
Getting Started with Communications Engineering GSW� Fading Distributions 

1 GSW� Fading Distributions 
Unless you�re very lucky (and even if you are, you won�t be this lucky for very long), any 
mobile channel you try and use will not consist of just one path from the transmitter to the 
receiver.  There could be (and often are) thousands of them.  Particularly at mobile devices in 
urban environments, energy can arrive from just about any direction, having bounced off 
buildings, hills, trees, the ground, passing cars, other people, donkeys, bicycles, and just about 
anything else that happens to be around at the time1. 
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Figure 1-1  Example of a Multipath Channel 

All these rays travel different distances before arriving at the received, and hence arrive with 
different phases and different delays.  Since all these reflecting surfaces (except perhaps the 
hills and the ground2) are moving, the delays and phases of the energy arriving from these 
receivers are constantly changing.  The result is a channel with a constantly changing impulse 
response.  This causes a lot of problems. 

This chapter is about the statistical models most commonly used to describe these channels. 

1.1 Review of Some Basics 

Before we start, you need to be very comfortable with the use of vectors to represent 
oscillations. 

1.1.1 Individual Rays as Vectors 
A single radio path from a transmitter to a receiver can be characterised by an amplitude and a 
delay.  The signal arriving at the receiver along this path is smaller that the transmitted signal3, 

                                                      

1 Sorry about the picture, I never was any good at drawing things.  You�ll have to use your imagination, particularly 
for the donkey, which should look slightly sad, as it�s standing in a gloomy place. 

2 Although including the buildings.  Tall buildings can sway several centimetres in a high wind, and that�s enough 
of a wavelength at the frequencies used by mobile phones to cause a large change in the phase of the received 
signal. 

3 It has to be smaller: the receiver can�t get more radio energy out of the air than the transmitter put in. 
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and arrives after a certain time (in this case the distance between the transmitter and the 
receiver divided by the speed of light).  Mathematically, we can write: 

 ( ) ( )1 1r t A s t 1τ= −  (0.1) 

where s(t) is the transmitted signal, r1(t) is the received signal from this path, A1 is the 
amplitude of the received signal relative to the amplitude of the transmitted signal, and τ1 is the 
time it takes the signal to get from the transmitter to the receiver along this path. 

In the case when we�re transmitting just a single frequency carrier4, we can write the 
transmitted signal as: 

 ( ) ( )cos cs t tω=  (0.2) 

where I�ve assumed that the transmitted signal has an amplitude of one for simplicity.  
Substituting equation (0.2) into equation (0.1) then gives: 

 ( ) ( )1 1 cos c cr t A t 1ω ω τ= −  (0.3) 

The received signal is just another single frequency cosine wave, with a different amplitude 
(A1) and a phase offset of �ωcτ1.  We can represent such a wave in terms of a vector, with a 
length of A1 and in a direction at an angle ωcτ1 to some arbitrary direction (by convention, to 
the right).  For example, this ray could be represented as the vector as shown below: 
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Figure 1-2  Representing Rays as Vectors 

A few more examples: 

                                                      

4 Sometimes known as continuous wave or CW transmission. 
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Figure 1-3  More Examples of Representing Rays as Vectors 

The whole channel is the sum of a very large number of these rays, we can write: 

 ( ) ( )i
i

r t A s t iτ= −∑  (0.4) 

where r(t) is the total received signal, the sum of all the received signals arriving from all the 
possible paths. 

1.1.2 The Sum of Individual Rays as Vector Addition 
To work out the resultant signal from receiving all of these rays, all we need to do is add up the 
vectors.  For example: 
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Figure 1-4  Adding Vectors to Add Cosine Waves 

This is an example of constructive interference: the final resultant signal is larger than either of 
the two component signals.  We can equally get destructive interference, when adding together 
two component rays tends to decrease the amplitude of the resultant.  In an extreme case, this 
can reduce the amplitude of the received wave to zero: 

© 2007 Dave Pearce Page 3 28/08/2007 



Getting Started with Communications Engineering GSW� Fading Distributions 

First ray

t

Second ray

t

Sum of rays

t1 1

First ray

t

Second ray

t

Sum of rays

t1 1

 

Figure 1-5  Adding Vectors: Destructive Interference 

1.1.3 A Simple Example: A Man Walking Away From a Wall 
Consider the case of a man walking towards a wall.  He receives two rays: one direct from the 
transmitter, and one reflected off the wall.  As he wants, the distance travelled by the ray on the 
direct path decreases, and the distance travelled by the ray on the reflected ray increases.  The 
result is that the vector representing the direct path continually increases in phase, but the 
vector representing the reflected ray continually decreases in phase: 
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movement
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Figure 1-6  A Man Walking Away From a Wall 

In terms of the vector representation of these rays, the vector diagram looks like this: 

direct ray

reflected ray

direct ray

reflected ray  

Figure 1-7  Vector Representation of Direct and Reflected Rays 

You�ll notice that at certain times (or equivalently, certain locations), the two rays will end up 
pointing in the same direction, and the resultant signal at the man will be very large: this is an 
example of constructive interference, and provides a large receive signal.  Equally, at other 
times, the two rays will end up pointing in exactly opposite directions, and the resultant signal 
at the man will be very small; this is known as a fade. 
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This sort of thing is very common.  As people move around the environment (or equivalently 
the environment moves around them: exactly the same effect could have been achieved in the 
last example by having the man stand perfectly still and then moving the wall), the amplitude 
of the mobile radio signals they receive is changing all the time. 

1.1.4 The Probability Distribution of the Two-Ray Model 
We can work out the probability distribution of the amplitude of the received signal for this 
two ray model, provided we make a couple of simple assumptions: that the phase angle 
between the two rays has a uniform distribution between �p and p (in other words it�s equally 
likely to have any value, exactly the case if the man is walking at a constant speed), and that 
the amplitude of the two rays do not change with time (accurate provided the man is a long 
way from the transmitter, so that the fact that�s he�s moving closer to the transmitter all the 
time doesn�t result in a significant increase in the power of the direct ray). 

This isn�t a very useful case for mobile radio, since real situation are usually far more complex 
than this with many more than two rays arriving, so I�ll leave the derivation to the problems, 
and just give the answer here: 

 ( )
( )22 2 2 2 2

2

4

Ap A
D R D R Aπ

=
− + −

 (0.5) 

where D is the amplitude of the direct ray, and R is the amplitude of the reflected ray. 

1.2 Rayleigh Fading 

The most common model used for determining the probability of a fade in real mobile radio 
channels is the Rayleigh distribution.  It�s a very easy distribution to use, it reflects the 
observed behaviour of many real channels very well, and it derives from a simple physical 
model.  (All of which is great: we don�t often get all three of those advantages together.) 

The physical model used to derive the Rayleigh distribution assumes that there is very large 
number of different reflecting surfaces, randomly distributed around the receiver.  This implies 
a large number of rays arriving at the receiver, all of about the same magnitude (or at least with 
no one large ray bigger than all the others), and with phases that are equally likely to take any 
value: mathematically we could say that the phases of the rays has a uniform distribution 
between �π and π, and the phase of each ray is entirely independent of the phases of every 
other ray. 

In this case, we can use the Central Limit Theorem to derive the form of the distribution.  
Consider: we have a large number of rays, each of which is equally likely to appear in any 
direction.  These are represented by a large number of vectors, of random lengths, pointing in 
random directions: 
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Figure 1-8  Adding Up Random Vectors 

The signal finally received by the receiver (the resultant) is then represented by the sum of all 
these random vectors.  You might have noticed that I gave the axes names in the last diagram: I 
called them the I-axis and the Q-axis.  It doesn�t matter why I chose those names5, the 
important point here is that we can separate each of these vectors representing individual rays 
into two components: a component along the I-axis, and a component along the Q-axis: 
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Figure 1-9  I and Q Components of Individual Rays 

The vector representing the final resultant is then the sum of the I-components and the Q-
components.  Since they are all vectors in one direction, each of these components can be 
represented by a single scalar number, which comes from a random distribution with a mean 
value of zero. 

It has to have a mean value of zero, since we assumed that the phases of the these rays were 
equally likely to be in any direction, and therefore the probability of a positive I-component 
(one pointing to the right in the diagram above) must be the same as the probability of a 
negative I-component (pointing to the left); so the mean value must be zero. 

The Central Limit Theorem states that the probability distribution of the sum of a large number 
of independent random numbers has a Gaussian distribution.  It doesn�t matter what the 
probability distribution of the individual random numbers is, the probability distribution of the 
sum of them will be a Gaussian.  Here, this implies that the probability distribution of the I-

                                                      

5 If you want to know, they stand for In-phase and Quadrature.  See the chapters on passband modulation schemes 
for more details about these ideas. 
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component of the resultant will be a zero-mean Gaussian, and the probability distribution of 
the Q-component of the resultant will also be a zero-mean Gaussian. 

1.2.1 Deriving the Rayleigh Distribution 
Let the I-component of the resultant received signal be I, and the Q-component be Q.  Then, 
the probability that the resultant has lies at the point (I, Q) is: 

 

( ) ( ) ( )
2 2

2 2

2 2

2 2

1 1, exp e
2 22 2

1 exp
2 2

I Qp I Q p I p Q

I Q

πσ πσσ σ

πσ σ

  
= = − −    

  
 +

= −  
 

xp




2

 (0.6) 

Now if the amplitude of the resultant vector is A, then Pythagorus� theorem gives: 
 
  (0.7) 2 2A I Q= +

and so: 
 

 ( )
2

2
1, exp

2 2
Ap I Q

πσ σ

 
= −

 
2   (0.8) 

If we want the probability of the resultant amplitude as a function of the amplitude of the 
signal A, all we need to do is integrate this value over all possible values of I and Q which have 
the same amplitude. 

Consider: the probability of the resultant being in a small area between I and I + δI and 
between Q and Q + δQ is: 

 ( )
2

2 2
1, exp

2 2
Ap I Q dI dQ dI dQ

πσ σ

 
= −  

 
 (0.9) 

(that comes straight from the definition of a probability density function).  The probability that 
the resultant has an amplitude of between A and A + δA, is likewise, p(A) δA. 

AA + δA I

Q

AA + δA I

Q

 

Figure 1-10  Integrating to Find the Rayleigh Distribution 
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If we add up the probability that the resultant lies in a ring at a distance between A and A + δA 
from the origin, then we get: 

 ( )
2

2 2
1 exp

2 2ring

Ap A dA dI dQ
πσ σ

 
= −  

 
∫  (0.10) 

Within this narrow ring, we can consider the value of A to be constant, so we can take the 
terms outside the integral sign, and write: 

 ( )
2

2 2
1 exp

2 2 ring

Ap A dA dI dQ
πσ σ

 
= −  

 
∫  (0.11) 

and the area of the ring is just 2π A δA, so: 

 ( )
2

2 2
1 exp 2

2 2
Ap A dA AdAπ

πσ σ

 
= −  

 
 (0.12) 

which gives: 

 ( )
2

2 exp
2

A Ap A
σ σ

 
= −

 
2   (0.13) 

and this is one form of the Rayleigh distribution.  It�s not the most useful form, since σ (the 
standard deviation of the components) isn�t a very good parameter to use to specify the 
distribution: it�s not directly measurable.  If you determine the mean power in the Rayleigh 
distribution using the above formula, you�ll find that: 

 { } ( )
3 2

2 2
2 2

0 0

exp
2

A AE A A p A dA dA
σ σ

∞ ∞  
= = −  

 
∫ ∫  (0.14) 

which after rather a lot of tedious calculus and algebra6 gives the very simple result: 

 { }2 2E A 2σ=  (0.15) 

Writing the mean power as χ then allows a more convenient form of the Rayleigh distribution: 

 ( )
22 expA Ap A

χ χ
 

= −
 



                                                     

 (0.16) 

where χ is the mean power in the received signal. 

 

6 Or you could just note that the power is proportional to the square of the amplitude, so we can just add the powers 
in the I and Q components, and these are Gaussians, each of which has a mean power of σ 2. 
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1.2.2 Deriving the Exponential Distribution 
The Rayleigh distribution is a probability distribution of the amplitude in the received signal.  
It�s usually easier to work out problems in terms of the power of the received signal: you 
might, for example, want to know how often the power fades to less than 20 dB below the 
mean power.  For problems like this, it�s easier to use the corresponding distribution for power. 

The question then: if a fading signal has an amplitude distribution given by the Rayleigh 
distribution, what distribution describes the probability distribution of the received power?  
This is quite easy to work out, and gives a very easy answer. 

The probability of the amplitude being between A and A + δA is: 

 ( )
22 expA Ap A dA dA

χ χ
 

= −  
 

 (0.17) 

this must be equal to the probability of the power being between P and P + δP, where P = A2: 

 ( ) ( )p P dP p A dA=  (0.18) 

Therefore: 

 ( ) ( ) dAp P p A
dP

=  (0.19) 

and since simple differentiation of P = A2 gives dP = 2AdA: 

 ( )
22 1 1exp exp

2
A Ap P

A
P

χ χ χ
   

= − = −       χ   (0.20) 

This is a negative exponential distribution, and it�s even easier to work with than the Rayleigh 
distribution.  Integrating this one is (almost) trivial. 

1.2.3 Example of Rayleigh Fading 
Suppose I have a Rayleigh fading signal, with a mean received power of �80 dBm.  What is the 
probability that at any given time, the received signal will have a power of less than -100 dBm? 

I�ll use the negative exponential distribution of the received power here, since it makes the 
maths much easier.  The mean received power is χ = �80 dBm = 10�8 mW, and we want the 
probability that the received signal is less that �100 dBm, so all we need to do is integrate the 
probability density function from zero up to �100 dBm: 

 
1010 1010 10

8 8 8
00

1 1exp exp 1 exp
10 10 10 10

P PdP
−− −

− − −

     − = − − = − −           
∫ 8

0
−   (0.21) 

which works out to be just under 1%. 

You might find that a bit surprising?  What it means is that if we had a receiver with a 
sensitivity 20 dB lower than the mean received power (so that it would work perfectly well 
with only 1% of the mean received power level) then this receiver will only work around 99% 
of the time. 
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You might also note the apparent co-incidence here: the link fails 1% of the time, with a 
receiver of sensitivity 1% of the mean received power.  It�s not co-incidence.  Suppose you 
wanted to the link to fail a proportion x of the time, where x is a small number.  Then, the 
sensitivity of the receiver Ps must be: 

 1 exp sPx
χ

 
= − −

 
  (0.22) 

so: 

 ( )ln 1sP χ x= − −  (0.23) 

and for small values of x, we can approximate ln(1 � x) ≈ �x, which gives: 

 sP xχ≈  (0.24) 

It�s a useful approximation: for a link to fail only 3% of the time in Rayleigh fading, you need 
a receiver with a sensitivity 3% of the mean received power.  To fail only 0.1% of the time, 
you need a sensitivity 0.1% of the mean received power (30 dB lower), and so on. 

1.2.4 Properties of the Rayleigh Distribution 
For interest, the Rayleigh distribution looks like this: 
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( )
22 expr Ap A

χ χ
 −

=   
 
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( )
22 expr Ap A

χ χ
 −

=   
 
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Figure 1-11  The Rayleigh Distribution 

For very low values of amplitude (which is often the most interesting part of the distribution, 
since this is where things stop working), the distribution is almost a straight line. 

1.3 Ricean Fading 

There�s another distribution often used for mobile channel, which can also be derived from a 
simple physical model.  Unfortunately, it�s not very simple to derive, and not very easy to 
work with.  It�s called the Rice distribution, and it�s used when there is a single, large 
component (perhaps from a line-of-sight path) together with a large number of small random 
component.  We could illustrate it as follows: 
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Figure 1-12  Ricean Fading 

It�s effectively Rayleigh fading added onto a single large fixed component.  The derivation is 
beyond the scope of this book, but for interest�s sake, the result is: 

 ( )
2 2

02 2exp
2

s sA A A AAp A I
σ σ

   +
= −      

2σ
  (0.25) 

where As is the amplitude of the large fixed component, and I0(x) is a modified Bessel function 
of the first kind, with zero order. 

Unlike the Rayleigh function, where the only thing you have to know is the mean received 
power, to use the Rice distribution you need to know both the mean received power in the 
random component (2σ 2), and the power in the fixed component (As

2).  This makes the Rice 
distribution more awkward to use: you need more information about the particular channel you 
are concerned with. 

The Rice distribution is often characterised in terms of the ratio of these two powers: the 
k-value is defined as the ratio of the power in the fixed component to the mean power in the 
random components: 

 
2

22
sAk

σ
=  (0.26) 

and the total mean power in the Ricean distribution is the sum of the powers in the fixed and 
random components: 

  (0.27) 22ricean sAχ σ= + 2

For small values of k, we can neglect the fixed component, and we just get Rayleigh fading 
again.  For large values of k, the Ricean distribution can be approximated by a Gaussian 
distribution. 

1.3.1 Comparison of Fading Distributions 
A comparison between the Rayleigh, Ricean and Gaussian distributions is shown below. 

© 2007 Dave Pearce Page 11 28/08/2007 



Getting Started with Communications Engineering GSW� Fading Distributions 

0 2 4 6 8 10

Gaussian

0 2 4 6 8 10

Riceans: k = 0.5, 1, 2, 4

0 2 4 6 8 10

Rayleigh

0 2 4 6 8 10

Gaussian

0 2 4 6 8 10

Riceans: k = 0.5, 1, 2, 4

0 2 4 6 8 10

Rayleigh

 

Figure 1-13  Comparison of Fading Distributions 

Note that Ricean distributions with a small k-value look very like Rayleigh distribution, and 
with a large k-value, they look a lot like Gaussians. 

1.4 Other Distributions 

From time to time other people propose distributions to use for fading channels, such as the 
Nakagami distribution, which approximates the Rice distribution but is easier to integrate and 
can be expressed in dB form: 

 ( )
2

2 12 exp
( 1)!

m
m

m
mp A A

m χχ
−  −

= −  

mA
  (0.28) 

where χ is the mean power, and m is a shape parameter that can be set according to the k-value 
of the Rice distribution to be approximated: 

 ( )
( )

21
2 1
k

m
k
+

=
+

 (0.29) 

(You might notice that setting m = 1 gives k = 0, and the Rayeigh distribution.) 

Despite the mathematical convenience of this, the Rayleigh and Rice distributions are by far 
the most common and widely used.  So much so, in fact, that I don�t think I�ll bother writing 
any more about the others. 

1.5 Key Points 

• The Rayleigh distribution is the most useful and simplest mathematical model 
used for multipath propagation; it corresponds to the case of a very large number 
of component rays of similar amplitude arriving with uniformly-distributed 
phases. 
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• The Rice distribution is used when there is a single, large, non-fading component 
to the received signal, as well as a large number of smaller rays with uniformly-
distributed phases. 

• The Rayleigh distribution implies that for an outage of x % (where x is small), the 
sensitivity of the receiver is approximately x % of the mean received power. 

1.6 Problems 

1) A mobile radio link operating over a Rayleigh fading channel uses a receiver with a 
sensitivity of �90 dBm.  If the mean received power is �75 dBm, for what proportion of the 
time is this link likely to work? 
 
2) A radio link is specified as having to work 99.99% of the time (so-called �four-nines 
availability).  The power budget suggests the mean receive power is likely to be �75 dBm, but 
the environment is constantly moving, with heavy scattering and multipath, and no single clear 
path from the transmitter to the receiver.  What receiver sensitivity is likely to be needed? 
 
What about if the link was only require to work 75 % of the time? 
 
3) Derive the probability distribution for the two-ray model given in section  1.1.4.  (Hint, you 
can consider the range of the phase angle between the two rays as going from 0 to π only, since 
the resultant amplitude for a phase angle of θ  is the same as that for �θ.) 
 
4) The Nakagami distribution is a distribution of amplitudes.  What is the corresponding 
distribution of received powers? 
 
5) Derive an expression for the Rice distribution in terms of the mean receiver power and the 
k-value. 

6) Using the Nakagami approximation to the Rice distribution when k = 3, what percentage of 
the time is the received signal power less that 1% of the mean received power?  How does this 
compare to the exact answer using the Rice distribution (this will require some computer help). 
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