MHD waves

Ben Dudson

Department of Physics, University of York Heslington, York YO10 5DD, UK

7th February 2014

Last time

- Last time: Ohmic heating and current drive, and it's limits
- Neutral beams used to supply heating power and drive current
- Many other methods for plasma heating and current drive involve exciting waves in the plasma
- To study these, we'll need to look at plasma waves, and resonant frequencies
- Alfvèn waves in confined plasmas are a rich area of study, and their interaction with fast particles such as Neutral Beam particles and fusion alphas is important for reactors. Many acronyms refer to these: TAEs, CAEs, EAEs, NAEs, ...
- Later in the course we'll use similar methods to study instabilities

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v} \\ \frac{\partial \underline{v}}{\partial t} &= -\underline{v} \cdot \nabla \underline{v} - \frac{1}{\rho} \nabla P + \frac{1}{\mu_0 \rho} \left(\nabla \times \underline{B} \right) \times \underline{B} \\ \frac{\partial P}{\partial t} &= -\underline{v} \cdot \nabla P - \gamma P \nabla \cdot \underline{v} \\ \frac{\partial \underline{B}}{\partial t} &= -\underline{v} \cdot \nabla \underline{B} + \underline{B} \cdot \nabla \underline{v} - \underline{B} \nabla \cdot \underline{v} - \eta \nabla \times \underline{J} \end{aligned}$$

 $\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$ $\frac{\partial \underline{v}}{\partial t} = -\underline{v} \cdot \nabla \underline{v} - \frac{1}{\rho} \nabla P + \frac{1}{\mu_0 \rho} (\nabla \times \underline{B}) \times \underline{B}$ $\frac{\partial P}{\partial t} = -\underline{v} \cdot \nabla P - \gamma P \nabla \cdot \underline{v}$ $\frac{\partial \underline{B}}{\partial t} = -\underline{v} \cdot \nabla \underline{B} + \underline{B} / \nabla \underline{v} - \underline{B} \nabla \cdot \underline{v} - \eta \nabla \times \underline{J}$ $\bullet \text{ Compressional terms}$

$$\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$$

$$\frac{\partial \underline{v}}{\partial t} = -\underline{v} \cdot \nabla \underline{v} - \frac{1}{\rho} \nabla P + \frac{1}{\mu_0 \rho} (\nabla \times \underline{B}) \times \underline{B}$$

$$\frac{\partial P}{\partial t} = -\underline{v} \cdot \nabla P - \gamma P \nabla \cdot \underline{v}$$

$$\frac{\partial \underline{B}}{\partial t} = -\underline{v} \cdot \nabla \underline{B} + \underline{B} \cdot \nabla \underline{v} - \underline{B} \nabla \cdot \underline{v} - \eta \nabla \times \underline{J}$$

• Compressional terms and Resistive term

$$\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$$

$$\frac{\partial \underline{v}}{\partial t} = -\underline{v} \cdot \nabla \underline{v} - \frac{1}{\rho} \nabla P + \frac{1}{\mu_0 \rho} (\nabla \times \underline{B}) \times \underline{B}$$

$$\frac{\partial P}{\partial t} = -\underline{v} \cdot \nabla P - \gamma P \nabla \cdot \underline{v}$$

$$\frac{\partial \underline{B}}{\partial t} = -\underline{v} \cdot \nabla \underline{B} + \underline{B} \cdot \nabla \underline{v} - \underline{B} \nabla \cdot \underline{v} - \eta \nabla \times \underline{J}$$

- Compressional terms and Resistive term ---
- This involves 8 fields which we can write as a state vector

$$\underline{X} = (\rho, \underline{v}, P, \underline{B})$$

• The equations of MHD can therefore be written as

$$\frac{\partial \underline{X}}{\partial t} = \underline{F}(\underline{X})$$

Small amplitude MHD

$$\frac{\partial \underline{X}}{\partial t} = \underline{F}(\underline{X})$$

For an equilibrium $\underline{X}_0 = (\rho_0, \underline{v}_0, P_0, \underline{B}_0)$, the time derivatives are zero

$$\frac{\partial \underline{X}_0}{\partial t} = \underline{F}(\underline{X}_0) = 0$$

Having found an equilibrium, we can give it a small perturbation This can lead to either oscillating waves or growing instabilities This is done by expanding in a small parameter ϵ

$$\underline{X} = \underline{X}_0 + \epsilon \underline{X}_1 + \epsilon^2 \underline{X}_2 + \dots$$

This is called **linearisation**, because it allows us to eliminate nonlinear terms and get a set of equations which we can attack using linear algebra.

Linearisation

For example the density equation:

$$\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$$

we expand $\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + \dots$ and $\underline{\nu} = \underline{\nu}_0 + \epsilon \underline{\nu}_1 + \epsilon^2 \underline{\nu}_2 + \dots$

Linearisation

For example the density equation:

$$\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$$

we expand $\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + \dots$ and $\underline{v} = \underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2 + \dots$

$$\frac{\partial \rho_0}{\partial t} + \epsilon \frac{\partial \rho_1}{\partial t} + \epsilon^2 \frac{\partial \rho_2}{\partial t} + \dots = \\ - \left(\underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2\right) \cdot \nabla \left(\rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2\right) + \dots \\ - \left(\rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2\right) \nabla \cdot \left(\underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2\right) + \dots$$

Linearisation

For example the density equation:

$$\frac{\partial \rho}{\partial t} = -\underline{v} \cdot \nabla \rho - \rho \nabla \cdot \underline{v}$$

we expand $\rho = \rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2 + \dots$ and $\underline{v} = \underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2 + \dots$

$$\frac{\partial \rho_0}{\partial t} + \epsilon \frac{\partial \rho_1}{\partial t} + \epsilon^2 \frac{\partial \rho_2}{\partial t} + \dots = \\ - \left(\underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2\right) \cdot \nabla \left(\rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2\right) + \dots \\ - \left(\rho_0 + \epsilon \rho_1 + \epsilon^2 \rho_2\right) \nabla \cdot \left(\underline{v}_0 + \epsilon \underline{v}_1 + \epsilon^2 \underline{v}_2\right) + \dots$$

Group these terms into powers of $\boldsymbol{\epsilon}$

$$\left[\frac{\partial\rho_{0}}{\partial t} + \underline{v}_{0} \cdot \nabla\rho_{0} + \rho_{0}\nabla \cdot \underline{v}_{0}\right] + \epsilon \left[\frac{\partial\rho_{1}}{\partial t} + \underline{v}_{1} \cdot \nabla\rho_{0} + \underline{v}_{0} \cdot \nabla\rho_{1} + \rho_{1}\nabla \cdot \underline{v}_{0} + \rho_{0}\nabla \cdot \underline{v}_{1}\right] + \epsilon^{2}\left[\cdot\right] + \ldots = 0$$

 ϵ is an arbitrary small parameter \Rightarrow each bracket must be zero

The first bracket is of course just the equilibrium

$$\frac{\partial \rho_0}{\partial t} + \underline{v}_0 \cdot \nabla \rho_0 + \rho_0 \nabla \cdot \underline{v}_0 = 0$$

The second bracket ($\propto \epsilon$)

$$\frac{\partial \rho_1}{\partial t} + \underline{v}_1 \cdot \nabla \rho_0 + \underline{v}_0 \cdot \nabla \rho_1 + \rho_1 \nabla \cdot \underline{v}_0 + \rho_0 \nabla \cdot \underline{v}_1 = 0$$

This is a linear equation in ρ_1 and \underline{v}_1 , and represents what happens if an equilibrium is given a small perturbation

Solving linear MHD

The linear equations we get from this are still a set of coupled partial differential equations, so still quite hard to solve. Some approaches to this are:

 Use a numerical grid (discrete points or basis functions), and discretise numerically. This turns linear PDEs into linear algebraic equations

Solving linear MHD

The linear equations we get from this are still a set of coupled partial differential equations, so still quite hard to solve. Some approaches to this are:

- Use a numerical grid (discrete points or basis functions), and discretise numerically. This turns linear PDEs into linear algebraic equations
- ⁽²⁾ Simplify the equations using e.g. $k_{||} \ll k_{\perp}$ to separate parallel and perpendicular directions. Multi-scale perturbation methods can sometimes be applied to find solutions e.g. WKB

Solving linear MHD

The linear equations we get from this are still a set of coupled partial differential equations, so still quite hard to solve. Some approaches to this are:

- Use a numerical grid (discrete points or basis functions), and discretise numerically. This turns linear PDEs into linear algebraic equations
- ⁽²⁾ Simplify the equations using e.g. $k_{||} \ll k_{\perp}$ to separate parallel and perpendicular directions. Multi-scale perturbation methods can sometimes be applied to find solutions e.g. WKB
- Assume homogenous plasma, so that we can take Fourier transforms in each direction. All quantities written in the form

$$f(\underline{x},t) = \int \int \hat{f}(\underline{k},\omega) e^{i(\underline{k}\cdot\underline{x}-\omega t)} d\underline{k} d\omega$$

This allows us to replace

$$abla
ightarrow i\underline{k} \qquad rac{\partial}{\partial t}
ightarrow -i\omega$$

If we make the further assumption that the equilibrium is stationary, so $\underline{\nu}_0 = 0$ then the linear equation

$$\frac{\partial \rho_1}{\partial t} + \underline{v}_1 \cdot \nabla \rho_0 + \underline{v}_0 \cdot \nabla \rho_1 + \rho_1 \nabla \cdot \underline{v}_0 + \rho_0 \nabla \cdot \underline{v}_1 = 0$$

becomes

$$-i\omega\rho_1 = -\rho_0 i\underline{k} \cdot \underline{v}_1$$

because all derivatives of equilibrium quantities are zero (homogenous). **note**: Hats are often dropped from e.g. $\hat{\rho}_1$ when it's clear which one is meant.

Homogeneous approximation

The equations of ideal MHD ($\eta = 0$) can then be written

$$-i\omega\rho_{1} = -\rho_{0}i\underline{k}\cdot\underline{v}_{1}$$

$$-i\omega\underline{v}_{1} = -\frac{\rho_{1}}{\rho_{0}}i\underline{k} + \frac{1}{\mu_{0}\rho_{0}}(i\underline{k}\times\underline{B}_{1})\times\underline{B}_{0}$$

$$-i\omega\rho_{1} = -\gamma\rho_{0}i\underline{k}\cdot\underline{v}_{1}$$

$$-i\omega\underline{B}_{1} = (i\underline{k}\cdot\underline{B}_{0})\underline{v}_{1} - (i\underline{k}\cdot\underline{v}_{1})\underline{B}_{0}$$

We've now got rid of all the differential operators, and are left with a set of (complex) coupled linear equations.

This set of equations have some nice properties:

It's Hermitian (complex conjugate equals transpose), so ω² is real. This means waves are either oscillating (ω² > 0) or growing/shrinking (ω² < 0), but never both.

Homogeneous approximation

The equations of ideal MHD ($\eta = 0$) can then be written

$$\begin{aligned} -i\omega\rho_1 &= -\rho_0 i\underline{k} \cdot \underline{v}_1 \\ -i\omega\underline{v}_1 &= -\frac{p_1}{\rho_0} i\underline{k} + \frac{1}{\mu_0\rho_0} \left(i\underline{k} \times \underline{B}_1\right) \times \underline{B}_0 \\ -i\omegap_1 &= -\gamma p_0 i\underline{k} \cdot \underline{v}_1 \\ -i\omega\underline{B}_1 &= \left(i\underline{k} \cdot \underline{B}_0\right) \underline{v}_1 - \left(i\underline{k} \cdot \underline{v}_1\right) \underline{B}_0 \end{aligned}$$

We've now got rid of all the differential operators, and are left with a set of (complex) coupled linear equations.

This set of equations have some nice properties:

- It's Hermitian (complex conjugate equals transpose), so ω² is real. This means waves are either oscillating (ω² > 0) or growing/shrinking (ω² < 0), but never both.
- We can eliminate almost all these variables, and reduce this to an equation for <u>v</u> only

Homogeneous approximation

Without loss of generality, we can choose <u>B</u> to be along the z axis, and <u>k</u> to be in the x - z plane:

$$\underline{B}_0 = B_0 \underline{e}_z \qquad \underline{k} = k_x \underline{e}_x + k_z \underline{e}_z$$

Writing out the components of the equation for \underline{v} gives:

$$\begin{pmatrix} \omega^2 - k^2 V_A^2 - k^2 V_s^2 \sin^2 \theta & 0 & -k^2 V_s^2 \sin \theta \cos \theta \\ 0 & \omega^2 - k^2 V_A^2 \cos^2 \theta & 0 \\ -k^2 V_s^2 \sin \theta \cos \theta & 0 & \omega^2 - k^2 V_s^2 \cos^2 \theta \end{pmatrix} \begin{pmatrix} v_{1x} \\ v_{1y} \\ v_{1z} \end{pmatrix} = \underline{0}$$

where θ is the angle between the wave vector \underline{k} and the equilibrium magnetic field \underline{B}_0 . The Alfvén and sound wave speeds are

$$V_A = rac{B_0}{\sqrt{\mu_0
ho_0}} \qquad V_s = \sqrt{rac{\gamma P_0}{
ho_0}}$$

To find the solutions to this:

$$\begin{pmatrix} \omega^2 - k^2 V_A^2 - k^2 V_s^2 \sin^2 \theta & 0 & -k^2 V_s^2 \sin \theta \cos \theta \\ 0 & \omega^2 - k^2 V_A^2 \cos^2 \theta & 0 \\ -k^2 V_s^2 \sin \theta \cos \theta & 0 & \omega^2 - k^2 V_s^2 \cos^2 \theta \end{pmatrix} \begin{pmatrix} v_{1x} \\ v_{1y} \\ v_{1z} \end{pmatrix} = \underline{0}$$

find where the matrix determinant is zero:

$$\left(\omega^2 - k^2 V_A^2 \cos^2 \theta\right) \left[\omega^4 - \omega^2 k^2 \left(V_A^2 + V_s^2\right) + k^4 V_A^2 V_s^2 \cos^2 \theta\right] = 0$$

This is cubic in ω^2 , so has three solutions

To find the solutions to this:

$$\begin{pmatrix} \omega^2 - k^2 V_A^2 - k^2 V_s^2 \sin^2 \theta & 0 & -k^2 V_s^2 \sin \theta \cos \theta \\ 0 & \omega^2 - k^2 V_A^2 \cos^2 \theta & 0 \\ -k^2 V_s^2 \sin \theta \cos \theta & 0 & \omega^2 - k^2 V_s^2 \cos^2 \theta \end{pmatrix} \begin{pmatrix} v_{1x} \\ v_{1y} \\ v_{1z} \end{pmatrix} = \underline{0}$$

find where the matrix determinant is zero:

$$\left(\omega^2 - k^2 V_A^2 \cos^2 \theta\right) \left[\omega^4 - \omega^2 k^2 \left(V_A^2 + V_s^2\right) + k^4 V_A^2 V_s^2 \cos^2 \theta\right] = 0$$

This is cubic in ω^2 , so has three solutions

• Shear Alfvén wave: $\omega^2 - k^2 V_A^2 \cos^2 \theta = 0$. Since $k \cos \theta = k_{||}$, this gives $\omega^2 = k_{||}^2 V_A^2$

• Phase speed
$$\frac{\omega}{k} = \pm V_A$$
, group speed $\frac{\partial \omega}{\partial k} = \pm V_A$

- Shear wave: $\underline{v}_1 \perp \underline{B}_0$, $\underline{v}_1 \perp \underline{k}$, $\underline{B}_1 \perp \underline{B}_0$
- Incompressible: $P_1 = 0$, $\rho_1 = 0$

Past magnetosonic wave:

$$\frac{\omega^2}{k^2} = \frac{1}{2} \left[V_A^2 + V_s^2 + \sqrt{\left(V_A^2 + V_s^2\right)^2 - 4V_A^2 V_s^2 \cos^2\theta} \right]$$

- Compressible wave: $P_1 \neq 0$, $\rho_1 \neq 0$ In cold plasma, $V_s = 0$ and $\omega^2 = k^2 V_A^2$

Past magnetosonic wave:

$$\frac{\omega^2}{k^2} = \frac{1}{2} \left[V_A^2 + V_s^2 + \sqrt{\left(V_A^2 + V_s^2\right)^2 - 4V_A^2 V_s^2 \cos^2\theta} \right]$$

- Compressible wave: $P_1 \neq 0$, $\rho_1 \neq 0$
- In cold plasma, $V_s = 0$ and $\omega^2 = k^2 V_A^2$

Slow magnetosonic wave:

$$\frac{\omega^2}{k^2} = \frac{1}{2} \left[V_A^2 + V_s^2 - \sqrt{\left(V_A^2 + V_s^2\right)^2 - 4V_A^2 V_s^2 \cos^2\theta} \right]$$

- Compressible wave: $P_1 \neq 0$, $\rho_1 \neq 0$
- For $V_s \ll V_A$, $\omega \simeq k V_s \cos heta = k_{||} V_s$
- This is a sound wave propagating along <u>B₀</u>

On small scales the plasma may be locally homogenous, but on scales comparable to machine size it's definitely not. What do these waves look like?

- Still use small amplitude linearisation
- Single frequency, so $\frac{\partial}{\partial t} \rightarrow -i\omega$
- Can't assume homogenous equilibrium, so $\nabla \neq i\underline{k}$

In a toroidally symmetric equilibrium, we can simplify the ∇ operators slightly by Fourier transforming in toroidal angle ϕ , so $\frac{\partial}{\partial \phi} \rightarrow -in$ where *n* is the **toroidal mode number** In the R-Z plane, we then need to solve numerically to obtain solutions. First, we can simplify the geometry to get some understanding

Large aspect-ratio approximation

A useful simplification is to study a large aspect ratio tokamak with circular cross-section, i.e. a cylinder.

In this limit, the plasma is symmetric in both toroidal and poloidal directions so we can Fourier transform, and assume all quantities vary like:

$$f(r,\theta,\phi,t) = \int \sum_{m} \sum_{n} \hat{f}(r,m,n,\omega) e^{i(m\theta - n\phi - \omega t)} d\omega$$

(**Note** the sum, since only integer m and n are allowed) Differential operators can then be simplified e.g.

$$\nabla f = \hat{\underline{r}} \frac{\partial f}{\partial r} + \hat{\underline{\theta}} \frac{1}{r} \frac{\partial f}{\partial \theta} + \hat{\underline{\theta}} \frac{1}{R} \frac{\partial f}{\partial \phi}$$
$$\rightarrow \hat{\underline{r}} \frac{\partial \hat{f}}{\partial r} + \hat{\underline{\theta}} \frac{im}{r} \hat{f} - \hat{\underline{\phi}} \frac{in}{R} \hat{f}$$

Large aspect-ratio approximation

This reduces the 3-dimensional PDE to a 1-D ODE in r:

$$\frac{d}{dr}\left[\left(\rho_0\omega^2 - F^2\right)r^3\frac{d\xi_r}{dr}\right] - \left(m^2 - 1\right)\left[\rho\omega^2 - F^2\right]r\xi_r + \omega^2r^2\frac{d\rho_0}{dr}\xi_r = 0$$

where $\underline{\xi}$ is the displacement, so $\underline{v} = \frac{\partial \underline{\xi}}{\partial t}$. The parameter *F* is

$$F = (m - nq) \, \frac{B_0}{r \sqrt{\mu_0}}$$

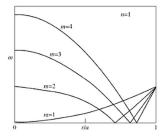
This equation has a continuous spectrum of solutions, and becomes singular where

$$\rho_0\omega^2 - F^2 = 0 \qquad m - nq = \pm \frac{\omega r}{B_0/\sqrt{\mu_0\rho_0}}$$

Alfvén Eigenmodes in a cylinder

For a given *m*, *n*, the frequency ω therefore varies with radius:

$$\omega\left(r\right)=\pm\frac{V_{A}}{r}\left(m-nq\right)$$

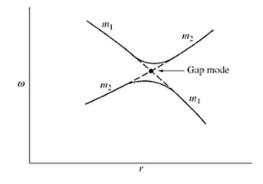


- Waves can excite other nearby waves with similar phase velocities
- These eventually destructively interfere, damping the mode
- This is called continuum damping

Alfvén Eigenmodes in a tokamak

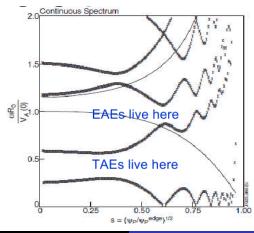
In a tokamak the Alfvén eigenmodes are similar, except that the poloidal harmonics are no longer independent: toroidal shaping couples *m* to m + 1 because $B_0 \sim 1 + \frac{r}{R} \cos \theta$.

Where modes with different m have the same frequency, toroidal coupling changes the solutions:



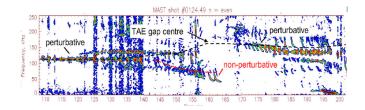
Alfvén Eigenmodes in a tokamak

- In between the two branches there's a single "gap" mode
- Called Toroidal Alfvén Eigenmodes (TAE)
- Coupling due to plasma shaping creates additional gap modes e.g. **Elipticity induced Alfvén Eigenmode** (EAE)



Observations of TAEs

- Because this mode is not part of a continuum, it is only weakly damped
- Can be driven by a super-Alfvénic particle population from e.g. NBI or fusion reactions



- Perturbative modes follow TAE gap predicted by MHD
- Nonperturbative mode frequency not given by MHD

MAST results from M.P.Gryaznevich & S.E.Sharapov, Nucl. Fusion **46** S942 (2006)

Summary

- Small amplitude perturbations can be used to study waves
- In a uniform plasma, MHD predicts three wave branches: Shear Alfvén, and the fast and slow magnetosonic waves
- Variation in equilibrium quantities gives a continuum of modes, which experience damping by spreading energy between themselves
- Toroidicity couples poloidal modes together, creating gap modes called Toroidal Alfvén Eigenmodes (TAEs)
- These can be driven unstable by resonant interactions with fast particles, and are only weakly damped
- Various damping and drive mechanisms not described by MHD
- Non-perturbative modes are a very hard problem...