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1 GSW… The Equivalent Baseband
With baseband modulation, there is only one property of the transmitted signal that can be
modified to convey any information: the amplitude.

With passband modulation, there are two: the amplitude and the phase of the carrier. Any
quantity with two independent components can be conveniently represented by a complex
number, and this provides a very useful and powerful technique for analysing passband
modulation formats. To use this technique, we’ll need to develop the theory of baseband
communications to cover complex signals. This can be a bit confusing at first, but the results
at the end of the derivations are very simple, and very useful in analysing a wide range of
modulation schemes.

1.1 Extending Communications Theory to Complex Signals

Imagine for a moment a complex world, where signals are complex, and filters have complex
impulse responses. How does this affect the derivations of several key results in
communications theory: in particular the derivation of the power spectral density of a
modulated signal, and the optimum signal to noise ratio after a matched filter?

1.1.1 The Power Spectral Density of Complex Signals

First, consider the power spectral density of such a complex signal. You can take the Fourier
transform of a complex signal with exactly the same formula as the Fourier transform of a real
signal. The Fourier transform derives from the complex Fourier series, which can represent
complex signals just as easily as real signals.

     expX x t j t dt 




  (0.1)

The only difference is that with real signals, X() is symmetric in the sense that:

   *X X   (0.2)

whereas with complex signals, X() doesn’t necessarily have any such symmetry.

The energy spectral density of a signal is the square of the amplitude of the Fourier transform
of the signal:

   
2

ESD X  (0.3)

and for a continuous signal with infinite energy, the power spectral density is the mean value
of the energy spectral density of one-second samples of the signal with random data:

   
2

PSD Y  (0.4)

where Y() is the Fourier transform of a one-second long sample of a continuous modulated
signal y(t).



Getting Started with Communications Engineering GSW… The Equivalent Baseband

© 2007 Dave Pearce Page 2 19/02/2009

All that is exactly the same as for real signals (with the exception of the symmetry of the
Fourier transform).

1.1.2 Matched Filtering of Complex Signals

The theory is derived in the same way as for a real signal: start with an impulse that is fed
through a transmit filter with an impulse response h(t). The difference now is that h(t) can be
complex, so the transmitted waveform has both a real and imaginary component. In this case,
the signal emerging from the transmitter is the result of putting an impulse at time zero into a
filter with an impulse response of h(t), in other words it’s just h(t).

Receive this signal using a receive filter with an impulse response g(t), and the received signal
will be:

     r t g h t d  




  (0.5)

If the noise is white, with a one-sided noise density of N0 W/Hz, then the two-sided noise
density (considering both positive and negative frequencies) will be N0/2 W/Hz or N0/4
W/rad/s which makes the received noise power at the output of the filter equal to:

 
20

4

N
N G d 







  (0.6)

and applying Parseval’s theorem1 to this gives:

 
20

2

N
N g t dt





  (0.7)

Therefore the maximum possible signal to noise ratio at the output of the receive filter at time t
is:

   

 

2

20

2

g h t d

SNR
N

N g t dt

  








 
 

 
 







(0.8)

1 Parseval’s theorem states that the total energy in a transmitted symbol can be calculated from either integrating the
power over all time, or integrating the energy spectral density over all frequencies: the result should be the same.
With complex signals, the power in the signal at any time is the square of the modulus of the complex signal x(t),
therefore:

   
22 1

2
dth t H d


 

 

 

 

For the reason why the factor of 2 is there, see the chapter on Fourier analysis.
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and this can be maximised by ensuring that:

   *g h t   (0.9)

which is similar to the result derived for real signals, the only difference being that the
optimum receiver filter now has the complex conjugate of the time-reversed transmit filter’s
impulse response. For example:
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In this case, the maximum signal to noise ratio can be calculated as:

       
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(0.10)

The numerator is the total energy in a time-reversed version of the transmitted waveform,
which must be the same as the energy in the transmitted waveform, so we can write:

0

2 sE
SNR

N
 (0.11)

where Es is the energy in the symbol (the integral of the magnitude of the signal over all time).
This is exactly the same result as we get for real signals.
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1.2 A Complex Representation of Amplitude and Phase

Any passband signal (for that matter any signal at all), can be expressed in terms of a carrier
frequency:

      cos cx t A t t t   (0.12)

where A(t) is the amplitude of the signal, and (t) is the relative phase of the signal relative to
the phase of the carrier, both being functions of time. After all, the only things that can
distinguish the pure unmodulated carrier frequency and the modulated signal are the modulated
signal’s amplitude and its phase2.

This signal x(t) can also be written as the real part of a complex variable, for which we are free
to define the imaginary part any way we like. However, there is a standard complex
exponential way of representing frequencies which allows a particularly simple and convenient
notation, and this suggests using:

            cos sinc cx t A t t + t + j A t t + t    (0.13)

Euler’s equation3 applied to the above equation gives:

        exp cx t A t j t t   (0.14)

let xE(t) = A(t) exp( j (t)), and we get:

      exp cx t x t j t E (0.15)

xE(t) is known as the equivalent baseband representation of the signal. It's really just the
difference between the signal and the unmodulated carrier frequency, expressed in complex
terms. The amplitude of xE(t) is the amplitude of the transmitted signal A(t), and the phase of
xE(t) is the phase difference between the transmitted signal and the carrier (t).

2 You’ll notice that there isn’t a unique choice of A(t) and (t) to represent any signal, for example a simple cosine
wave at a frequency of c can be represented either by A(t) = 1 and (t) = 0, or by A(t) = cos(c t), (t) = -c t, or
any of an infinite number of other possibilities. The usual choice of 

c
 A(t) and (t) are those which result in the

most slowly changing A(t) and (t). Usually the correct choice of carrier frequency, A(t) and (t) is obvious.

3 See the chapter on complex numbers if unfamiliar with Euler’s equation:      exp cos sinj j    .
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Figure 1-1 – Illustration of the Complex Baseband Representation

The real part of the equivalent baseband representation, shown as x in Figure 1-1 is also known
as the in-phase or I component, and the value of y as the quadrature or Q component.

Some more examples:

z
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Real
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Real
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Frequency

Figure 1-2 –Examples of Complex Baseband Representation

1.2.1 A Note About Notation

Dealing with the equivalent baseband can get a bit confusing, since we’ll be dealing with real
baseband signals, complex baseband signals and real passband signals. We’ll need an obvious
way to tell them apart. Here, any real signal (whether baseband or passband) will be written as
a normal variable, for example:

    0, , , sx t X N E

are a signal, the Fourier transform of that signal, the one-sided Noise Spectral Density and the
energy in a symbol respectively. All simple, real quantities. They might be baseband or
passband signals, but they will always be real.

I’ll write the equivalent baseband representation of a passband quantity with a bold, non-italic
capital E suffix, so that, for example:

    0, , , sx t X N EE E E E

are the equivalent baseband representation of a passband signal, the Fourier transform of the
equivalent baseband signal, the equivalent baseband one-sided Noise spectral density, and the
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energy in an equivalent baseband signal respectively. (This is not a standard notation, but
there doesn’t seem to be a good standard notation that makes the difference between the
equivalent baseband signals and the passband signals obvious.)

1.2.2 Signal Spectra in the Equivalent Baseband Representation

Suppose we have a passband signal x(t) with a spectrum of X(). What is the spectrum of the
equivalent baseband representation xE(t)?

Noting the very useful identity:

 
*

2

z z
z


  (0.16)

where  z is the real part of the complex number z, allows the real signal x(t) to be

represented as:

      
       *exp exp

exp
2

c c
c

x t j t x t j t
x t x t j t

 


 
  E E

E (0.17)

Taking the Fourier transform of this expression gives:

           

         

    

*

*

*

1 1
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2 2

1 1
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2 2
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2 2

c c

c c

c c

X x t j t j t dt x t j t j t dt

x t j t dt x t j t dt

X X

    

   

   

 

 

 

 

    

     

    

 

 

E E

E E

E E

(0.18)

where XE() is the Fourier transform of the equivalent baseband signal, defined as:

   ( ) expX x t j t dt 




 E E (0.19)

XE(c) is simply a copy of the Fourier transform of the equivalent baseband signal shifted
up in frequency by the carrier frequency c. XE

*(c) is the complex conjugate of the
Fourier transform of the equivalent baseband signal reversed in time, and shifted down by the
carrier frequency.

This result means that the Fourier transform of the passband signal X() can be derived from
the Fourier transform of the equivalent baseband signal XE() by dividing XE() by two and
shifting up in frequency by the carrier frequency to form 0.5XE(c), and then adding the
complex conjugate of the reflection of this spectrum in the frequency axis (as we have to do to
make sure that the passband signal is real).
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Figure 1-3 –Frequency Spectrum of the Equivalent Baseband Representation

Looking at this result from another angle, suppose we wanted to work out XE() from X(),
the Fourier transform of the equivalent baseband signal can be obtained from the Fourier
transform of the real passband signal by deleting all the negative frequency components4,
moving the positive frequency components down by the carrier frequency, and then
multiplying by two5.

1.2.3 A Simple Example of an Equivalent Baseband Spectrum

A very simple example might help to illustrate this point. Suppose we have an equivalent
baseband signal that is a single complex frequency with an amplitude of A:

   expx t A j tE (0.20)

This has a Fourier transform of:

      expX A j t dt A     




   E (0.21)

In the real passband, this represents a signal of:

     
  

exp

cos

c

c

x t A j t

A t

 

 

 

 
(0.22)

and the Fourier transform of a cosine is:

4 We’re not losing any information here, since the negative frequency components have to be the complex
conjugates of the positive frequency components to ensure the passband signal is real.

5 Note this only works if the carrier frequency is greater than the bandwidth of the signal, however this is true for all
systems I’ll be discussing here.



Getting Started with Communications Engineering GSW… The Equivalent Baseband

© 2007 Dave Pearce Page 8 19/02/2009

      

     

   
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   

     

       





 

 

  

      

      



  (0.23)

the result has two peaks, each exactly half the amplitude of the peak in the Fourier transform of
the equivalent baseband representation of the signal.
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Figure 1-4 A Simple Example of Equivalent Baseband Spectrum

1.3 The I-Q Modulator and the Equivalent Baseband

Since there are two parameters to modify when creating a passband signal (the amplitude and
phase of the carrier), there must be two inputs to the modulator. One is called the in-phase
component I(t), and the other the quadrature component Q(t). A typical modulator might then
look like this:

π/2 phase
shift

+
r.f. out

I(t) Q(t)

π/2 phase
shift

++
r.f. out

I(t) Q(t)

Figure 1-5 – A Schematic Modulator

and will produce a signal according to:

       

       

cos cos
2

cos sin

c c

c c

x t I t t Q t t

I t t Q t t


 

 

 
   

 

 

(0.24)

Consider the real passband signal represented by an equivalent baseband signal of:

      x t I t jQ t E (0.25)
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this produces:

      

          

       

exp

cos sin

cos sin

c

c c

c c

x t x t j t

I t jQ t t j t

I t t Q t t



 

 



  

 

E

(0.26)

which is exactly the signal produced by the modulator. In other words, the equivalent
baseband representation of the passband signal produced by this modulator has a real part
equal to the value of I(t), and an imaginary component equal to the value of Q(t). This is a
common technique for generating passband signals.

Receiving passband signals can be done in a very similar way, using a copy of the carrier
frequency and a version of the carrier frequency 90 degrees (/2 radians) out of phase:

π/2 phase
shift

r.f. input

I(t)/2

Q(t)/2
Low-pass

filter

Low-pass
filter

π/2 phase
shift

r.f. input

I(t)/2

Q(t)/2
Low-pass

filter

Low-pass
filter

Figure 1-6 – A Schematic Demodulator

In maths:

                    

 
 

 
 
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1 cos 2 sin 2

2 2

c c c c c c

c c

I t t Q t t t I t t Q t t t

t t
I t Q t

     

 

  

   
       

   

(0.27)

and using the low-pass filter to get rid of the components at twice the carrier frequency gives
I(t)/2.

Similarly,

                    

 
 

 
 

2cos sin sin sin cos sin

sin 2 1 cos 2

2 2

c c c c c c

c c

I t t Q t t t I t t t Q t t

t t
I t Q t

     

 

  

   
       

   

(0.28)

and again filtering out the high-frequency components provides an easy way to recover Q(t).
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1.4 Noise in the Equivalent Baseband – Part One

Just as with baseband communication systems, we usually quote the noise power in terms of
the real, passband one-sided noise spectral density N0, expressed in W/Hz. The one-sided
noise spectral density does not include negative frequencies, and is exactly twice the two-sided
noise spectral density, which does includes negative frequencies6.

Before we can start applying baseband communication theory to the equivalent baseband, we
need to know how much noise there is in the equivalent baseband. There are several ways to
derive the result, but one simple method goes as follows: first, consider a receiver that samples
the incoming noise through a bandpass filter that removes all of the noise except the noise in a
bandwidth B Hz (that’s 2B rad/s) around the carrier frequency, where the signal lies. The
noise power spectral density at the output of this filter will therefore look like this:


c c

0

4

N



2 B


c c

0

4

N



2 B

Figure 1-7 – Noise Power Spectral Density in a Bandwidth B around the Carrier
Frequency

(Here, the one-sided noise spectral density in terms of Watts per Hertz is N0, so the one-sided
noise spectral density in terms of Watts per rad/s is N0/2, and the two-sided noise spectral
density as shown is N0/4 W/rad/s).

We know that the Fourier transform of a signal in the equivalent baseband Xe() can be
derived from the Fourier transform of the signal in the real passband X() by deleting all the
negative frequency components, moving the positive frequency components down in
frequency by the carrier frequency, and multiplying by two.

What about the power spectral density? The power is proportional to the square of the
amplitude, so the power spectral density is proportional to the square of the modulus of the
Fourier transform. And if the Fourier transform in the equivalent baseband has twice the
magnitude of the Fourier transform of the passband signal, then the power spectral density in
the equivalent baseband must be four times the power spectral density in the passband.

So, if the noise spectral density is N0/4 W/rad/s in the passband, it must be N0/ W/rad/s in
the equivalent baseband.

6 If this is unfamiliar, look in the chapter on noise.
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Figure 1-8 – Converting Noise Spectral Density to the Equivalent Baseband

Or terms of W/Hz, a one-sided noise power spectral density of N0 W/Hz in the real passband
corresponds to a two-sided noise spectral density of 2N0 W/Hz in the equivalent baseband;
which is a one-sided equivalent baseband noise spectral density of 4N0.

1.4.1 Another Way of Deriving the Equivalent Baseband Noise

For those more mathematically inclined: consider a long sample (T seconds long) of a real
passband noise signal n(t) in equivalent baseband form nE(t), so that:

      exp cn t n t j t E (0.29)

In the passband, assume that this noise results from a noise spectral density N0 acting in a
bandwidth B, so that the variance (the mean square) value of the passband noise n(t) is N0B.
What is the mean square of the magnitude of the equivalent baseband noise nE(t)? This should
be equal to N0EB/2, since a bandwidth of B in the passband corresponds to a one-sided
bandwidth of B/2 in the equivalent baseband. In other words:

     
2 *

0
2

B
n t n t n t N E E E E (0.30)

We can expand equation (0.29) to get:

 
       *exp exp

2

c cn t j t n t j t
n t

  
 E E (0.31)

and taking the mean (expectation) value of the square of this gives:

          

        

   

2
2 *

2
2 *

*

1
exp exp

4

exp 2 exp 21

4
2

c c

c c

n t n t j t n t j t

n t j t n t j t

n t n t

 

 

  

 
  

  
   

E E

E E

E E

(0.32)
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Now the first two terms on the right-hand side are very fast oscillations (at twice the carrier
frequency), so provided the carrier frequency is much greater that the rate at which the
equivalent baseband noise is changing (which is usually the case, since the only interesting
equivalent baseband noise is around the frequencies of the equivalent baseband signal, and
that’s usually much slower than the carrier frequency), we can assume these will average out to
zero. For example:

 2n tE

   2 exp 2 cn t j tE

 2n tE

   2 exp 2 cn t j tE

Figure 1-9 Averaging Out the Fast-Moving Terms

the product of the slow equivalent-baseband noise signal and the fast moving carrier will
average out to zero over very short time-periods.

That leaves:

       
22 *1 1

2 2
n t n t n t n t E E E (0.33)

Now we know from above that:

 2
0n t N B (0.34)

and from equation (0.30) that:

 
2

0
2

B
n t NE E (0.35)

and therefore:

0
0

4

N
N  E (0.36)

The equivalent baseband one-sided noise spectral density is four times the real passband one-
sided noise spectral density.

1.5 Optimum Filtering for Passband Communications

We saw back in section 1.1.2 that the well-known result for real signals:

0

2 s
opt

E
SNR

N
 (0.37)
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is also true for complex signals, such as the equivalent baseband representation of passband
signals. We could, for example, write:

0E

2 s
opt

E
S N R

N
 E

E E (0.38)

where SE is the instantaneous equivalent baseband signal power at the optimum sampling time,
NE is the equivalent baseband noise power, EsE is the energy in one equivalent baseband
symbol, and N0E is the one-sided equivalent baseband noise spectral density.

It turns out to be very useful to express the equivalent baseband optimal signal to noise ratio in
terms of the real passband symbol energy, and the real passband one-sided noise spectral
density. We already know that:

0 04N NE (0.39)

but what about ESE?

From the definition of EsE, we know that the energy in the equivalent baseband symbol is the
integral of the equivalent baseband power (i.e. the square of the magnitude of the equivalent
baseband representation) over time:

2
( )sE x t dt





 E E (0.40)

Using a similar technique as before, we can note that for this symbol:

      

       *

exp

exp exp

2

c

c c

x t x t j t

x t j t x t j t



 



 


E

E E

(0.41)

and squaring this gives:

 
        

   

2
2 *

2

*

exp 2 exp 21

4
2

c cx t j t x t j t
x t

x t x t

 
 

  
  

  

E E

E E

(0.42)

The first two terms are the product of very fast oscillations (at twice the carrier frequency) with
the much more slowly changing equivalent baseband representations of the signals. Therefore
these terms will integrate out to zero. That leaves:

   
22 1

2
x t dt x t dt

 

 

  E (0.43)

so:

1

2
s sE E E (0.44)

The equivalent baseband symbol energy is twice the real passband symbol energy.
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There’s an intuitive way of thinking about this result: an equivalent baseband symbol with a
magnitude of A has an equivalent baseband power of A2. However, it’s really representing a
cosine wave with a magnitude of A, and a cosine wave of magnitude A has a power of A2/2,
since:

 

 

 

2
2 2

0

22

0

2 22 2

0 0

2

1
Power cos

2

1 1
cos 2

2 2 2

cos 2
4 4

2

c

c

c

A t dt

A
t dt

A A
dt t dt

A





 








 



 
  

 

 







 

(0.45)

so if the power at any moment in the equivalent baseband is twice the power in the real
passband, the symbol energy in the equivalent baseband must be twice the energy in the real
passband too.

So N0E = 4N0 and EsE = 2Es, and:

0 0 0

2 4

4
s s s

opt
E E E

S N R
N N N

  E
E E

E

(0.46)

All the same conditions apply for this result to be valid as for the corresponding result for real
baseband signals:

 Se is the instantaneous received signal power at the optimum sampling time;

 The receive filter is the optimum (matched) filter;

 The delay through the receive filter is sufficient to allow all the energy in the
received pulse to arrive7;

 The noise is white;

 There is no intersymbol interference.

1.6 Noise in the Equivalent Baseband – Part Two

If nE(t) is a complex noise signal in the equivalent baseband (the one with a one-sided noise
spectral density of 4N0), then the component of noise in the I(t) signal at the receiver is the real
component of nE(t), and the noise in the Q(t) signal at the receiver is the imaginary component
of nE(t).

7 In theory this can never happen in practice, although it’s often so close to true that this assumption makes no
practical difference.
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We could write:

( ) ( ) ( )I Qn t n t jn t E (0.47)

where nI(t) is the noise in the in-phase received signal, and nQ(t) is the noise in the quadrature
received signal: both are real baseband quantities. These two noise components are
independent: the value of nI(t) does not in any way depend on the current or past values of
nQ(t).

Therefore, the total mean noise power in the equivalent baseband is:

             

   

22

2 2

I Q I Q I Q

I Q

n t n t jn t n t jn t n t jn t

n t n t

    

 

E
(0.48)

By symmetry,    2 2
I Qn t n t , and therefore      

2 2 22 2I Qn t n t n t E .

In other words, the noise power in each component is half the total noise power in the
equivalent baseband. Since the one-sided noise spectral density in the equivalent baseband is
4N0, and half of this appears in the in-phase component and half in the quadrature component,
the one-sided noise spectral density in the I(t) and Q(t) components must be N0I = N0Q = 2N0

each.

What about the energy per symbol in the I(t) and Q(t) signals? Consider a single symbol
waveform I(t). In the equivalent baseband, this implies a signal energy in the real (in-phase)
component of the equivalent baseband representation of:

2 ( )IE I t dt




 E (0.49)

where EIE is the signal energy in the I(t) symbol in the equivalent baseband. In the real
passband, this same signal contains a total energy:

  

 

2

2 2

( )cos

1 1
( ) ( )cos 2

2 2

sI c

c

E I t t dt

I t dt I t t dt









 

 



 



 

(0.50)

Using a similar argument to one used before: if I(t) changes much more slowly than cos(2ct),
which it will if the bandwidth of the passband signal is much smaller than the carrier
frequency, the second term will tend to average out to zero, and we’re left with:

21 1
( )

2 2
s IE I t dt E





  (0.51)

Applying the baseband matched filter theory to the I(t) received signal then gives:
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0 0 0

4 22

2
s sI

I I opt
I

E EE
S N R

N N N
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E E (0.52)

This is exactly the same result that a matched filter would predict for I(t) if it was a real
baseband signal, and had not been up-converted (raised in frequency) at the transmitter and
then down-converted (lowered in frequency) at the receiver. Exactly the same result is true for
the Q(t) baseband signal as well.

This is an important and often useful point: we can consider the in-phase I(t) and quadrature
Q(t) baseband components as having the same amount of noise as if each was a baseband
signal, and for the purposes of bit error rate calculation treat I(t) and Q(t) as baseband signals
that are both received with a maximum instantaneous signal to noise ratio of 2Es/N0, where in
this case Es is the real baseband energy per symbol in the corresponding I(t) or Q(t) baseband
component, and N0 is the real one-sided noise spectral density.

1.6.1 Noise in the Equivalent Baseband: One Final Result

Often, the noise in the I(t) received signal and the noise in the Q(t) signal both have Gaussian
distributions. If the noise component in the real (in-phase) signal has a standard deviation of ,
then the normal (Gaussian) probability density function of this noise is:

2

2

1
( ) exp

2 2

i
p i

  

 
   

 
(0.53)

and in the quadrature direction:

2

2

1
( ) exp

2 2

q
p q

  

 
   

 
(0.54)

where i is the noise value in the in-phase direction, and q the noise value in the quadrature
direction. We could write this noise in equivalent baseband form as:

n i jq E (0.55)

The two-dimensional probability density function8 (the probability density of the noise at the
point (i + jq)) can be written:

2 2 2

2 2 2 2

1 1
( , ) ( ) ( ) exp exp

2 2 2 2

q i r
p i q p i p q

   

   
          

   
(0.56)

where 2 2r i q  is the distance from the origin to the point (i, q). This gives the important

result that the probability of the equivalent baseband noise value having a value with an
amplitude r is a function of the amplitude only, and not of the phase of the noise term.

8 The two-dimensional probability density function p(i, q) is defined so that p(i, q) di dq is the probability of having
an i-value between i and i + di, and a q-value of between q and q + dq.
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There’s a very important consequence of this result: the probability that adding noise to a
signal moves the equivalent baseband representation of the signal a certain distance r in any
one given direction is:

2

2

1
( ) exp

2 2

r
p d

  

 
   

 
(0.57)

and this result is the same, no matter which direction the point is moved in. It could be along
the real (in-phase) axis, or along the imaginary (quadrature) axis, or at an angle of 45-degrees
to the real axis, or any other direction, it doesn’t matter. The chances of noise moving a signal
a certain distance in the given direction is always the same, it doesn’t matter which direction
you’re moving in.

1.7 Key Points

 Any passband signal can be considered in terms of an equivalent baseband signal, where
the equivalent baseband signal is a complex signal, with amplitude equal to the
amplitude of the passband signal, and phase equal to the difference in phase between the
passband signal and the carrier.

 This complex equivalent baseband signal can be divided into two independent signals:
the real and imaginary parts of the signal (known as the in-phase I(t) and quadrature Q(t)
components respectively).

 The in-phase and quadrature signals behave in noise as if they were baseband signals:
both are received after an optimum filter with a maximum signal to noise ratio of 2Es/N0.

 The effect of noise in the equivalent baseband is to move the point representing the
passband signal, and the probability that the noise moves this point a distance d in any
direction is:

 
2

2

1
exp

2 2

r
p r

  

 
   

 

 Passband signals can be easily generated by using the in-phase and quadrature
component signals, using the in-phase signal to modulate the carrier wave directly, and
the quadrature signal to modulate a copy of the carrier wave phase-shifted by one-
quarter of a cycle (hence the name ‘quadrature’), then adding these modulated signals
together.

 Recovery of the in-phase and quadrature signals can also be easily achieved by
multiplying the incoming signal by a copy of the carrier wave, and the carrier wave
offset by a quarter signal respectively, then low-pass filtering.

1.8 Tutorial Questions

1) At one particular time, the signal received at a receiver is / 4 radians behind (in terms of
phase) the carrier oscillator in the receiver, and of amplitude one. What are the I- and Q-
components of this signal?
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*2) A wireless channel has a delay of exactly 1.205 s. If the carrier frequency is 450 MHz,
what is the impulse response of this channel in the equivalent baseband?

***3) For real baseband signals, the output of a filter y(t) in the time domain is the convolution
of the input signal x(t) and the filter’s impulse response h(t). What about the equivalent
baseband domain? What is the output of a filter in the equivalent baseband ye(t) given the
equivalent baseband signal xe(t), and the equivalent baseband impulse response he(t)?

*4) Prove that the effective optimum instantaneous equivalent baseband signal to equivalent
baseband noise ratio in an equivalent baseband system is Es/N0, where Es is the real passband
energy per symbol, and N0 is the real one-sided passband noise power spectral density.
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