
Programming with Python

Dr Ben Dudson

Department of Physics, University of York

21st January 2011

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lecture 2 (1 of 35)

From last time...

Last time we looked at problem solving, and methods for thinking
up algorithms

Understanding a problem

Breaking it up into smaller problems

Working out a set of steps to follow (recipe / algorithm)

Using flow diagrams to express algorithms

This lecture, we’ll start looking at programming, and the Python
language

Dr Ben Dudson Introduction to Programming - Lecture 2 (2 of 35)

Programming

Last lecture we looked at problem solving, and writing
algorithms (instructions) as flow charts.

% mark
< 0 or
> 100?

Error

yes

> 70?
no

’A’ grade
yes

> 40?

no

‘B’ grade
yes

‘C’ grade

no

The actual computer hardware (CPU) needs instructions in
numerical codes which are very hard for humans to write, and
even harder to read.

83 C0 01 A3 88 03 06 08 FF 14 85 90

Instead, people have designed many different ways to express
algorithms which can be understood by the computer

Dr Ben Dudson Introduction to Programming - Lecture 2 (3 of 35)

Programming

Last lecture we looked at problem solving, and writing
algorithms (instructions) as flow charts.
The actual computer hardware (CPU) needs instructions in
numerical codes which are very hard for humans to write, and
even harder to read.

83 C0 01 A3 88 03 06 08 FF 14 85 90

Instead, people have designed many different ways to express
algorithms which can be understood by the computer

Dr Ben Dudson Introduction to Programming - Lecture 2 (3 of 35)

Programming

Last lecture we looked at problem solving, and writing
algorithms (instructions) as flow charts.
The actual computer hardware (CPU) needs instructions in
numerical codes which are very hard for humans to write, and
even harder to read.

83 C0 01 A3 88 03 06 08 FF 14 85 90

Instead, people have designed many different ways to express
algorithms which can be understood by the computer

Dr Ben Dudson Introduction to Programming - Lecture 2 (3 of 35)

Programming

Last lecture we looked at problem solving, and writing
algorithms (instructions) as flow charts.
The actual computer hardware (CPU) needs instructions in
numerical codes which are very hard for humans to write, and
even harder to read.

83 C0 01 A3 88 03 06 08 FF 14 85 90

Instead, people have designed many different ways to express
algorithms which can be understood by the computer

The best way to explain algorithms to computers has been
found to be writing commands in plain text
Languages which are readable to humans, but can be
automatically converted into machine instructions
Many many different ones around. Evolve over time, but use
many of the same ideas

Dr Ben Dudson Introduction to Programming - Lecture 2 (3 of 35)

Python programming language

Python is a relatively new language (1991, major update 2008)

Intended to be clear and easy to start using, but at the same
time very powerful for experienced users

Widely used as it allows quicker development compared to
more traditional languages (e.g. C or Fortran)

Becoming quite common in scientific programming

Freely available, open source. You can download and install a
copy at home, on your laptop etc.

Dr Ben Dudson Introduction to Programming - Lecture 2 (4 of 35)

Variables

We saw in the last lecture that we give quantities names like “x”,
“A” etc. These are like variables (x , y , z) in mathematics, but with
one crucial difference

In maths, once you write x = 2, the value is fixed. In (most)
programming languages, the value of variables can be changed

This is why it makes sense in Python to write

i = i + 1

In mathematics this makes no sense, but in programming what it
means is “Calculate i + 1, then set i to this new value”, or if you
prefer “Set i to the old i + 1”

i → i + 1

Dr Ben Dudson Introduction to Programming - Lecture 2 (5 of 35)

Variables

We saw in the last lecture that we give quantities names like “x”,
“A” etc. These are like variables (x , y , z) in mathematics, but with
one crucial difference

In maths, once you write x = 2, the value is fixed. In (most)
programming languages, the value of variables can be changed

This is why it makes sense in Python to write

i = i + 1

In mathematics this makes no sense, but in programming what it
means is “Calculate i + 1, then set i to this new value”, or if you
prefer “Set i to the old i + 1”

i → i + 1

Dr Ben Dudson Introduction to Programming - Lecture 2 (5 of 35)

Variable names

Variable names in programs can be just single characters like
x or i, but usually it’s better to make them more descriptive

This helps make your program easier to understand: it’s easier
to guess what height represents than h.

Names must start with a letter or underscore “ ”, and be a
combination of letters, numbers, and underscores

Exercise: Which of these can be used as variable names?

1 position

2 2ndValue

3 mark%

4 mark percentage

5 my−variable

6 studentMark

Dr Ben Dudson Introduction to Programming - Lecture 2 (6 of 35)

Variable names

Variable names in programs can be just single characters like
x or i, but usually it’s better to make them more descriptive

This helps make your program easier to understand: it’s easier
to guess what height represents than h.

Names must start with a letter or underscore “ ”, and be a
combination of letters, numbers, and underscores

Exercise: Which of these can be used as variable names?

1 position

2 2ndValue

3 mark%

4 mark percentage

5 my−variable

6 studentMark

Dr Ben Dudson Introduction to Programming - Lecture 2 (6 of 35)

Variable names

Variable names in programs can be just single characters like
x or i, but usually it’s better to make them more descriptive

This helps make your program easier to understand: it’s easier
to guess what height represents than h.

Names must start with a letter or underscore “ ”, and be a
combination of letters, numbers, and underscores

Exercise: Which of these can be used as variable names?

1 position Yes

2 2ndValue No - starts with a number

3 mark% No - not allowed % symbol

4 mark percentage Yes

5 my−variable No - Not allowed minus symbol

6 studentMark Yes

Dr Ben Dudson Introduction to Programming - Lecture 2 (6 of 35)

Variable names

Some words have special meaning in Python, so can’t be used as
variable names.

Reserved words: and, as, assert, break, class, continue, def, del,
elif, else, except, False, finally, for, from, global, if, import, in, is,
lambda, None, nonlocal, not, or, pass, raise, return, True, try,
with, while, and yield

Another important thing to remember is

Python is case sensitive, meaning that it treats upper case
(A,B,C,...) as different characters to lower case (a,b,c,...)

This applies to all names in Python, so that these variables are all
different

myVariable
MyVariable
myvariable
mYVaRIaBLe

Dr Ben Dudson Introduction to Programming - Lecture 2 (7 of 35)

Variable names

Some words have special meaning in Python, so can’t be used as
variable names.

Reserved words: and, as, assert, break, class, continue, def, del,
elif, else, except, False, finally, for, from, global, if, import, in, is,
lambda, None, nonlocal, not, or, pass, raise, return, True, try,
with, while, and yield

Another important thing to remember is

Python is case sensitive, meaning that it treats upper case
(A,B,C,...) as different characters to lower case (a,b,c,...)

This applies to all names in Python, so that these variables are all
different

myVariable
MyVariable
myvariable
mYVaRIaBLe

Dr Ben Dudson Introduction to Programming - Lecture 2 (7 of 35)

Calculations

The basic operations in Python are

Power A ∗∗ B AB

Multiply A ∗ B A× B

Divide A / B A/B

Add A + B A + B

Subtract A − B A− B

Operations higher up the list (e.g. power) are done before those
lower down (e.g. add). This is called operator precedence.

Exercise: What is the result of

2 ∗ 3 ∗∗ 2 − 4

(a) 32 (b) 10 (c) 14 (d) 2/9

Dr Ben Dudson Introduction to Programming - Lecture 2 (8 of 35)

Calculations

The basic operations in Python are

Power A ∗∗ B AB

Multiply A ∗ B A× B

Divide A / B A/B

Add A + B A + B

Subtract A − B A− B

Operations higher up the list (e.g. power) are done before those
lower down (e.g. add). This is called operator precedence.
Exercise: What is the result of

2 ∗ 3 ∗∗ 2 − 4

(a) 32 (b) 10 (c) 14 (d) 2/9

(a) 32 (b) 10 (c) 14 (d) 2/9

Dr Ben Dudson Introduction to Programming - Lecture 2 (8 of 35)

Calculations

The basic operations in Python are

Power A ∗∗ B AB

Multiply A ∗ B A× B

Divide A / B A/B

Add A + B A + B

Subtract A − B A− B

Operations higher up the list (e.g. power) are done before those
lower down (e.g. add). This is called operator precedence.
Exercise: What is the result of

2 ∗ 3 ∗∗ 2 − 4

(a) 32 (b) 10 (c) 14 (d) 2/9

Python interprets this as (2 ∗ (3 ∗∗ 2)) − 4

Dr Ben Dudson Introduction to Programming - Lecture 2 (8 of 35)

Precedence and brackets

Exercise: How do you write the following?

f =
1

x + 1
g =

1

x
+ 1

which one is 1/x+1 ?

Divide (/) has a higher precedence than add (+), so the computer
reads this as

g = (1/ x)+1

If you want to change this, use brackets to tell the computer which
calculations to do first

f = 1/(x+1)

Dr Ben Dudson Introduction to Programming - Lecture 2 (9 of 35)

Precedence and brackets

Exercise: How do you write the following?

f =
1

x + 1
g =

1

x
+ 1

which one is 1/x+1 ?
Divide (/) has a higher precedence than add (+), so the computer
reads this as

g = (1/ x)+1

If you want to change this, use brackets to tell the computer which
calculations to do first

f = 1/(x+1)

Dr Ben Dudson Introduction to Programming - Lecture 2 (9 of 35)

Precedence and brackets

Exercise: How do you write the following?

f =
1

x + 1
g =

1

x
+ 1

which one is 1/x+1 ?
Divide (/) has a higher precedence than add (+), so the computer
reads this as

g = (1/ x)+1

If you want to change this, use brackets to tell the computer which
calculations to do first

f = 1/(x+1)

Dr Ben Dudson Introduction to Programming - Lecture 2 (9 of 35)

Precedence and brackets

What about h = 1
2x + 1 ? Can we write this as

h = 1/2∗ x+1

No: The computer goes through this as before, but here the divide
and multiply have the same precedence. In this case, the computer
does the operations from left to right so interprets this as

h = (1/2)∗ x+1

i.e. h = 1
2x + 1

What we want is to first multiply 2 by x, so put that in brackets

h = 1/(2∗ x)+1

Highest precedence operations done first: ** then *,/ then +,-. If
the same precedence, then goes from left to right.

⇒ If in doubt, put brackets around it

Dr Ben Dudson Introduction to Programming - Lecture 2 (10 of 35)

Precedence and brackets

What about h = 1
2x + 1 ? Can we write this as

h = 1/2∗ x+1

No: The computer goes through this as before, but here the divide
and multiply have the same precedence. In this case, the computer
does the operations from left to right so interprets this as

h = (1/2)∗ x+1

i.e. h = 1
2x + 1

What we want is to first multiply 2 by x, so put that in brackets

h = 1/(2∗ x)+1

Highest precedence operations done first: ** then *,/ then +,-. If
the same precedence, then goes from left to right.

⇒ If in doubt, put brackets around it

Dr Ben Dudson Introduction to Programming - Lecture 2 (10 of 35)

Precedence and brackets

What about h = 1
2x + 1 ? Can we write this as

h = 1/2∗ x+1

No: The computer goes through this as before, but here the divide
and multiply have the same precedence. In this case, the computer
does the operations from left to right so interprets this as

h = (1/2)∗ x+1

i.e. h = 1
2x + 1

What we want is to first multiply 2 by x, so put that in brackets

h = 1/(2∗ x)+1

Highest precedence operations done first: ** then *,/ then +,-. If
the same precedence, then goes from left to right.

⇒ If in doubt, put brackets around it

Dr Ben Dudson Introduction to Programming - Lecture 2 (10 of 35)

Scientific notation

How do we represent very large or small numbers? For example,
mass of the sun (in kg)

mS = 1.98892× 1030

how about?

mass = 1.98892 ∗ 10∗∗30

This will (probably) give the correct answer, but is very inefficient:
it’s telling the computer to do a calculation, rather than giving it a
number.
Instead, programming languages use “e” notation

mass = 1.98892 e30

where the “e” stands for “exponent” or “times ten to the”

Dr Ben Dudson Introduction to Programming - Lecture 2 (11 of 35)

Scientific notation

How do we represent very large or small numbers? For example,
mass of the sun (in kg)

mS = 1.98892× 1030

how about?

mass = 1.98892 ∗ 10∗∗30

This will (probably) give the correct answer, but is very inefficient:
it’s telling the computer to do a calculation, rather than giving it a
number.
Instead, programming languages use “e” notation

mass = 1.98892 e30

where the “e” stands for “exponent” or “times ten to the”

Dr Ben Dudson Introduction to Programming - Lecture 2 (11 of 35)

Scientific notation

How do we represent very large or small numbers? For example,
mass of the sun (in kg)

mS = 1.98892× 1030

how about?

mass = 1.98892 ∗ 10∗∗30

This will (probably) give the correct answer, but is very inefficient:
it’s telling the computer to do a calculation, rather than giving it a
number.
Instead, programming languages use “e” notation

mass = 1.98892 e30

where the “e” stands for “exponent” or “times ten to the”

Dr Ben Dudson Introduction to Programming - Lecture 2 (11 of 35)

Handling numbers

The way computers handle numbers is mostly quite
straightforward, but has some quirks. Why for instance does

p r i n t 7/2

produce the answer ’3’?

This is because 7 and 2 are integers, whole numbers, and so
the result of the calculation is also an integer.

In computing, integers are handled very differently to numbers
like 3.1415 or 2.7 which are called floating point numbers or
floats

I can’t believe you’ve done this! Why??

Dr Ben Dudson Introduction to Programming - Lecture 2 (12 of 35)

Handling numbers

The way computers handle numbers is mostly quite
straightforward, but has some quirks. Why for instance does

p r i n t 7/2

produce the answer ’3’?

This is because 7 and 2 are integers, whole numbers, and so
the result of the calculation is also an integer.

In computing, integers are handled very differently to numbers
like 3.1415 or 2.7 which are called floating point numbers or
floats

I can’t believe you’ve done this! Why??

Dr Ben Dudson Introduction to Programming - Lecture 2 (12 of 35)

Floating point numbers

Why are integers different to floating point numbers?

In a computer, all calculations are done in chunks of a fixed
number of bits, usually 32 or 64 bits

This means that in a single calculation a 32-bit computer can
efficiently handle numbers up to 232 (about 4 billion)

This is accurate, but is also limited to whole numbers. If we
want to deal with very large or non-whole numbers then we
can’t use integers

Dr Ben Dudson Introduction to Programming - Lecture 2 (13 of 35)

Floating point numbers

The solution is to use some of those 32 bits to store the digits
and the exponent separately

9.109381︸ ︷︷ ︸
digits

×10 −31︸︷︷︸
exponent

The downside is that we lose precision: we can only store
about 6 or 7 significant places rather than 9 in an integer

The result is that how integers and floats are represented is
quite different. For example, the number 40 is

Integer 0000 0000 0000 0000 0000 0000 0010 1000
Float 0100 0010 0010 0000 0000 0000 0000 0000

The electronic circuits which deal with floats are therefore
different to those for integers

Dr Ben Dudson Introduction to Programming - Lecture 2 (14 of 35)

Floating point numbers

The solution is to use some of those 32 bits to store the digits
and the exponent separately

9.109381︸ ︷︷ ︸
digits

×10 −31︸︷︷︸
exponent

The downside is that we lose precision: we can only store
about 6 or 7 significant places rather than 9 in an integer

The result is that how integers and floats are represented is
quite different. For example, the number 40 is

Integer 0000 0000 0000 0000 0000 0000 0010 1000
Float 0100 0010 0010 0000 0000 0000 0000 0000

The electronic circuits which deal with floats are therefore
different to those for integers

Dr Ben Dudson Introduction to Programming - Lecture 2 (14 of 35)

Floating point numbers

Most of the time you won’t need to care about how this works:
Python takes care of all this stuff for you. Some things to keep in
mind though:

If you want 7/2 to give 3.5 then make sure Python knows the
numbers are floats not integers by adding a decimal point:
7./2. → 3.5

Exercise: What do you think the result of this is:

v a l u e = 1 . 0 e12
v a l u e = v a l u e + 1 . 0

Should get 1 trillion and 1, but actually get just 1 trillion. Adding
1 has no effect! This is because float can’t store enough digits so
can’t store 1.000000000001e12

Dr Ben Dudson Introduction to Programming - Lecture 2 (15 of 35)

Floating point numbers

Most of the time you won’t need to care about how this works:
Python takes care of all this stuff for you. Some things to keep in
mind though:

If you want 7/2 to give 3.5 then make sure Python knows the
numbers are floats not integers by adding a decimal point:
7./2. → 3.5

Exercise: What do you think the result of this is:

v a l u e = 1 . 0 e12
v a l u e = v a l u e + 1 . 0

Should get 1 trillion and 1, but actually get just 1 trillion. Adding
1 has no effect! This is because float can’t store enough digits so
can’t store 1.000000000001e12

Dr Ben Dudson Introduction to Programming - Lecture 2 (15 of 35)

Outputting results

Of course there’s no point doing calculations without a way to tell
anyone the result.
To output a result, Python has the print command

h = 2
p r i n t h

Why “print”? Nothing is coming out the printer...

Historical reasons: now on screen rather than printer

Dr Ben Dudson Introduction to Programming - Lecture 2 (16 of 35)

Outputting results

Of course there’s no point doing calculations without a way to tell
anyone the result.
To output a result, Python has the print command

h = 2
p r i n t h

Why “print”? Nothing is coming out the printer...

Historical reasons: now on screen rather than printer

Dr Ben Dudson Introduction to Programming - Lecture 2 (16 of 35)

Outputting results

Of course there’s no point doing calculations without a way to tell
anyone the result.
To output a result, Python has the print command

h = 2
p r i n t h

Why “print”? Nothing is coming out the printer...

Historical reasons: now on screen rather than printer
Dr Ben Dudson Introduction to Programming - Lecture 2 (16 of 35)

Outputting results

When printing out results, it’s good to add some text to explain
what the numbers mean and what your program is doing.
In Python, text is put in quotation marks, either ”like this”, or ’like
this’. As is traditional, printing “Hello, World!” is done using

p r i n t ” H e l l o , World ! ”

You can print several things out at the same time by separating
them with commas

p r i n t ”The v a l u e h i s : ” , h

Chunks of text in programming are called strings, and they can be
treated like variables too

s = ”The v a l u e h i s : ”
p r i n t s , h

These strings can be searched through, chopped up, and combined
together. More on this later in the course...

Dr Ben Dudson Introduction to Programming - Lecture 2 (17 of 35)

Outputting results

When printing out results, it’s good to add some text to explain
what the numbers mean and what your program is doing.
In Python, text is put in quotation marks, either ”like this”, or ’like
this’. As is traditional, printing “Hello, World!” is done using

p r i n t ” H e l l o , World ! ”

You can print several things out at the same time by separating
them with commas

p r i n t ”The v a l u e h i s : ” , h

Chunks of text in programming are called strings, and they can be
treated like variables too

s = ”The v a l u e h i s : ”
p r i n t s , h

These strings can be searched through, chopped up, and combined
together. More on this later in the course...

Dr Ben Dudson Introduction to Programming - Lecture 2 (17 of 35)

Getting input

To get values from the user, Python has the input function (we’ll
come back to what functions are next time)

x = i n p u t (” E n t e r x : ”)
h = 1 . / (2 . ∗ x)+1.
p r i n t h

This asks the user for x, calculates h and prints it out.

Enter x:

Dr Ben Dudson Introduction to Programming - Lecture 2 (18 of 35)

Getting input

To get values from the user, Python has the input function (we’ll
come back to what functions are next time)

x = i n p u t (” E n t e r x : ”)
h = 1 . / (2 . ∗ x)+1.
p r i n t h

This asks the user for x, calculates h and prints it out.

Enter x:2

1.25

Dr Ben Dudson Introduction to Programming - Lecture 2 (19 of 35)

Case sensitive revisited

As with variable names, Python commands are case sensitive.
Therefore, although

P r i n t h

looks fine to a human, but to Python it’s incomprehensible.

Humans are very good at seeing patterns and filling in gaps.
Computers are still very bad at these things so need precise input.

In programming you have to be very picky about small details.
Even a little misplaced comma or capital letter can break your

program

When something like this happens, the computer will try to help
and tell you where it thinks the mistake is. Often some detective
work is needed.

Dr Ben Dudson Introduction to Programming - Lecture 2 (20 of 35)

Case sensitive revisited

As with variable names, Python commands are case sensitive.
Therefore, although

P r i n t h

looks fine to a human, but to Python it’s incomprehensible.
Humans are very good at seeing patterns and filling in gaps.
Computers are still very bad at these things so need precise input.

In programming you have to be very picky about small details.
Even a little misplaced comma or capital letter can break your

program

When something like this happens, the computer will try to help
and tell you where it thinks the mistake is. Often some detective
work is needed.

Dr Ben Dudson Introduction to Programming - Lecture 2 (20 of 35)

Making decisions

One of the important things we want an algorithm to do is make
decisions

Is A > 6? A greater than 6
Yes

A less than or equal to 6

No

In Python, this is done using if clauses

i f A > 6 :
p r i n t ”A i s g r e a t e r than 6”

e l s e :
p r i n t ”A i s l e s s than or e q u a l to 6”

Dr Ben Dudson Introduction to Programming - Lecture 2 (21 of 35)

Making decisions

One of the important things we want an algorithm to do is make
decisions

Is A > 6? A greater than 6
Yes

A less than or equal to 6

No

In Python, this is done using if clauses

i f A > 6 :
p r i n t ”A i s g r e a t e r than 6”

e l s e :
p r i n t ”A i s l e s s than or e q u a l to 6”

Dr Ben Dudson Introduction to Programming - Lecture 2 (21 of 35)

Making decisions

The format is

i f c o n d i t i o n :
commands

e l s e :
commands

where condition is what you want to test, and commands is one or
more lines of commands, called a code block.
For example

i f A > 6 :
B = 2
p r i n t ”Got spam”

e l s e :
B = −2
p r i n t ”Got eggs ”

Dr Ben Dudson Introduction to Programming - Lecture 2 (22 of 35)

Making decisions

The format is

i f c o n d i t i o n :
commands

e l s e :
commands

where condition is what you want to test, and commands is one or
more lines of commands, called a code block.
Most important: Note that the code blocks are indented

Indentation is crucial in Python, and is how it knows where blocks
start and end

Dr Ben Dudson Introduction to Programming - Lecture 2 (23 of 35)

Making decisions

Exercise: Draw the flow diagram for the following Python code

i f A > 0 :
p r i n t ” p o s i t i v e ”
i f A > 1 0 0 :

p r i n t ” Over 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to z e r o ”

A > 0? Positive
Yes

Less than or equal to zero

No

A > 100? Over 100
Yes

Less than or equal to 100

No

Dr Ben Dudson Introduction to Programming - Lecture 2 (24 of 35)

Making decisions

Exercise: Draw the flow diagram for the following Python code

i f A > 0 :
p r i n t ” p o s i t i v e ”
i f A > 1 0 0 :

p r i n t ” Over 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to 100 ”
e l s e :

p r i n t ” L e s s than or e q u a l to z e r o ”

A > 0? Positive
Yes

Less than or equal to zero

No

A > 100? Over 100
Yes

Less than or equal to 100

No

Dr Ben Dudson Introduction to Programming - Lecture 2 (24 of 35)

More complicated decisions

So far we’ve only used > to test if one number is greater than
another. You can use the following comparisons

A greater than B A > B

A less than B A < B

A greater than or equal to B A >= B

A less than or equal to B A <= B

A equal to B A == B

A = B sets A equal to B, but A == B tests if A is equal to B

Dr Ben Dudson Introduction to Programming - Lecture 2 (25 of 35)

More complicated decisions

What about our original percentage to grade problem?

% mark
< 0 or
> 100?

Error

yes

> 70?
no

’A’ grade
yes

> 40?

no

‘B’ grade
yes

‘C’ grade

no

Dr Ben Dudson Introduction to Programming - Lecture 2 (26 of 35)

More complicated decisions

In Python, this can be written as

m = i n p u t (” E n t e r p e r c e n t a g e mark : ”)
i f m < 0 or m > 1 0 0 :

p r i n t ” E r r o r ”
e x i t ()

i f m > 7 0 :
p r i n t ”A”

e l s e :
i f m > 4 0 :

p r i n t ”B”
e l s e :

p r i n t ”C”

Note that if doesn’t need an else - you can just miss it out
Also you can combine tests using and, or and not

Dr Ben Dudson Introduction to Programming - Lecture 2 (27 of 35)

More complicated decisions

A shorthand way to check for several possibilities is to use elif
instead of else and if

m = i n p u t (” E n t e r p e r c e n t a g e mark : ”)
i f m < 0 or m > 1 0 0 :

p r i n t ” E r r o r ”
e x i t ()

i f m > 7 0 :
p r i n t ”A”

e l i f m > 4 0 :
p r i n t ”B”

e l s e :
p r i n t ”C”

Dr Ben Dudson Introduction to Programming - Lecture 2 (28 of 35)

Going around in circles

Another common task we want is to be able to repeat commands
while some condition is true.

From last time: find the lowest number m in a list of N numbers

Input
X1 . . .XN

i = 1,
m = 1

i = N?

Result Xm

Yes

i = i + 1
No

Xi < Xm?m = i
Yes

No

Dr Ben Dudson Introduction to Programming - Lecture 2 (29 of 35)

Going around in circles

Another common task we want is to be able to repeat commands
while some condition is true.
From last time: find the lowest number m in a list of N numbers

Input
X1 . . .XN

i = 1,
m = 1

i = N?

Result Xm

Yes

i = i + 1
No

Xi < Xm?m = i
Yes

No

Dr Ben Dudson Introduction to Programming - Lecture 2 (29 of 35)

Going around in circles

Another common task we want is to be able to repeat commands
while some condition is true.
From last time: find the lowest number m in a list of N numbers

Input
X1 . . .XN

i = 1,
m = 1

i = N?

Result Xm

Yes

i = i + 1
No

Xi < Xm?m = i
Yes

No

i = 0
m = 0
whi le i < N:

i = i + 1
i f X [i] < X [m] :

m = i
p r i n t ”Min i s ” , X [m]

Dr Ben Dudson Introduction to Programming - Lecture 2 (30 of 35)

Going around in circles

A few new things in this example

i = 0
m = 0
whi le i < N:

i = i + 1
i f X [i] < X [m] :

m = i
p r i n t ”Min i s ” , X [m]

while repeats the commands
in its block (indented) as
long as its condition is true.
In this case, keeps going
until i is equal to N

In programming, lists of
numbers X1 . . .XN called
arrays can be used. X1 is
written X[1] so Xm is X[m]

In Python, arrays start from
0, so in an array of N
numbers, the first one is
X[0] and the last is X[N−1]

Dr Ben Dudson Introduction to Programming - Lecture 2 (31 of 35)

Going around in circles

Exercise: Try writing down the Python code for this loop which
calculates the factorial N! of a number N

Input N R = 1 N > 1?

Output R

No

R = R ×N,
N = N − 1

Yes

N = i n p u t (” E n t e r N: ”)
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

p r i n t ” R e s u l t i s ” , R

Dr Ben Dudson Introduction to Programming - Lecture 2 (32 of 35)

Going around in circles

Exercise: Try writing down the Python code for this loop which
calculates the factorial N! of a number N

Input N R = 1 N > 1?

Output R

No

R = R ×N,
N = N − 1

Yes

N = i n p u t (” E n t e r N: ”)
R = 1
whi le N > 1 :

R = R ∗ N
N = N − 1

p r i n t ” R e s u l t i s ” , R

Dr Ben Dudson Introduction to Programming - Lecture 2 (32 of 35)

More advanced topics

We have covered the most basic parts of programming, and
almost everything can be written with just if and while blocks

For bigger programs though this would become very unwieldy,
slow to write and difficult to understand

There are many more abstract ideas in programming, most of
which are ways to handle increasingly complicated programs

In this course we won’t be able to cover all of them, but you
will come across some of the more common ones

Next time (lab 1): more loops, lists, arrays, and functions

Dr Ben Dudson Introduction to Programming - Lecture 2 (33 of 35)

More advanced topics

We have covered the most basic parts of programming, and
almost everything can be written with just if and while blocks

For bigger programs though this would become very unwieldy,
slow to write and difficult to understand

There are many more abstract ideas in programming, most of
which are ways to handle increasingly complicated programs

In this course we won’t be able to cover all of them, but you
will come across some of the more common ones

Next time (lab 1): more loops, lists, arrays, and functions

Dr Ben Dudson Introduction to Programming - Lecture 2 (33 of 35)

Summary

Python is an efficient way to express algorithms, easy to read
but also a “proper” language

Programming languages have some quirks due to how
computers work

Computers are very picky about small details such as
punctuation (commas, colons etc.) and upper vs. lower case

Python is particularly picky about indentation: changes in
indentation mark the beginning and end of blocks of code

See the blue boxes in the slides for the most important things
to watch out for

Dr Ben Dudson Introduction to Programming - Lecture 2 (34 of 35)

Summary

Python is an efficient way to express algorithms, easy to read
but also a “proper” language

Programming languages have some quirks due to how
computers work

Computers are very picky about small details such as
punctuation (commas, colons etc.) and upper vs. lower case

Python is particularly picky about indentation: changes in
indentation mark the beginning and end of blocks of code

See the blue boxes in the slides for the most important things
to watch out for

Dr Ben Dudson Introduction to Programming - Lecture 2 (34 of 35)

Summary

Python is an efficient way to express algorithms, easy to read
but also a “proper” language

Programming languages have some quirks due to how
computers work

Computers are very picky about small details such as
punctuation (commas, colons etc.) and upper vs. lower case

Python is particularly picky about indentation: changes in
indentation mark the beginning and end of blocks of code

See the blue boxes in the slides for the most important things
to watch out for

Dr Ben Dudson Introduction to Programming - Lecture 2 (34 of 35)

Summary

Python is an efficient way to express algorithms, easy to read
but also a “proper” language

Programming languages have some quirks due to how
computers work

Computers are very picky about small details such as
punctuation (commas, colons etc.) and upper vs. lower case

Python is particularly picky about indentation: changes in
indentation mark the beginning and end of blocks of code

See the blue boxes in the slides for the most important things
to watch out for

Dr Ben Dudson Introduction to Programming - Lecture 2 (34 of 35)

Summary

Python is an efficient way to express algorithms, easy to read
but also a “proper” language

Programming languages have some quirks due to how
computers work

Computers are very picky about small details such as
punctuation (commas, colons etc.) and upper vs. lower case

Python is particularly picky about indentation: changes in
indentation mark the beginning and end of blocks of code

See the blue boxes in the slides for the most important things
to watch out for

Dr Ben Dudson Introduction to Programming - Lecture 2 (34 of 35)

Enough!

http://www-users.york.ac.uk/∼bd512/teaching.shtml

Dr Ben Dudson Introduction to Programming - Lecture 2 (35 of 35)

