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Previously

In the last lecture we looked at the basics of plasma instabilities

Analysed in the same way as waves:

Expand equations into equilibrium and perturbed quantities
Linearise by keeping only terms linear in a perturbed quantity

Linear equations of the form
∂y

∂t
F · y have solutions

∝ exp (−iωt)
For instabilities, ω has an imaginary component usually called
γ which is the growth rate.

Examples are the Sausage and Kink instabilities in z-pinches

Driven unstable by plasma pressure and current

Can be stabilised by introducing additional magnetic fields as
bending field-lines act to restore the equilibrium

An application is the Kruskal-Shafranov condition and q > 1
for stability in tokamaks.
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Analysis of plasma stability

There are usually several ways to study a plasma instability:

Linearising fluid equations

Sometimes just considering particle orbits and drifts is enough

Calculate the energy available and the energy needed to
overcome stabilising effects
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Single-particle picture of sausage instability

In a Z-pinch the magnetic field is curved around the axis:

J
B

κ = (b · ∇)b

R

κ×B

In curved magnetic fields particles drift:

vR =
v2
||

Ω

RC × B

R2
CB

= −
v2
||

Ω
κ× b

Since Ω = qB/m, the sign is different for electrons and ions. For a
z-pinch the drift is along the axis.
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Single-particle picture of sausage instability

The curvature drift is in opposite directions for electrons and
ions along the axis of the plasma (z or φ direction)

If there is a perturbation to the plasma, then this leads to
charge separation and electric field in the z direction

E × B drift is then in the radial direction

+

+

+

-
-

κ×B

-

κ

B

E

E

E×B

E×B

For a z-pinch, this E × B drift is such that it enhances the original
perturbation ⇒ instability.
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Good and bad curvature

If we reverse the direction of the curvature, so put the plasma on
the outside of the z-pinch (reverse pressure gradient), then we get:

+

+

+

-
-
-

E

E

E×B

E×B

κ×B

κ

B

Here the E × B acts to reduce the perturbation ⇒ stable.

Plasma stability depends on the relative directions of the magnetic
field curvature and the pressure gradient. These are known as

good curvature and bad curvature.
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Good and bad curvature

κ

Low pressure

High pressure

∇p

Figure : Bad curvature: κ · ∇p > 0

κ

High pressure

Low pressure

∇p

Figure : Good curvature: κ · ∇p < 0

The relative directions of
curvature κ and pressure
gradient has an important
effect on plasma stability

Instabilities driven by bad
curvature are analogous to
Rayleigh-Taylor fluid
instability and are called
Interchange instabilities
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Good and bad curvature in tokamaks

In a tokamak, the toroidal field is curved and the pressure is
highest in the core
⇒ on the outboard side (large R) the curvature is bad,
whilst on the inboard side (small R) the curvature is good
Many tokamak instabilities have maximum amplitudes on the
outboard side, called ballooning type modes

κ

High pressure

Low pressure

Low pressure

∇p

B
ad

curvature

Bφ
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Energy and plasma stability

To calculate whether a plasma is unstable we need to consider
both sources of instability such as pressure gradients, but also
stabilising effects

Last lecture we saw that bending field-lines produced a force
F which opposed the motion i.e F · v < 0

This means that the instability is having to do work to bend
the field-lines

To be unstable, the energy available has to be greater than
the energy needed to overcome this force

Analogous to a ball on a hill

Unstable

Stable
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Energy and plasma stability

The difference between stable and unstable situations is the change
in potential energy δW due to a small perturbation

δW < 0 Unstable: potential energy converted to kinetic
energy

δW > 0 Stable: kinetic to potential, then oscillates

δW = 0 Marginal: Like a ball on a flat surface

A plasma is stable if δW > 0 for all possible perturbations,
and unstable if any perturbation results in δW < 0

To calculate δW we’ll use the ideal MHD equations...
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Ideal MHD linearisation

To calculate the change in energy from a small perturbation we
need to first linearise the equations:

n = n0 + εn1 v = v0 + εv1 . . .

which after substituting into the ideal MHD equations, and
assuming a stationary equilibrium v0 = 0 gives:

∂

∂t
n1 = −n0∇ · v1 − v1 · ∇n0

∂

∂t
v1 =

1

min0

[
−∇p1 +

1

µ0
(∇× B1)× B0 +

1

µ0
(∇× B0)× B1

]
∂

∂t
p1 = −γp0∇ · v1 − v1 · ∇p0

∂

∂t
B1 = ∇× (v1 × B0)
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Ideal MHD dispacement

In ideal MHD all perturbed quantities n1, v1, p1, and B1 can be
written in terms of a single displacement ξ (x) which is the
distance the fluid has moved from equilibrium.

The velocity is v1 =
∂ξ

∂t
Substitute this into the other equations:

∂

∂t
n1 = −n0∇ ·

∂ξ

∂t
−
∂ξ

∂t
· ∇n0

Since the equilibrium quantities do not depend on time, this
can be integrated trivially:

⇒ n1 = −n0∇ · ξ − ξ · ∇n0

Similarly:

p1 = −p0∇ · ξ − ξ · ∇p0

B1 = ∇×
(
ξ

1
× B0

)
Note: This only works for ideal MHD: resistivity breaks this
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Ideal MHD normal modes

Substituting into the equation for velocity gives:

min0

∂2ξ

∂t2
= ∇

(
ξ · ∇p0 + γp0∇ · ξ

)︸ ︷︷ ︸
−p1

+
1

µ0
(∇× B1)×B0+

1

µ0
(∇× B0)×B1

This is a linear operator

min0

∂2ξ

∂t2
= F

(
ξ
)

Fancy form of ma = F

Solutions are linear ξ (x , t) = ξ (x) e−iωt and include the shear
Alfvén and magnetosonic waves.
Hence we can write an eigenvalue equation with eigenfunction ξ

−min0ω
2ξ = F

(
ξ
)
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Ideal MHD energy principle

To calculate the work done on the plasma, we can start with the
power: force × velocity

d

dt
δW = −

∫
d3xF

(
ξ
)
·
∂ξ

∂t

Integrate this by parts: u = F
(
ξ
)
,
dV

dt
=
∂ξ

∂t

⇒ δW = −
[∫

d3xF
(
ξ
)
· ξ
]t
t=0

+

∫
dt

∫
d3xξ ·

∂F
(
ξ
)

∂t

By writing
∂F
(
ξ
)

∂t
=
∂F
(
ξ
)

∂ξ
·
∂ξ

∂t
, this becomes:

δW = −
[∫

d3xF
(
ξ
)
· ξ
]t
t=0

+

∫
dt

∫
d3xξ ·

(
∂F
(
ξ
)

∂ξ
·
∂ξ

∂t

)
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Ideal MHD energy principle

Because ideal MHD is Hermitian,

ξ ·
(
∂F
(
ξ
)

∂ξ
·
∂ξ

∂t

)
=

(
ξ ·

∂F
(
ξ
)

∂ξ

)
·
∂ξ

∂t
= F

(
ξ
)
·
∂ξ

∂t

and so this becomes:

δW = −
[∫

d3xF
(
ξ
)
· ξ
]t
t=0

+

∫
dt

∫
d3xF

(
ξ
)
·
∂ξ

∂t︸ ︷︷ ︸
=−δW

Hence

δW = −1

2

∫
d3xF

(
ξ
)
· ξ
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Ideal MHD energy equation (standard form)

Substituting the expression for F
(
ξ
)

from earlier:

F
(
ξ
)

= ∇
(
ξ · ∇p0 + γp0∇ · ξ

)
+

1

µ0
(∇× B1)×B0+

1

µ0
(∇× B0)×B1

then integrating over plasma and vacuum regions gives the
following standard form of the ideal MHD energy equation:

δWp =
1

2

∫
d3x

[
|B1|2
µ0

+ γp
∣∣∇ · ξ∣∣2 − ξ∗ · (J0 × B1)

+
(
ξ⊥ · ∇p

)(
∇ · ξ∗⊥

)]
Plasma terms

δWV =
1

2

∫
d3x
|B1|2
µ0

Vacuum (always stabilising)

δWS = −1

2

∮ [
γp∇ · ξ − B0 · B1

µ0

]
ξ∗ · dS Surface terms
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Ideal MHD energy equation (intuitive form)

The plasma contribution δWp can be rearranged:

δWp =

1

2

∫
d3x

[
|B1|2
µ0

Field-line bending ≥ 0

+
B2

µ0

∣∣∣∇ · ξ⊥ + 2ξ⊥ · κ
∣∣∣2 Magnetic compression ≥ 0

+γp0

∣∣∇ · ξ∣∣2 Plasma compression ≥ 0

−2
(
ξ⊥ · ∇p

)(
κ · ξ∗⊥

)
Pressure/curvature drive, + or −

−B1 ·
(
ξ⊥ × b

)
j||

]
Parallel current drive, + or −

This is a very useful form of the energy equation because it makes
clear the balance between destabilising and stabilising effects
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Instability drives

The first three terms in this equation are always ≥ 0 and so are
stabilising, but the last two can be positive (stabilising) or negative
(destabilising):

−2
(
ξ⊥ · ∇p

)(
κ · ξ∗⊥

)
depends on ∇p and κ: if ∇p · κ > 0

then this is destabilising. Instabilities driven by this term are
often called pressure-driven
→ This is the interchange instability drive we saw earlier.

−B1 ·
(
ξ⊥ × b

)
j|| depends on the parallel current j|| and

leads to parallel current-driven kink modes
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Compression

The term γp0

∣∣∇ · ξ∣∣2 represents compression of plasma

The only place in this equation where the parallel
displacement ξ|| ≡ b · ξ enters explicitly is this term

Therefore, we can choose ε|| to minimise ∇ · ξ
For a fluid or plasma motion parallel to B,

|∇ · v | ∼ M2
S

v

L

close to marginal stability where L is a typical length and MS

is the Mach number

Perpendicular to the field, a similar expression applies, but
with the Alfvénic Mach number:

|∇ · v | ∼ M2
A

v

L

⇒ Close to marginal stability, plasma instabilities
tend to be incompressible
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Field-line bending

|B1|2
µ0

is the energy which goes into bending field-lines, and is

always stabilising. The perturbed magnetic field B1 is given by

B1 = ∇×
(
ξ

1
× B0

)
= ξ (∇ · B0)︸ ︷︷ ︸

=0

−B0

(
∇ · ξ

)
+(B0 · ∇) ξ−

(
ξ · ∇

)
B0

Assuming we’re already minimising the compression, neglect the
∇ · ξ term.

⇒ look for modes which minimise (B0 · ∇) ξ −
(
ξ · ∇

)
B0
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Field-line bending

Trying to minimise (B0 · ∇) ξ −
(
ξ · ∇

)
B0

Consider a perturbation of the form

ξ (r , θ, φ) = ξ̂ (r) e i(mθ−nφ)

The first of these terms (B0 · ∇) ξ can be written in a cylinder
(large aspect-ratio tokamak) as:

(B0 · ∇) ξ =

[
Bθ
r

∂

∂θ
+

Bφ
R

∂

∂φ

]
ξ = i

[
m
Bθ
r
− n

Bφ
R

]
ξ

rearranging:

(B0 · ∇) ξ = i
Bφ
R

(
m

q
− n

)
where q =

rBφ
RBθ

This is minimised when q ' m/n so instabilities tend
to localise around resonant surfaces
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Summary of interchange modes

In cylindical plasmas, pressure-driven modes which are constant

along B0 are stabilised by magnetic shear s =
r

q

dq

dr
. The Suydam

criterion says that they are stable if

µ0
2r2

B2
θ

1

s2
κ · ∇p < 1/4

In tokamaks the equivalent is the Mercier criterion

D = −µ0
2r

B2

1

s2

dp

dr

(
1− q2

)
< 1/4

If q > 1 then the good curvature region tends to win and
interchange modes are stable
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Summary

Pressure driven instabilities can be destabilised when
κ · ∇p > 0 (bad curvature regions)

Plasma compression is always stabilising, so tends to be
minimised close to marginal stability

To minimise parallel field bending, modes tend to be localised
around resonant surfaces q = m/n

Interchange modes are constant along B to minimise field-line
bending, but are usually stable in tokamaks. Exceptions are in
the SOL and if q < 1.

In tokamaks, ballooning modes have some variation along B
so that they can maximise their amplitude in the bad
curvature region

We’ll cover these in more detail later when considering
performance limits...
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