
Getting Started with Communications Engineering GSW� Eigenvalues and Eigenvectors 

1 GSW� Eigenvalues and Eigenvectors 
Matrices with only one row or only one column (called row vectors or column vectors 
respectively) can be used to represent points in space by containing the co-ordinates (relative to 
some given axes) of the point.  For example, the column vector1: 

2
2

 
 
 

 

can represent a point a distance 8  from the origin, with an angle of 45 degrees to the two 
positive axes, x1 and x2.  
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Figure 1-1  Geometric Representation of a Vector 

The same idea applies to real and complex vectors of any number of dimensions (although any 
more than two real components, and the vector gets harder to draw). 

A square matrix can be said to act on a vector, since multiplying a column vector by such a 
matrix will result in another column vector with the same number of elements, however one 
that will, in general, have a different direction and amplitude. 

For example, consider the vector 
2

2

 
=  

  
x  as shown above, and the matrix , 

2 2

2 1

 
=  

 − 
A

 
2 2 2 8

2 1 2 2

     
= =     

     −     
Ax  (0.1) 

and this can represent a point with co-ordinates (8,2).  Notice that in this case the original 
vector [2; 2] has changed both in amplitude and direction when pre-multiplied by the matrix A. 

                                                      

1 I�ll sometimes write column vectors in the form [2; 2] (note the semicolon between the elements) and row vectors 
as [2 2] (note the absence of a semicolon) since this is the easiest way to input them into MATLAB. 
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Figure 1-2  Action of a Matrix on a Vector 

For any square matrices, there are some vectors that do not change their direction (except 
possibly to point in the opposite direction2) when pre-multiplied by the matrix.  These vectors 
are known as the eigenvectors of the matrix.  While the direction of an eigenvector does not 
change when pre-multiplied by a matrix (except to possibly reverse direction), the amplitude of 
the vector can change.  The factor by which the amplitude of an eigenvector changes when pre-
multiplied by the matrix is the eigenvalue.  (Eigenvalues can be negative: it�s these negative 
eigenvalues that result in eigenvectors reversing direction when pre-multiplied by the matrix.) 

We can write: 

 λ=Ax x  (0.2) 

when x is an eigenvector, and λ its eigenvalue.   

Another useful fact: any multiple of an eigenvector is also an eigenvector: 

 ( ) ( )k k k kλ λ= = =A x Ax x x  (0.3) 

It�s the direction that�s important for an eigenvector, not the amplitude: the amplitude can be 
anything.  As a result, eigenvectors are sometimes quoted in a normalised form.  A normalised 
eigenvector has a length of one, so that xHx = 1. 

For example, consider the matrix above, 
2 2
2 1

 
=  − 

A

2
1

.  For this matrix, the two eigenvalues 

are 3 and �2, and they have eigenvectors are 
 
 
  2

 and 
1− 

 
 

 respectively, since: 

  (0.4) 
2 2 2 4 2 6 2

3
2 1 1 4 1 3 1

+         
= = =         − −         

                                                      

2 Pointing in the opposite direction and pointing in the same direction with a negative length are the same thing in 
linear algebra. 
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2 2 1 2 4 2 1

2
2 1 2 2 2 4 2

− − + −        
= = = −        − − − −        





 (0.5) 

The action of the matrix on these vectors is to change their lengths, but not change their 
direction.  (With the usual caveat: the direction of the second eigenvector is reversed, but really 
it�s in the same direction, it�s just had its length multiplied by a negative number.  It lies along 
the same straight line, it just points the other way). 

To find the normalised eigenvectors, we just divide these eigenvectors by their lengths: 

 
2 2

2
21 1
152 1

 
     =  

+  
 (0.6) 

 
2 2

1
12 1

251 2

− 
  −   =  

+  
 (0.7) 

1.1 Some Useful Facts about Eigenvalues 

There are several useful theorems about eigenvalues and eigenvectors; what follows is a short 
list of some of the most useful ones. 

1.1.1 How Many Eigenvalues are There? 
In general, an n-by-n square matrix will have n eigenvalues, however, they might not all be 
different3.  (However, if there are two eigenvectors with the same value, they will each have a 
different eigenvector.) 

While it is possible to have two (or more) different eigenvectors with the same eigenvalue; it�s 
impossible to have two different eigenvalues with the same eigenvector.  If the eigenvalues are 
different, the eigenvectors must be different too (see the problems for a proof). 

1.1.2 The Trace of a Matrix and the Sum of Eigenvalues 
It�s a remarkable fact that the trace of any matrix (the sum of all the terms on the main 
diagonal) is equal to the sum of the eigenvalues.  For example, the by-now familiar matrix: 

2 2

2 1

 
=  

 − 
A  

                                                      

3 This is one of those unhelpful statements mathematicians sometimes make.  The point is that the solution to the 
equation that determines the eigenvalues of an n-by-n matrix is a nth order polynomial, so it will have n roots.  
However, the roots might not be different: e.g. we usually say that x2 + 2x + 1 = 0 has two roots, they�re just both 
x =  �1.  The same sort of thing happens with eigenvalues. 

© 2007 Dave Pearce Page 3 28/09/2007 



Getting Started with Communications Engineering GSW� Eigenvalues and Eigenvectors 

has two eigenvalues, 3 and �2, with sum = 3 � 2 = 1.  The sum of the terms on the main 
diagonal is 2 � 1 = 1.  This is a simple way to find the last eigenvalue once all the others are 
known. 

It�s also a very useful way to put an upper limit on the value of the largest eigenvalue if you 
happen to know that all the eigenvalues are positive (e.g. by knowing that A is a positive 
definite matrix, see the next section): the trace of the matrix must be greater than the largest 
eigenvalue.  This is a particularly useful result in some iterative techniques to solve the 
equations y = Ax, where it�s useful to know a number bigger than the largest eigenvector4. 

1.1.3 Positive Definite Matrices and Real Positive Eigenvalues 
A positive definite matrix5 only has real positive eigenvalues.  This one is easy to prove: 
consider the defining equation of an eigenvalue: 

 λ=Ax x  (0.8) 

and pre-multiply by xH.  That gives: 

 ( )H H Hλ λ= =x Ax x x x x  (0.9) 

Now xHAx is real and positive if A is positive definite (that�s the definition of positive 
definite), and xHx is also real and positive (it�s the square of the length of the vector), so the 
eigenvalues are the ratios of two real, positive numbers, which means they must be real and 
positive too. 

Positive semi-definite matrices can have xHAx equal to zero for non-zero vectors x, and that 
would imply that the eigenvalue can also be zero.  However, the eigenvalues of these matrices 
can still never be negative. 

1.1.4 Hermitian Matrices and Orthogonal Eigenvectors 
Any two eigenvectors of a Hermitian6 matrix with different eigenvalues are orthogonal. 

This proof is only slightly harder that the last one.  Consider two different eigenvalues λ and µ 
of a matrix A and their corresponding eigenvectors x and y, so that: 

 λ µ= =Ax x Ay y  (0.10) 

Start by taking the complex transpose of the first equation Ax = λx, and post-multiply by y: 

  (0.11) H H Hλ=x A y x y

                                                      

4 See the chapter on Steepest Gradient Techniques for an example. 

5 Positive definite matrix: one for which for all vectors x, xHAx is positive, unless x is the zero vector.  Positive 
semi-definite matrix: one in which for all non-zero vectors x, xHAx is not negative. 

6 Hermitian matrix: one equal to the transpose of its complex conjugate, so that A* = AT, or AH = A. 
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then, take the second equation Ay = µy, and pre-multiply by xH: 

  (0.12) H µ=x Ay x yH

Now, if A is Hermitian, then AH = A, so the left-hand sides of equation (0.12) and equation 
(0.11) are equal.  Subtract these two equations, and we get: 

 ( )0 Hλ µ= − x y  (0.13) 

If these eigenvalues have different values, then λ ≠ µ, which means xHy must be zero: and 
that�s the definition of these eigenvectors being orthogonal. 

1.1.5 Hermitian Matrices and Sets of Orthogonal Eigenvectors 
A Hermitian matrix with n rows and n columns has a set of n mutually orthogonal eigenvectors 
that map n-dimensional space (i.e. any vector in n-dimensional space can be expressed in terms 
of a weighted sum of these eigenvectors). 

If all of the eigenvalues of the matrix are different, then this property follows immediately 
from the last result: all the eigenvectors are orthogonal, so any n-by-n Hermitian matrix must 
have a set of n orthogonal eigenvectors.  If you�ve got n orthogonal eigenvectors, they must 
map n-dimensional space: it�s a set of axes. 

However, if the matrix has two (or more) eigenvalues that are equal, then equation (0.13) 
suggests we could have two eigenvectors that are different but not orthogonal: and this is true, 
we can.  Trivial example: consider the unit matrix, which doesn�t change any vector at all.  
Every vector is therefore an eigenvector of the unit matrix, and all the eigenvalues of the unit 
matrix are one: 

 1λ λ= = ⇒Ix x x =  (0.14) 

More generally, a matrix with just two equal eigenvalues has a plane of possible vectors all of 
which remain unchanged in direction by the operation of the matrix, and any vector in that 
plane is therefore an eigenvector.  If a matrix has three equal eigenvalues, it has a 
3-dimensional space of possible vectors all of which remain unchanged in direction.  The space 
defined by the set of vectors that remain unchanged in direction when pre-multiplied by a 
matrix, but share the same eigenvalue, is known as an eigenspace. 

In these cases we can always find a set of n orthogonal eigenvectors for an n-by-n Hermitian 
matrix by just choosing any set of orthogonal vectors from this eigenspace.  (The set of 
orthogonal eigenvectors we choose is not unique: there are, for example, an infinite number of 
ways to pick two orthogonal vectors from a 2-dimensional plane.) 

You might think this is obvious, and I�d tend to agree; but if not, then consider taking any two 
different eigenvectors from this eigenspace, x and y, where x and y are not orthogonal.  Then, 
express the vector y in terms of the sum of a vector parallel to x, and a vector perpendicular to 
x, which I�ll call x�: 

 'y ax bx= +  (0.15) 
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x1

x2

x

y

bx�

ax

y = ax + bx�

x1

x2

x

y

bx�

ax

y = ax + bx�

 

Figure 1-3  Expressing a Vector as the Sum of Two Orthogonal Eigenvectors 

Then, the vector x� is an eigenvector of A, since: 

 1 1 1 1' a a a a
b b b b b b b b

λ λ λ λ   = − = − = − = − =   
   

Ax A y x Ay Ax y x y x x'  (0.16) 

so x and x� are two orthogonal eigenvectors with the same eigenvalue.  The same method can 
be extended to any number of dimensions.  You can always find a set of orthogonal 
eigenvectors. 

1.1.6 Non-Positive Definite Matrices 
Some matrices don�t have any real eigenvalues, even if all the terms in the matrix are real.  For 
example, take the case of the matrix: 

cos sin
sin cos

θ θ
θ θ

− 
 
 

 

This represents a rotation through an anti-clockwise angle of θ.  Any column vector multiplied 
by this matrix will be transformed into a column vector of the same amplitude, but pointing in 
a different direction. 

x1
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θ

x

Ax

y

Ay

θ x1

x2

θ

x

Ax

y

Ay

θ

 

Figure 1-4  Action of a Rotation Matrix 

Try and work out the eigenvalues for this case, and we get cos(θ) + jsin(θ) and cos(θ) � jsin(θ).  
Neither are real (although note that their sum is real, and equal to 2cos(θ), the trace of the 
matrix, as expected).  The eigenvectors are [1; j ] and [1; �j ]. 
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This isn�t a surprise: there is no real direction in a two-dimensional plane that remains 
unchanged by this sort of rotation.  However, it is interesting to note that if we allow the 
elements of the vectors to be complex, we can always find eigenvalues and eigenvectors for 
any matrix.  

1.2 Expressing Vectors as the Sum of Eigenvectors 

For the rest of this chapter, I�ll restrict the discussion here to the most common and useful case: 
the Hermitian positive semi-definite matrix7.  This means the eigenvalues are all real and 
positive, the eigenvectors with different eigenvalues are orthogonal, and there are a set of n 
orthogonal eigenvectors that cover the entire n-dimensional space. 

This leads to one of the most common uses of eigenvalues: it is possible to express any vector 
in terms of the weighted sum of eigenvectors.  If we can find a simple way to do this, then 
calculating the action of a matrix on a vector is straightforward: we just divide the vector into 
its components along the eigenvectors, multiply each component by the relevant eigenvalue, 
and then add all the components back up again.  Simple.  For example, consider the matrix A 
yet again: 

2 2

2 1

 
=  

 − 
A  

which we know has eigenvectors  and 
2
1

 
 
 

1
2
− 

 
 

.  Now consider the vector .  To work 

out Ax, we could express this vector as a weighed sum of the two eigenvectors: 

2
2

 
=  

 
x

 
2 26 2
2 1 25 5

1−    
= = +


     
    

x


 (0.17) 

and we can then work out the result of this matrix acting on x by multiplying the eigenvector 
components by their corresponding eigenvalues.  Here we have six-fifths of the first 
eigenvector (which has an eigenvalue of 3); and two-fifths of the second eigenvector (with an 
eigenvalue of �2), so the output is: 

 ( ) ( )
2 1 2 1 406 2 18 4 13 2
1 2 1 2 105 5 5 5 5

− −           
= + − = − = =           

           
Ax

8
2

                                                     

 (0.18) 

 

7 The reason this is a very common case is that these matrices result from trying to find the solution to the minimum 
square problem: finding the value of x that minimises z = ||y � Ax||2.  Multiply this out, and differentiate with respect 
to the elements of x, and we find that the required value of x that minimises z satisfies the normal equation: 

( ) 1H H−
=x A A A y  

Now, AHA is Hermitian, since (AHA)H = AH(AH)H = AHA, and it�s positive semi-definite, since xH(AHA)x = 
xHAHAx = (Ax) H(Ax), and that�s the square of the length of the vector Ax, which being a square can never be 
negative. 
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Of course, if you�ve read the chapter on �Counting the Cost� you might be wondering why 
anyone would ever want to do this.  It only takes n2 MAC operations to compute the product of 
an n-element vector and an n-by-n matrix, and that�s far less than is required to work out the 
eigenvectors, their eigenvalues, and then work out how to express any arbitrary vector in terms 
of the sum of the eigenvectors. 

Fair point: however, what if you wanted to calculate the result of using the same matrix to act 
on the same vector over and over again? 

  (0.19) 20=y AAAAAAAAAAAAAAAAAAAAx A x=

That takes a lot of multiplications to work out directly.  However, if you happen to know the 
eigenvalues and eigenvectors of A, you can just work out the components of x along the 
eigenvectors, multiply each by the relevant eigenvalue raised to the power of 20, and add up 
the components again.  Much easier.  Would you ever want to do this?  Well, in the case of an 
iterative algorithm (an algorithm which approaches the answer in a series of small steps by 
performing the same operation over and over again), possibly yes. 

The only problem is that�s it quite a difficult operation to work out the eigenvalues and 
eigenvectors for reasonable-sized matrices.  Before I can talk about how to do this, I need to 
introduce the subject of matrix determinants. 

1.3 Determinants 

As we�ve seen, matrices operating on vectors can be thought of as changing the direction and 
length of the vectors.  Since vectors can represent points in space, this corresponds to the 
matrix moving points in space: this is known as a mapping.  If the original points lay on the 
surface of a volume (or the line enclosing an area in two dimensions), the mapping all these 
points will result in a new volume (or area).  The ratio of the new volume (or area) to the 
original volume (or area) is a constant for all shapes, and is known as the determinant of the 
matrix.  It�s equal to the product of all the eigenvalues. 

To prove this, consider a tiny, elemental volume (or area) before the mapping has taken place, 
with sides parallel to the eigenvectors8, and can be represented as ax and by where x and y are 
the eigenvectors of A. 

x1

x2

ax
by

x1

x2

ax
by

 

Figure 1-5  Arbitrary Area with Small Area Element 
                                                      

8 For Hermitian matrices the eigenvectors will be orthogonal, but we don�t need to assume that here. 
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(For convenience in drawing, I�ll assume we�ve just got 2-element vectors representing points 
in a 2-dimensional plane, however the method can be easily extended to any number of 
dimensions.) 

Provided a and b are small enough (and we can let them approach zero) the entire area can be 
expressed in terms of the sum of small areas of this shape.  Consider mapping each small area 
element into the new space, and we�d transform this small shape into:  

 

x1

x2

x1

x2

ax
by

bAy = bµy

aAx = aλxx1

x2

x1

x2

ax
by

bAy = bµy

aAx = aλx

 

Figure 1-6  Mapping of Small Area Element 

The area of the original parallelogram with sides ax and by was: 

 ( )( ) ( )sinb a θy x  (0.20) 

where θ  is the angle between the two vectors x and y.  Since the two sides of the small area are 
eigenvectors, the angle between them doesn�t change when they are both mapped by the matrix 
A.  However, the lengths do change: the length of the side ax becomes aAx = aλx where λ is 
the eigenvalue of eigenvector x, and the length of the side by becomes bAy = bµ y where µ is 
the eigenvalue of eigenvector y.  Hence the area of this corresponding small element after the 
mapping is: 
 
 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )sin sin sinb a b a b aθ λ µ θ λµ= =Ay Ax y Ax y x θ  (0.21) 

which is λµ  times the area of the original small element.  This is true for all the small areas 
that made up the original large shape: hence the area of the large shape has increased during 
the mapping by a factor of λµ , which is the product of the eigenvalues of the matrix A. 

1.3.1 Calculating Determinants 
To calculate a determinant: multiply each element along the first row of the matrix by the 
determinant of the matrix composed of all the terms except the terms in the column or row of 
the� oh, this is getting far too complicated.  I�ll have to introduce the minor matrix. 

1.3.1.1 The Minor Matrix 
Every element of a matrix has an associated minor matrix.  The minor matrix for any element 
is the entire contents of the original matrix, except the row and the column on which the 
element lies.  For example, consider the following matrix, and the minor of the element B2,3, 
which in this case, happens to be equal to two. 

The minor contains all the elements of the matrix except those in the second row, and the third 
column.  The minor of an n-by-m matrix always has (n � 1) rows and (m � 1) columns. 
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3 2 1 1
3 1 2 3

2 2 1 2
1 3 3 2

− 
 − 
 −
 − − 

3 2 1
2 2 2
1 3 2

 
 − 
 − − 

⇒
3 2 1 1
3 1 2 3

2 2 1 2
1 3 3 2

− 
 − 
 −
 − − 

3 2 1
2 2 2
1 3 2

 
 − 
 − − 

⇒
 

Figure 1-7  Example of a Minor Matrix of A2,3 

Got the idea?  Right � back to calculating determinants. 

1.3.1.2 Back to Calculating Determinants 
To calculate a determinant: multiply each element along the first row of the matrix by the 
determinant of its minor.  Take the first of these products, then alternately subtract and add the 
next products along the row.  The end result is the determinant of the original matrix. 

Of course, all this does is allow us to express the determinant of a matrix in terms of the 
determinant of a lot of matrices (the minors) with one less row and column.  How do we work 
out those?  In terms of the determinants of matrices with one less row and column than they 
have.  And so on, until you�re trying to work out the determinant of a matrix with only one row 
and column: in other words, a scalar; and that�s easy: the determinant of a scalar is equal to 
itself. 

For example, consider calculating the determinant of a general 2-by-2 matrix:  
a b
c d

 
 
 

The minor matrix for the first element a is the matrix of all terms not on the first row, and not 
in the first column.  That�s the matrix [d], and it has a determinant of d.  Similarly, the minor 
matrix for the second element b is just [c].  Alternately adding and subtracting the product of 
the terms and their minors along the first row gives: 

 ( ) ( )det
a b

a d b c ad bc
c d

  
= − = −     

 (0.22) 

Extending the idea to a three-by-three matrix: 

 

( ) ( ) ( )

det det det det
a b c

e f d f d e
d e f a b c

h i g i g h
g h i

a ei fh b di fg c dh eg

  
            = − +    


                         

= − − − + −

  (0.23) 

and the determinants of larger matrices can be determined in a similar way, it just takes rather a 
long time for large matrices. 

1.3.1.3 Some Important Things about Determinants 
Any matrix with a non-zero determinant can be inverted, so having a non-zero determinant 
means the matrix is full rank (this also means that only square matrices have determinants, 
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since only square matrices can be inverted).  Any matrix with a determinant of zero is singular, 
and cannot be inverted. 

If a matrix A has a determinant of det(A), then the volume enclosed by any set of points Ax is 
det(A) times greater than the volume enclosed by the set of points x.  Similarly, the volume 
enclosed by any set of points BAx is det(BA) times greater than the volume enclosed by the 
points x.  But this is also det(B) times the volume enclosed by the points Ax, which is det(A) 
times greater than the original volume.  This gives the important result that: 

 ( ) ( ) ( )det det det=AB A B  (0.24) 

1.4 Determining Eigenvalues and Eigenvectors 

Working out the eigenvalues and eigenvectors of a matrix is not a simple task, and takes a 
large number of individual calculations to do.  For this reason, many practical algorithms use a 
different approach based on iteration.  First, however, the direct method: 

1.4.1 The Direct Method 
Given a matrix A, the eigenvectors can be determined by noting that: 

 1

2 2

1x x
x x

λ
  

=


   
  

A


 (0.25) 

which with a simple manipulation gives: 

 ( ) 1

2

0
0

x
x

λ
   

− =   
  

A I  (0.26) 

Let me write that equation in a slightly different way: 

 ( ) 1

2 2

0 1x x
x x

λ
  

− =


   
  

A I


 (0.27) 

which makes it a bit more obvious that any eigenvector of A is also an eigenvector of the 
matrix (A � λI), but now with an eigenvalue of zero.  Think about what that means in terms of 
the determinant of (A � λI): if a matrix has an eigenvalue of zero, then any n-dimensional 
space is going to map to an (n � 1)-dimensional space using this vector, since any component 
parallel to the eigenvector with a zero eigenvalue is going to end up as zero.  A 2-dimensional 
plane, when acted on by such a matrix, will end up as a straight line; a 3-dimensional space 
will end up as a plane, and so on. 

The determinant is the ratio of the volume of a space after the action of the matrix A to the 
volume of the original space.  That means the determinant of this matrix (A � λI) must be zero.  
2-dimensional planes have a 3-dimensional volume of zero.  Straight lines have an area of 
zero. 

So, to find the eigenvalues of a matrix A, we need to find the values λ that make the 
determinant of the matrix (A � λI) equal to zero.  This leads to the characteristic equation of 
the matrix: 
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 ( )det 0λ− =A I  (0.28) 

solving which produces the eigenvalues.  For example, consider the matrix A above yet again: 

  (0.29) 

( )

( )( )

( )( )

2

2 2
det det 0

2 1

2 1 4

6
3 2

λ
λ

λ

λ λ

λ λ
λ λ

 − 
− = =  − −  

= − − − −

= − −

= − +

A I

giving the possible eigenvalues 3 and �2. 

Knowing the eigenvalues, the eigenvectors can be calculated by direct substitution, for 
example for the eigenvalue of three: 

 1

2 2

2 3 2 1 2
0

2 1 3 2 4
x x
x x

− −       1= =      − − −      
 (0.30) 

 1 2

1 2

2 0
2 4

x x
x x 0

− + =
− =

 (0.31) 

You might notice that these two equations are not linearly independent.  We can ignore one of 
them, set the value of one element of x to anything we like, and then solve the others.  For 
example, let x1 = 1, then x2 = 0.5, giving the eigenvector: 

 
1

0.5
 

=  
 

x  (0.32) 

Finding all the eigenvalues and eigenvectors of a large matrix by this process is very time-
consuming, and is another thing we usually try to avoid doing if at all possible. 

1.4.2 Finding the Eigenvector with the Largest Eigenvalue by Iteration 
In the case where there is one dominant eigenvector, a simple iterative procedure can find the 
largest eigenvector9.  All you have to do is pick a suitable first guess for the eigenvector10, and 
repeatedly pre-multiply this vector by the matrix. 

The idea is that the component of the original guess vector parallel to the eigenvector with the 
largest eigenvalue will be multiplied by more than the components of the original guess vector 
                                                      

9 Strictly speaking, this method finds the eigenvector with the greatest absolute eigenvalue, for example in the case 
of a matrix with one eigenvalue of �3 and another of +2, it would find the eigenvector corresponding to the 
eigenvalue of �3.  However, since we�re considering positive semi-definite matrices here, and they don�t have any 
negative eigenvalues, I can just talk about finding the largest one. 

10 Any vector which cannot be expressed as a linear sum of all the other eigenvectors will do fine. 
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parallel to all the other eigenvectors, so it will end up bigger.  Repeat this process a large 
number of times, and the end result is a vector that is almost parallel to the eigenvector with 
the largest eigenvalue.  It�s called the power method. 

Perhaps an example might help, and we might as well stick to the same one: 

2 2

2 1

 
=  

 − 
A  

Consider as a first guess the vector x = [1; 0].  We can express this vector as the sum of the two 
eigenvectors, as: 

 
1 22 1
0 15 5

1
2
−    

= −


     
     

 (0.33) 

multiply this by the matrix A, and we get: 

 
1 2 1 2 12 1 6 2
1 1 2 1 25 5 5 5

− −           
= − = + =           

           
A A A

2
2

 (0.34) 

multiply it by A again: 

 2 1 2 1 2 16 2 18 4
1 2 2 1 25 5 5 5

− −           
= + = − =           

           
A A A

8
2

 (0.35) 

and so on.  Plot these on a diagram, and we�ll see that the angle between our guess and the 
eigenvector with the largest eigenvalue (in this case [2; 1]) is getting smaller each time. 

x1

x2

x

Ax A2x

eigenvector

x1

x2

x

Ax A2x

eigenvector

 

Figure 1-8  Iterating to the Largest Eigenvalue 

The other thing we notice is that the vector is getting longer and longer all the time (as 
expected: the largest eigenvalue is greater than one).  If we�re trying to do this calculation in 
hardware, or with a limited number of bits to store each number, this isn�t such a good idea, it 
would be better to limit the length of the vector.  One way to do this is to normalise the length 
of the eigenvector at each step, so in effect the iteration is: 

 →
Axx
Ax

 (0.36) 
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That, however, requires the calculation of a square root at every stage.  Expensive.  A less 
expensive way is to divide by the square of the length of the vector after every other stage; 
although in practice it�s usually easier just to test if the vector has got too big, and if it has, 
divide all the elements by a power of two11 (2, 4, 8, 16, etc). 

Starting from x = [1 0]T, and repeating this iteration lots of times gives:  

Iteration x Ax  Angle to eigenvector  [ ]2 1 T

1 [ ]1 0 T  [ ]2 2 T  18.4  degrees 

2 [ ]2 2 T  [ ]8 2 T  -12.5  degrees 

3 [ ]8 2 T  [ ]20 14 T  8.4  degrees 

4 [ ]20 14 T  [ ]68 26 T  -5.6  degrees 

5 [ ]68 26 T  [ ]188 110 T  3.8  degrees 

6 [ ]188 110 T  [ ]596 266 T  -2.5  degrees 

10 [ ]15644 8078 T  [ ]47444 23210 T  -0.5  degrees 

 

Writing out the maths behind this method: consider a matrix A, which has a set of eigenvectors 
ei.  (Note ei is not the ith element of a vector e, that would be written as ei.  This is ei, the ith 
eigenvector of A.)  If the eigenvectors span space (which for the case of a Hermitian positive 
semi-definite matrix, they do), we can write any vector x as the weighted sum of the 
eigenvalues: 

 i
i

a= ∑ ix e

i i

 (0.37) 

If the eigenvector ei has eigenvalue λi, then the action of the matrix A on vector x is: 

 i
i i

a a λ= =∑ ∑iAx Ae ei

n
i i

 (0.38) 

Repeating the process gives the vectors: 

 n n
i

i i
a a λ= =∑ ∑iA x A e ei

                                                     

 (0.39) 

To determine the direction of this vector, consider dividing all the elements by the constant 
factor λb

n, where λb is the largest eigenvalue: 

 

11 Dividing by a power of two is easy for computers and hardware that works in binary � you just rotate all the bits 
right.  For example, divide 204 (11001100 in binary) by four, and the answer is 51 (110011 in binary). 
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n nn

i
i b in

i i bb b b

a a aλ
λ λ λ≠

   
= = +   

   
∑ ∑i b

A x e e iλ
ie  (0.40) 

Since λb is the largest eigenvalue, (λi / λb) is always less than one, so provided n is large 
enough, all these terms will tend towards zero, and can be neglected compared to abeb.  The 
result is the eigenvector with the largest eigenvalue. 

If we want the normalised eigenvector, we can just divide it by its length, and we can find the 
corresponding eigenvalue from the formula: 

 bλ=bAe eb  (0.41) 

This method usually works much faster than the direct method.  Only two problems really: the 
iteration can converge very slowly when there are two large eigenvectors that are almost equal 
(in this case one of the other eigenvalues has a value of (λi / λb) very close to one); and it only 
finds the eigenvector with the largest eigenvalue. 

1.4.3 Determining the Other Eigenvectors 
If we�re working with a positive definite matrix, so we know the eigenvectors are all 
orthogonal, the simplest way to find another eigenvector is to subtract the component of the 
starting guess parallel to the known eigenvector at each stage of the iteration process.  That 
leaves only the components of all the other eigenvectors, and repeating this process should 
provide the eigenvector with the second largest eigenvalue. 

For example, consider the matrix: 

 
6 0 2
0 2 2
2 2 3

− 
 =  
 − 

A  (0.42) 

This is Hermitian positive definite, so all eigenvalues will be real and positive, and all 
eigenvectors orthogonal (or can be chosen to be orthogonal).  In this case, there is a 
particularly simple way to find out the components of a vector x that lie along the direction of 
an eigenvector e1: just calculate (x.e1)e1 where (x.e1) is the inner (dot) product of the vectors x 
and e1. 

In the case, we could start with a guess vector of x = [1 0 0]T, and run the iteration x → Ax ten 
times, and we�d get an estimate of the first eigenvector (the one with the largest eigenvalue) of: 

  (0.43) [ ]10
1 295123044 58687316 152123034≈ = − −e A x

normalise this, and we get an estimate of the first eigenvalue: 

   (0.44) [1 0.8464 0.1917 0.4969≈ − −e ]

To find the second largest eigenvalue, we take the first guess of [1 0 0]T, and subtract the 
component of this guess along the eigenvalue we already know: 

 ( )( )1 1.→ −x A x x e e  (0.45) 
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repeat this ten times, and normalise the result, and we end up with an estimate of the second 
eigenvector of: 

 [ ]2 0.4816 0.6720 0.5625≈e  (0.46) 

With an estimate of the first two eigenvectors, we can subtract the component of our guess 
along both of these eigenvectors, and that should leave us with a vector that tends towards the 
last eigenvector: 

 ( ) ( )( )1 1 2 2. .→ − −x A x x e e x e e  (0.47) 

Set x back to [1 0 0]T, and repeat this ten times and normalise the result, and we end up with: 

  (0.48) [3 0.2261 0.7154 0.6611≈ − −e ]

]

The real eigenvectors of this matrix are: 

  (0.49) 
[ ]
[
[ ]

1

2

3

0.8460 0.1922 0.4973

0.4828 0.6718 0.5618

0.2261 0.7154 0.6611

≈ − −

≈

≈ − −

e

e

e

so the approximate answer wasn�t bad.  The main problem with this technique is the 
accumulation of errors: a small error in the first eigenvector can produce much larger error in 
subsequent eigenvectors, especially if the eigenvalues of the last few eigenvectors are very 
small. 

1.4.4 Adapting the Power Method 
There is another way we can adapt the power method to find the other eigenvalues (or at least 
some of them).  This relies on the useful facts that if x is an eigenvector of the matrix A with 
an eigenvalue of λ, then: 

1. x is also an eigenvector of the matrix A-1, with an eigenvalue of λ-1 

2. x is also an eigenvector of the matrix (A � αI)-1, with an eigenvalue of 1 / (λ � α) 

(for the proofs, see the problems.  Note the first fact is just a special case of the second fact, 
with α = 0.) 

Using the first of these results, we can immediately find the eigenvector with the smallest 
absolute value eigenvalue.  Just use the same power method as before, only use A-1 instead of 
A.  (Of course this means we have to invert the matrix A, which is expensive.) 

Using the iterative method on the matrix (A � αI)-1 will find the eigenvalue with the largest 
value of 1 / (λ � α): in other words, the eigenvalue closest to α.  For positive definite matrices, 
we will already know the largest and smallest eigenvalues, so we could start by looking half-
way between them, and see what comes up.  This process can then be repeated, looking 
directly in-between all values of α tried so far, until all the eigenvalues are found.  It doesn�t 
always work, but for small matrices, it can usually find the eigenvectors comparatively 
quickly. 
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1.4.5 The QR-Method 
I should just mention that one of the most common ways to determine eigenvalues and 
eigenvectors is not described in this chapter, since it�s beyond the scope of this book.  It�s an 
extension of the power method called the QR algorithm, and it works using the 
QR-decomposition, which decomposes a matrix into the product of an orthogonal matrix (Q) 
and an upper triangular matrix (R).  This iterative method finds all the eigenvectors and 
eigenvalues. 

1.5 Problems 

1) A matrix can have two different eigenvectors with the same eigenvalue.  However, prove 
that no matrix can have two identical eigenvectors with different eigenvalues. 

2) Prove that all the eigenvalues of any Hermitian matrix are real. 

3) If 
3 2
1 2

− 
= − 

A  , evaluate the determinant of A.  What are the eigenvalues and 

eigenvectors of A? 

4) Try working out the largest eigenvalue of the matrices 
11 2 9

4 4 5
3 9 11

− 
 − − 
 − 

 and  
16 6 7
4 5 13
1 2 7

− − 
 
 
 − 

using the power method.  How many iterations does it take to get within 1% of the right 
answer?  Why is the answer so different in the two cases? 

5) Prove that if x is an eigenvector of matrix A with eigenvalue λ, then x is also an eigenvector 
of the matrix (A � aI)�1, with an eigenvalue of 1 / (λ � a). 

6) Try using the extensions to the power method described to work out all the eigenvalues of 
the matrix: 

12 4 3
2 10 5

4 12 9

− − 
 − − 
 − 

 

(Hint: find the largest and smallest first, then look for one in the middle.) 

7) Now try using the extensions to the power method described to work out all the eigenvalues 
of the matrix: 

6 9 4
0 2 12
0 7 15

− − 
 − 
 − − 

 

What goes wrong, and why? 
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