f∇φ)− R2B2

θ∇φ
]

=
dp

dψ
[f B − f 2︸︷︷︸

R2B2
φ

∇φ− R2B2
θ∇φ]

=
dp

dψ

[
f B − R2B2∇φ

]
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Return current

Using this,

∇ · JDIA
⊥ = (B ×∇P) · ∇

(
1

B2

)
=

dp

dψ

(
f B − R2B2∇φ

)
· ∇
(

1

B2

)
=

dp

dψ
f (B · ∇)

(
1

B2

)

For a cylinder, the magnitude of B doesn’t vary along B so
∇ · JDIA

⊥ = 0

In a torus however, field-lines go between high and low B
regions, so ∇ · JDIA

⊥ 6= 0

Divergence of the total current must be zero ∇ · J = 0

⇒ there must be another current
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Hoop force

A picture of where this parallel current comes from is as follows:

The pressure is constant on flux surfaces

Due to the toroidal curvature, the area of the inboard side is
smaller than the right

Hence there is a net force outwards: the Hoop force

In equilibrium, this must be balanced by a J × B force,
created by a net vertical current

To avoid charge accumulation, a current must flow along the
magnetic field, the Pfirsch-Schlüter current
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Dr Ben Dudson Magnetic Confinement Fusion (7 of 22)



Hoop force

A picture of where this parallel current comes from is as follows:

Hoop force

The pressure is constant on flux surfaces

Due to the toroidal curvature, the area of the inboard side is
smaller than the right

Hence there is a net force outwards: the Hoop force

In equilibrium, this must be balanced by a J × B force,
created by a net vertical current

To avoid charge accumulation, a current must flow along the
magnetic field, the Pfirsch-Schlüter current
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Pfirsch-Schlüter current

We need to add another current to make ∇ · J = 0

This can’t be perpendicular to B as this is fixed by force
balance: ∇ · JDIA

⊥ is the only perpendicular current

The current must therefore have the form J = JDIA
⊥ + J ||

where J || = J||B/B

∇ · J = ∇ · JDIA
⊥︸ ︷︷ ︸

dp
dψ

f (B·∇)·(1/B2)

+∇ ·
(
J||B

B

)
︸ ︷︷ ︸

B·∇(J||/B)

= 0

⇒ B · ∇
[
J||
B

+
f

B2

dp

dψ

]
= 0
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Pfirsch-Schlüter current

B · ∇
[
J||
B

+
f

B2

dp

dψ

]
= 0

If the parallel gradient (B · ∇) of a quantity is zero, then it must
be constant on flux surfaces

J||
B

+
f

B2

dp

dψ
= C (ψ)

The parallel current must therefore satisfy

J|| = − f

B

dp

dψ
+ C (ψ)B

Now we need to determine C (ψ)
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Constraint on C (ψ)

To get a constraint on C (ψ), we assume
steady state. In this case, we can write

∇× E = −∂B
∂t

= 0

and therefore:∮
E · dl =

∮
Eθdlθ = 0

where dl is a line element in the poloidal
direction along the flux surface

dl

This poloidal electric field is due to parallel resistivity

E|| = η||J|| ⇒ Bθ
B

Eθ +
Bφ
B

Eφ = η||J||
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Constraint on C (ψ)

combining
Bθ
B

Eθ +
Bφ
B

Eφ = η||J||,

∮
Eθdlθ = 0 gives:

∮ (
η||J||

B

Bθ
−

BφEφ
Bθ

)
dlθ = 0

Assuming that η|| 6= 0 and using J|| = − f

B

dp

dψ
+ C (ψ)B

∮ ([
− f

B

dp

dψ
+ C (ψ)B

]
B

Bθ
−

BφEφ
η||Bθ

)
dlθ = 0

Because f , p and C are functions of ψ only, they don’t depend on
lθ. Assuming that η|| is also constant on flux surfaces,

−f dp
dψ

∮
1/Bθdlθ + C (ψ)

∮
B2/Bθdlθ −

∮
BφEφ
η||Bθ

dlθ = 0
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Constraint on C (ψ)

At this point, it’s useful to divide through by

∮
dlθ. This is just

the distance around the flux-surface, and means that each term
can be written as averages around a flux surface:

〈x〉 ≡
∮
xdlθ∮
dlθ

We can therefore write:

−f dp
dψ
〈1/Bθ〉+ C (ψ)

〈
B2/Bθ

〉
−
〈BφEφ/Bθ〉

η||

and so

C (ψ) = f
dp

dψ

〈1/Bθ〉
〈B2/Bθ〉

+
〈BφEφ/Bθ〉
η|| 〈B2/Bθ〉
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Pfirsch-Schlüter current

This therefore gives the parallel current:

J|| = −f dp
dψ

(
1

B
− 〈1/Bθ〉B
〈B2/Bθ〉

)
︸ ︷︷ ︸

Pfirsch-Schlüter current

+
〈BφEφ/Bθ〉B
η|| 〈B2/Bθ〉︸ ︷︷ ︸

Induced current

This parallel current is a combination of the current induced by an
applied toroidal field Eφ, and the Pfirsch-Schlüter current

JPS
|| = −f dp

dψ

(
1

B
− 〈1/Bθ〉B
〈B2/Bθ〉

)
This current doesn’t provide force balance since it is parallel to B,
but modifies the equilibrium. It is a neoclassical effect because it
doesn’t appear in a cylinder.
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Other currents

There can be other currents in a tokamak, but:

They must flow parallel to the magnetic field. The
diamagnetic current is the only current that can flow across
field lines

The current density must be divergence free. From earlier,
B · ∇

(
J||/B

)
= 0 and so

J = C (ψ)B

Taking dot-product with B, J · B = C (ψ)B2. The poloidal
average of this

〈J · B〉 = C (ψ)
〈
B2
〉

⇒ J =
〈J · B〉
〈B2〉

B
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Banana current

Figure : Banana current: Samuli Saarelma’s PhD thesis, 2005

Consider two banana orbits which are touching (shown above)

If there is a density gradient, then there are more particles on
the inner orbit than the outer

There is therefore a net flow of trapped particles
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Banana current

We can visualise this by looking at the distribution function of the
particles

In a uniform plasma particles
are distributed in velocity
space on the unit circle

If there is a density gradient
then at a particular location
there are more trapped
particles going one way than
the other

v||

v⊥ v||
v⊥
∼
√

2ε

This gives rise to a current Jt ' ∆nv||e. Since the electrons drift
in opposite direction to ions, the contribution adds together.
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Banana current

Parallel velocity of trapped particles v|| '
√
εvth

What is the difference in density between two banana orbits?
Depends on the gradient of the number of trapped particles√
εn

∆n ' δrb
d

dr

(√
εn
)

The current driven along the field-lines is therefore

Jt ' eδrb
√
ε
dn

dr

√
εvth ∼ e

√
εv2

th

Ω

dn

dr
∼ ε3/2 T

Bθ

dn

dr

Here we have assumed no temperature gradient, but this will
also contribute to the banana current: If particles are moving
faster on the inner banana orbit than on the outer orbit, then
this will also give rise to a current.
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Bootstrap current

Passing particles also drift across flux surfaces, but unlike
trapped particles there is no ambiguity in their radial position.
⇒ do not directly contribute to the parallel current
However if we look again at the distribution function:

v||

v⊥ v||
v⊥
∼
√

2ε

v||

v⊥ v||
v⊥
∼
√

2ε

there is a discontinuity at the trapped-passing boundary
Collisions are a diffusion in velocity, and transfer momentum
between trapped and passing particles

Collisions smooth out the distribution function, resulting in a
transfer of momentum from trapped to passing particles

This results in a current called the bootstrap current
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Bootstrap current

We can estimate the bootstrap current Jb by considering the
momentum transfer between trapped and passing particles.
The rate is given by the effective collision frequency

νeff ' ν/ε

The rate of transfer of momentum from trapped to passing

particles ∼ ν

ε
Jt

Collisions between passing particles provides a friction ∼ νJb

Balancing the momentum transfer against the friction gives

νJb ∼ ν/εJt ⇒ Jb ∼
√
ε
T

Bθ

dn

dr

Hence Jb is roughly R/r times larger than the banana current

Collisions play a crucial role, but do not appear in the final
result provided that ν∗ is small enough
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Bootstrap current

The full calculation results in an expression

〈Jb · B〉 =
√

2εf (ψ) p (ψ)

[
a1

n

∂n

∂ψ
+

a2

Te

∂Te

∂ψ
+

a3

Ti

∂Ti

∂ψ

]
where the constants a1, a2 and a3 are complicated functions of
geometry and collisionality.

Note that
∂n

∂ψ
' 1

RBθ

∂n

∂r
, and p (ψ) /n = Te + Ti . The first

term gives a similar expression to our approximation

Even though collisions are crucial to the bootstrap current, it
is quite insensitive to collision frequency provided it’s not zero
or too high

At high collisionality, there are no trapped particles and so
〈Jb · B〉 → 0
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Importance of the bootstrap current

The bootstrap current is present in all (hot) tokamak plasmas, and
is driven by density and temperature gradients

This current exists independently of any other current drive,
and provides some of the poloidal field

This ability of the plasma to generate its own poloidal field
and so “lift itself up by the bootstraps” gave rise to the name

In Advanced Tokamak (AT) scenarios, the bootstrap current
provides the majority of the current e.g. ITER AT ' 70%.
JT-60 has been operated with 80% bootstrap fraction1

This current is vital for economic steady-state operation, as it
greatly reduces the current which must be driven externally

Bootstrap current also has a bad side: in steep pressure
gradient regions at the plasma edge, the bootstrap current
can drive instabilities (peeling modes)

1M.Kikuchi, JAEA. 2010 IISS at IFS, Austin
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Summary

The only current which flows perpendicular to B is the
diamagnetic current JDIA

⊥ . This satisfies JDIA
⊥ × B = ∇P

This has non-zero divergence, and so there must be a parallel
current: the Pfirsch-Schlüter current. This can be thought
of as the return current for the net vertical current needed to
balance the hoop force

Trapped particle (banana) orbits have a finite radial width.
Radial density and temperature gradients therefore distort
distribution functions, leading to the banana current

Collisions transfer momentum from trapped to passing
particles, leading to the bootstrap current which is ∼ R/r
times larger than the banana current

This bootstrap current can provide the majority of the toroidal
current needed to produce the poloidal magnetic field in a
tokamak
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