
Getting Started with Communications Engineering GSW� Linear Algebra 

1 GSW� Linear Algebra 
Linear algebra is the algebra of linear equations: the term linear being used in the same sense 
as in linear functions, such as: 

 y ax c= +  (0.1) 

which is the equation of a straight line. 

Of course, if we only have one input variable x and one output variable y, then the entire 
subject of linear algebra would consist of finding solutions to the equations like the one above, 
and apart from inverting it to find: 
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a
−

=  (0.2) 

there�s not much else of interest you can do.  Things only get interesting when we have a set of 
input variables xi, and a set of output variables yi, and each output depends on several of the 
inputs.  In the general case, we can write something like: 
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which is more usually written in the form of column vectors y and x and a matrix A, where the 
elements of the vector y are the terms y1� ym, the elements of vector x are the terms x1� xn and 
the elements of the matrix A are the terms a11� amn, 
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 (0.4) 

or in the notation of summation signs: 

  (0.5) 
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This allows the whole set or system of simultaneous equations to be written in the much more 
convenient form of: 

 =y A x  (0.6) 

If we know the vector x and the matrix A then calculating the vector y is easy, however if we 
know y and A but not x, then we�ve got a much more difficult task.  This is the basic problem 
of linear algebra: how to find x given y and A. 
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Now, if you�ve read the chapter about matrices, you�ll know that there is such a thing as the 
inverse of a matrix, and that if we knew the inverse matrix of A, we could write: 

 1 1− −= = =A y A A x Ix x  (0.7) 

where I is the unit matrix.  At first sight, it might appear that all we have to do is find the 
inverse matrix A-1, and then calculate x according to: 

 1−=x A y  (0.8) 

All of which is fine, except� 

• �if the matrix A is not square, then it doesn�t have an inverse, 

• �even if the matrix A is square, it might not have an inverse, 

• �if the matrix A is large, then it can take a very large number of calculations 
(and hence a long time) to work out the inverse, and it would be nice not to have 
to do this. 

Most of linear algebra is about finding ways to deal with these problems. 

1.1 A Taxonomy of Linear Simultaneous Equations 

The general set of linear equations 

 =y A x  (0.9) 

contains a number of different cases, all of which have to be considered separately.  I�ll try and 
list them, with examples and a few comments, here.  We�ll be looking at techniques to deal 
with them in later chapters. 

1.1.1 A is Square and Invertible 
This is the most straightforward and simplest case.  If A is a square matrix, then the vector x 
and y have equal numbers of elements.  That means we have the same number of unknowns 
(elements in x) as we have equations (elements in y).  If A is invertible, then there will be a 
unique solution, all we have to do is find it.  Finding the matrix inverse A-1 is one way, 
however it is rather time-consuming, especially for large matrices.  A few short-cuts would be 
useful. 

1.1.1.1 Triangular Matrices and Back-Substitution 
Using triangular matrices and the process of back-substitution is one popular short-cut.  Given 
the set of equations: 

  (0.10) 
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if we can find a way to convert them into the form: 

  (0.11) 
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where the matrix is an upper-triangular matrix (one in which all the terms underneath the main 
diagonal are zero) we can immediately see that we�ve modified the original set of equations 
into the form: 

  (0.12) 
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which with a simple re-arrangement gives: 
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 (0.13) 

and from these equations, it�s easy to work out the elements of the vector x one at a time, 
starting with x4, then using the value of x4 to work out x3, then using these values to work out 
x2, and so on.  This process is called back-substitution, since you start with the last element in x 
(in this case x4) and work backwards to x1. 

The classic method to convert the equations into this form is known as Gaussian elimination.  
More details on how this works in the chapter on Gaussian Elimination. 

There�s an important slight variation on this idea as well.  Suppose we could convert the 
system of equations into the form: 

  (0.14) 
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where the matrix is in now in lower-triangular form.  Then we can equally easily calculate the 
elements of x using a similar process, but this time starting with the value of x1, and working 
down to the last value x4.  This is called forward-substitution. 

© 2007 Dave Pearce Page 3 03/10/2007 



Getting Started with Communications Engineering GSW� Linear Algebra 

1.1.1.2 Substitution and Decomposition 
Taking this idea one stage further: suppose we could convert the system of equations into 
something of the form: 
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 (0.15) 

If we can do this, then we can work out x using a sort of two-stage substitution process: first, 
find a vector p that satisfies: 

  (0.16) 
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using forward-substitution, then do a back-substitution to work out x from the equation: 
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 (0.17) 

Why bother with a two-stage process?  Because in many cases we can convert the matrix A 
into the product of a lower-triangular and upper-triangular matrix quite easily, and when we 
do, the values of z1�z4 are equal to the values of y1...y4, so we don�t need to do anything to the 
vector y at all.  If there are a lot of sets of equations to solve with different values of y and x 
but the same matrix A (quite common in practice), this can save a lot of time. 

This process of converting a matrix into the product of two (or sometimes more than two) other 
matrices is known as matrix decomposition.  The particular case illustrated here is known as an 
LU-decomposition, since the matrix A is being expressed as the product of a lower-triangular 
matrix L and an upper triangular matrix U.  See the chapter on Matrix Decompositions for 
more about this and related methods. 

1.1.1.3 Example of a Square Invertible System 
Consider the equations: 

 
1 2 3

1 2 3

1 2

1 2
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32
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− = + −
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= − − +

 (0.18) 

writing these in matrix form gives: 
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3

1 1 2 1

3 2 1 2

2 1 2 2

x

x

x

− −     
    
    = − −
    
    − −     

 (0.19) 
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and this matrix can be inverted: 

  (0.20) 

11 2 1 1.2 0.4 1

2 1 2 0.4 0.2 0

1 2 2 1 0 1

−−  
  
  − − = −
  
  − −  







1

which allows a unique solution to be readily determined: 

 

11 1 2 1 1 1.2 0.4 1 1 2

2 2 1 2 3 0.4 0.2 0 3

3 1 2 2 2 1 0 1 2 1

x

x

x

−− − −           
           
           = − − = − = −
           
           − −           

 (0.21) 

with x1 = 2, x2 = �1 and x3 = 1.  (More details on how to calculate matrix inverses coming up in 
the chapter on Gaussian Elimination.) 

1.1.2 A is Square and Degenerate 
Not all square matrices have inverses.  Consider the set of simultaneous equations: 

 1 2

1 2

1 2
2 2 4

x x
x x

− = +
− = +

 (0.22) 

In matrix notation, these give: 

 
1

2

1 1 2

2 2 4

x

x

−     
=     

    −     
 (0.23) 

Try and inverse this matrix, and you�ll find that you can�t1.  What�s gone wrong?  We�ve got 
two equations in two unknowns, why can�t we solve them?  In this case, the answer is, I hope, 
quite easy to spot.  We don�t really have two equations, we�ve only got one.  The second 
equation is just twice the first equation.  It doesn�t give us any more information. 

These problem cases are not always so easy to spot.  For example, consider the equations: 

 
1 2 3

1 2

1 2

1 2
3 2 2
4 3

3

3

x x x
x x x
x x x

− = + −

= − −

− = − + +

 (0.24) 

Again, in matrix notation, this gives: 

                                                      

1 MATLAB, for example, will give a message saying �Warning: Matrix is singular to working precision�, which is 
just another way of saying this matrix has no inverse.  It�s analogous to trying divide by zero.  In fact, if you try and 
work out the inverse of this matrix, dividing by zero is exactly the problem you�ll be faced with at some point in the 
calculations. 
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1

2

3

1 1 2 1

3 2 1 2

4 1 3 1

x

x

x

− −     
    
    = − −
    
    − −     

 (0.25) 

and again, try and invert this matrix, and you�ll find that you can�t.  It�s the same problem: we 
don�t have three equations giving new information here, it�s possible to derive any of these 
equations from the others.  (For example, add the second and third equations together, and 
you�ll get the first one.) 

In general, we call such sets of equations not linearly independent.  In other words, we can 
express at least one of the equations in terms of a linear combination of the other equations. 

The number of linearly independent equations that the matrix expression represents is known 
as the rank of the matrix (so the rank of the matrix in equation (0.25) is two, and the rank of 
the matrix in equation (0.23) is one).  A matrix in which the rows are not linearly independent 
is known as degenerate or rank-deficient, and it can�t be inverted.  Any square matrix in which 
the rows are linearly independent is known as a full-rank matrix, and it can be inverted. 

Put this another way: a matrix of rank N contains enough information to solve a system of 
simultaneous equations with N unknowns, but no more. 

For the system of equations in equation (0.25), with a matrix of rank two and three unknown 
elements in x, there is not enough information to find a single unique solution.  There are an 
infinite number of solutions.  (This is known as an underdetermined system.)  We�re free to 
choose one of the elements of x to be anything we like, and then solve for the other two.  
Without some additional knowledge about the problem and what would be a �good� solution to 
find, there�s not much else we can do. 

This �additional knowledge� often comes in the form of a requirement to minimise the total 
length of the vector x, and we�re left with the more interesting task of finding the solution for x 
that has the minimum possible length.  There�s more about that problem later in this chapter, as 
well as in the chapter on Matrix Calculus. 

1.1.2.1 Contradicting Equations 
There�s a slight variation on this problem of rank-deficient matrices and underdetermined 
systems.  Suppose we had two simultaneous equations of the form: 

 1 2

1 2

1 2
3 2 4

x x
x x

− = +
− = +

 (0.26) 

Now we�ve got a real problem: there are no solutions.  The two equations contradict each 
other2.  There are no possible values of x1 and x2 that satisfy both these equations.  Now what? 

If this happens in a real calculation involving physical measurements, the most likely 
explanation is that there has been an error in one of the measurements, perhaps due to noise, 
and the equations that you�re really trying to solve are: 
                                                      

2 I hope this is obvious: if not, try multiplying the first equation by two, and then comparing it to the second 
equation. 
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 1 1 2

2 1

1
3 2 4

e x x
e x 2

2
x

− − = +
− − = +

 (0.27) 

where e1 and e2 are unknown error terms.  Re-write these in the form: 

 1 2 1

1 2

1 2
3 2 4 2

x x e
x x e

− = + +
− = + +

 (0.28) 

and you can see that what we actually have here is two linearly-independent equations in four 
unknowns: x1, x2, e1 and e2.  That�s a system with insufficient information (in other words 
another underdetermined system).  If we wrote it in matrix format, we�d get: 

 

1

2

1

2

1 1 2 1 0

3 2 4 0 1

x

x

e

e

 
 
 −   
 =   
    −     
  

 (0.29) 

and we no longer have a square system.  Assuming that the error terms have a zero mean and 
the same standard deviation, the most likely value of the vector x is given by the least-square 
method, which minimises the sum of the squares of the moduli3 of the error terms: 

 2 2
1 2e e= +e 2  (0.30) 

Treating the error terms as a vector e, so the equations are written: 

 = +y Ax e  (0.31) 

this approach minimises the length of this error vector, which is often the best thing to do (in 
the sense that it gives the answer for x that is most likely to be right: but remember the 
requirement that for this to be the best solution, all the error terms should have the same 
standard deviation).  More details about how to do this calculation in the Geometric 
Interpretation section at the end of this chapter, and the chapter on Matrix Calculus. 

1.1.3 A is Skinny: Redundant Information 
Sometime we don�t have a square system to start with.  For example, consider the equations: 

 
1 2

1 2

1 2

1 2
3 2
4 3

x x
x x
x x

− = +
= −

− = − +
 (0.32) 

Take any two of these equations, and you can calculate that x1 = 1 and x2 = �1.  You can throw 
the other one away, you don�t need it.  In matrix terms, we�d write: 

                                                      

3 Taking the modulus of each term just in case they are complex.  In communications engineering, we have to deal 
with a lot of complex vectors and matrices. 
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1

2

1 1 2

3 2 1

4 1 3

x

x

−   
     
   = −  
      
   − −   

 (0.33) 

and we could determine that the rank of the matrix is 2, so there is sufficient information to 
solve the equations for two unknowns4.  We can just ignore one of the equations, and in this 
case, it doesn�t matter which one.  That�s not always true: for example, consider the three 
equations: 

 
1 2

1 2

1 2

1 2
3 2
1 2

x x
x x
x x

− = +
= −
= − −

 (0.34) 

The third equation is minus one times the first equation.  In this case throwing away the second 
equation would be a really bad idea: it would result in two identical equations (apart from the 
factor of minus one).  You have to be a bit careful about which equations you choose to ignore. 

Fortunately, there are simple techniques for determining which equations to throw away, and 
they don�t add much to the number of calculations required to solve the system of equations.  
Again, more about these in the chapter on Gaussian Elimination. 

1.1.4 A is Skinny: Contradicting Information 
Just like the case of a rank-deficient matrix with contradicting equations, the usual case here is 
that there is some error in the measurements used to find the numbers, and instead of: 

 
1 2

1 2

1 2

1 2
3 2
0 3

x x
x x
x x

− = +
= −
= − +

 (0.35) 

which does not have any solutions for x1 and x2 since these equations contradict, the real 
problem is actually to solve: 

  (0.36) 
1 1 2

2 1 2

3 1

1 2
3 2
0 3

e x x
e x x
e x

− − = +
− = −
− = − + 2x

                                                     

which, in matrix form, could be written as a fat matrix with insufficient information: 

 

4 MATLAB users can find the rank of a matrix using the function rank(A). 

© 2007 Dave Pearce Page 8 03/10/2007 



Getting Started with Communications Engineering GSW� Linear Algebra 

 

1

2

1

2

2

1 1 2 1 0 0

3 2 1 0 1 0

0 1 3 0 0 1

x

x

e

e

e

 
 
 −   
    
    = −
    
    −     
  

 (0.37) 

or (more usually) as: 

 

1
1

2
2

3

1 1 2

3 2 1

0 1 3

e
x

e
x

e

−     
      
    = − + 
            −     

 (0.38) 

and again, we usually want to find the solution of this set of equations that has the minimum 
values of the error terms.  As noted before, the most popular technique is the least-square 
method, which minimises the sum of the squares of the error terms, here: 

 2 2 2
1 2 3e e e= + +e 2

2

 (0.39) 

1.1.5 A is Skinny: Insufficient Information 
This is a real pathological case, but since it can exist, for completeness, I�ll mention it.  
Consider the set of equations: 

 
1 2

1

1 2

1 2
2 2 4
3 3 6

x x
x x
x x

− = +
− = +
− = +

 (0.40) 

Hopefully you can see the problem: this might look like three equations, so that in matrix form 
this would look like: 

 
1

2

1 1 2

2 2 4

3 3 6

x

x

−   
     
   − =  
      
   −   

 (0.41) 

but really there is only one piece of information here: the second equation is just twice the first 
equation, and the third equation three times the first equation.  There is no new information 
about x in the second and third equations.  The rank of this matrix is one. 

That gives us a rank one matrix, with two unknowns.  That�s an underdetermined system: we 
don�t have enough information to solve it, there are an infinite number of possible solutions.   

The point is that it doesn�t really matter what shape the matrix is, the important thing is the 
rank of the matrix: if that is equal to the number of unknown elements in x, then we�ve got 
enough information to find a unique solution.  If it�s less than the number of unknown 
elements in x, we�ve got an underdetermined system, and there will either be an infinite 
number of solutions, or none at all.  If there are an infinite number, we�ll need more 
information to know which solution is the best one to choose. 
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1.1.6 A is Fat: Insufficient Information 
The more usual case of insufficient information is when the matrix A is fat (i.e. has more 
columns than rows).  Consider the equations: 

 1 2 3

1 2

1 2
3 2 2 3

x x x
x x x

− = + −

= − −
 (0.42) 

which in matrix notation, gives: 

 

1

2

3

1 1 2 1

3 2 1 2

x

x

x

 
− −     

 =   
    − −   
  

 (0.43) 

This matrix has a rank of two (the rows are not multiples of each other, so these really are two 
independent equations), but there are three elements in x.  This is a very similar case to that of 
the rank-deficient square system, however in this case we don�t have the possibility of 
contradicting equations and no solutions.  (You could think of this set of equations as a square 
set where one of the redundant equations has already been deleted.) 

However, it�s still an underdetermined system.  We don�t have enough information to find an 
exact solution, so we have to choose from the infinite number of solutions.  One possible 
choice is the solution that minimises the length of the vector x, and this is another variation on 
the least-square method, which in this case minimises the square of the length of x: 

 22 2 2
1 2 3x x x= + +x  (0.44) 

rather than the length of an error vector e.  Again, more on how to solve these coming up. 

1.2 A Geometric Interpretation of Matrices 

If you�re anything like me, and prefer to think in pictures, all these dry equations don�t really 
help get a good understanding of what�s going on.  It�s better to use pictures, and this turns out 
to be a very useful way to think about these problems.  Vectors can represent a point in space, 
so a vector x with n elements represents a unique point in n-dimensional space (sometimes 
written ).  Multiply this vector by a matrix A, and the result will be another vector y, 
representing another point in space. 

N!
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x1

x3

x2

(x1, x2, x3)

x

y = Ax

x1

x3

x2

(x1, x2, x3)

x

y = Ax

 

Figure 1-1  The Vectors x and y as Points in Three-Dimensional Space 

The numbers of element in x and y determines the dimensionality of the spaces of x and y.  For 
example, a vector with two elements represents a point on a plane, a two-dimensional surface; 
a vector with three elements represents a point in three-dimensional space.  A vector with ten 
elements represents a point in ten-dimensional space, which is a lot harder to think about, and 
even harder to draw, but the general idea of a point in space is still useful. 

1.2.1 Geometry and Full-Rank Square Matrices 
If the matrix A is square, then the vectors x and y will have the same number of elements, and 
hence represent points in the same dimensionality (e.g. they both define 2-dimensional planes, 
or three-dimensional spaces, etc).  If the matrix is invertible, and y = Ax, then for any vector x, 
we can find a unique vector y, and for any vector y we can find a unique vector x.  All we need 
to do is find the inverse mapping from a point y to a point x, and that�s provided by the inverse 
matrix.  We just have to solve: 

 1−=x A y  (0.45) 

1.2.2 Geometry and Skinny Matrices 
If the matrix A is skinny (i.e. has more rows than columns, and therefore the vector x has less 
elements than the vector y), then there will be some vectors y which do not correspond to any 
vector x.  In other words, only a subset of the possible values of y can be produced from Ax.  
Being linear equations, these subsets are linear spaces: lines, planes, 3-dimensional spaces, 
4-dimensional spaces, etc.  If the number of elements in the vector y is bigger than the number 
of elements in the vector x, then there�s a problem: there may not be a value of x for which 
Ax = y. 

For example, consider the equations y = Ax, where y has three elements, and x has two: 

 

1
1

2
2

3

1 2

2 1

1 3

y
x

y
x

y

   
     
   = −  
         −  

 (0.46) 
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The vector x has two-elements, and can therefore be thought of as a point on a plane.  The 
vector y has three elements, and can be thought of as a point in three-dimensional space.  The 
set of possible values of Ax then corresponds to the mapping of a 2-dimensional plane into the 
3-dimensional space of the possible values of y5.  All these points Ax will lie on a plane in 
3-dimensional space. 

If the value of y happens to lie in this plane, then we have linearly-dependent equations, and 
we can find a unique solution for x, just by ignoring one of the equations.  However, if the 
value of y doesn�t lie in this plane, then we have a case of contradicting equations, and we 
can�t find a value for x that satisfies y = Ax.  The best we can do is find the value of x for 
which Ax is as close as possible to the given value of y.  This is exactly the same thing as 
minimising the length of the error vector e in the expression y � e = Ax, since e is a vector 
representing the distance between y and Ax. 

It�s a bit hard to draw, but I�ve tried in the figure below: 

y

Value of Ax
closest to y

Plane of all
values of Ax

y

Value of Ax
closest to y

Plane of all
values of Ax

 

Figure 1-2  Least-Square Solution to y = Ax in Three Dimensions 

It�s probably easier to visualise in the case where x has just one element, and y has two: in this 
case the set of possible solutions to y = Ax are a line in the 2-dimensional space of y, which is 
just a plane.  In that case, the least-square solution could be shown as in this figure: 

                                                      

5 It�s always a plane, and not a spherical surface, or a paraboloid, or any other curved surface.  The equations would 
have to be non-linear to transform a plane into a curved surface, and this is linear algebra. 
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y

Value of Ax
closest to y

Line of all
values of Ax

y

Value of Ax
closest to y

Line of all
values of Ax

 

Figure 1-3  Least Square Solution to y = Ax in Two Dimensions 

This geometric interpretation of matrices and vectors allows us to find this least-squares 
solution in a simple way.  Remember, for a least-squares solution, we�re looking for the value 
of x that allows us to solve the equation: 

 

1
1

2
2

3

1 2

2 1

1 3

e
x

e
x

e

  
    
  = + = − + 
        −   

y Ax e  (0.47) 

for the minimum possible length of vector of e.  A quick reminder: since all possible values of 
x map to a plane in the three-dimensional space of vector y, if we have a value of y that does 
not lie on this plane, we can�t find a value of x for which the error is zero; the best we can do to 
minimise the error vector e is find the value of x for which Ax is as close as possible to the 
given value of y. 

Now the clever bit: the smallest possible error vector e is perpendicular to all the vectors that 
lie in the region Ax.  Again, this is easiest to draw in two-dimensions, where y has two 
elements, and x just one, so that all vectors Ax are points on a line: 

y

Value of Ax
closest to y

Line of all
values of Ax

e

y

Value of Ax
closest to y

Line of all
values of Ax

e

 

Figure 1-4  The Least Squares Solution as a Perpendicular 
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Consider a circle drawn around the point y (in three dimensions it would be a sphere, and so 
on).  The smallest circle (sphere, etc) that reaches the line given by all the possible points Ax 
just touches the line, so the line must be a tangent to the circle. 

The line from y to the nearest point on Ax is the error vector e, since y = Ax + e, and this must 
be a radius of the circle.  The radius to a point on a circle is perpendicular to the tangent that 
passes through the same point.  (In three-dimensions, the radius to a point on a sphere is 
perpendicular to the tangent plane at that point: a tangent plane being a plane that just touches, 
but does not cross the surface.  And so on, in higher numbers of dimensions.) 

Then, to calculate the least-square value of x, let x1 and x2 be any two possible values of x.  
Then Ax1 and Ax2 will be any two points on the plane containing all the points Ax in 3-
dimensional space (or any two points on the line of points Ax in two-dimensional space.)  The 
line joining them together, the vector Ax1 � Ax2 must be perpendicular to the error vector e, 
so6: 

 ( )1 2 .H 0− =Ax Ax e  (0.48) 

Therefore: 

 ( ) ( ) (
( ) ( )

1 2 1 2 1 2

1 2 1 2

)H H

H H

H

= −

− = − − −

− = −

y Ax e

Ax Ax y Ax Ax Ax Ax Ax

Ax Ax y Ax Ax Ax

e  (0.49) 

Now, using the matrix identity (AB)H = BHAH  (see the chapter on matrices), we have: 

  (0.50) 
( ) ( )

( ) ( )
1 2 1 2

1 2 0

H HH H

H H H

− = −

− − =

x x A y x x A Ax

x x A y A Ax

and since x1 and x2 can be any two values of x, the only way to ensure that this expression is 
always true is to take: 

 
( ) 1

H H

H H−

=

=

A y A Ax

x A A A y

                                                     

 (0.51) 

This is known as the normal equation7.  It gives the best possible value of x to use, in the sense 
that it minimises the length of the error term8.  It�s a general result9, not restricted to the case 

 

[continued on next page�] 

6 Using the definition of perpendicular that two vector are perpendicular if xHy = 0.  This is an extension to the more 
familiar case of requiring the dot product to be zero to cover the case of vectors with complex elements.  For more 
on why this is a good way to define �perpendicular� in these cases, see the chapter on Vectors. 

7 That�s �normal� in the sense of �perpendicular�.  It�s the solution for which the error vector e is perpendicular to the 
vector space Ax. 

8 The matrix B = (AHA)-1AH has some similarities to an inverse of A: for example, ABA = A, and BAB = B.  For 
this reason, B is sometimes called a pseudoinverse matrix of A. 

9 One word of warning: the normal equation doesn�t always work in the case of rank-deficient matrices.  Consider: 
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where y has three-dimensions and x has two, although it�s rather harder to picture what�s 
happening with any more dimensions. 

(Note that AHA is a positive-definite Hermitian matrix.  This is useful, since it means that it 
only has real positive eigenvalues, and therefore that iterative techniques such as the method of 
steepest descents will converge.  If you�ve no idea what that means, don�t worry, there�s more 
details coming up in later chapters.) 

1.2.3 Geometry and Fat Matrices 
The case of a fat matrix is common as well.  Suppose the matrix A is fat (has more columns 
than rows), so that the vector x has less elements than the vector y.  For example: 

 

1
1

2
2

3

1 2 1

2 1 3

x
y

x
y

x

 
−     

 =   
    −     

 (0.52) 

Now the vector x has three-elements, and can be thought of as a point in a 3-dimensional 
space.  The vector y has two elements, and can be thought of as a point on a 2-dimensional 
plane.  In this case, there will be multiple values of x that map to the same point y.  Being 
linear equations, all the possible solutions x of the equation y = Ax will lie on a straight line10. 

This is the case of an infinite number of solutions, and in many cases the solution we want to 
find is the one that minimises the length of the vector x.  We can use a similar geometric 
insight here.  Thinking of a vector as a line from the origin to a point in space, the solution for 
x we want is the one closest to the origin; and the shortest line from the origin to a straight line 
is perpendicular to the straight line. 

So, let w be any solution to the equation y = Aw (in other words, a vector representing any 
point on the line of solutions), and let x be the solution we want (the point on the line of 
solutions closest to the origin).  Then, since these values are both solutions to the original 
equation, we can write: 

 = =y Ax Aw  (0.53) 
                                                                                                                                                          

1
1

2
2

3

1 2

2 4

3 6

e
x

e
x

e

  
    
  = + = + 
           

y Ax e  

the matrix A has a rank of one, which means that all terms of the form Ax lie on a single line in the three-
dimensional vector space of y (in this case, the line y1 = y2/2 = y3/3).  The problem here is that the vector x has two 
elements, and therefore represents a point in two-dimensional space.  This matrix A is mapping a set of points in 
two-dimensional space onto a line.  This reduction in the number of dimensions implies that there are an infinite 
number of values of x that map to the closest value of Ax to y, and therefore there is no unique solution for x. 

For the normal equation to give a solution, the rank of the matrix A must be equal to the number of elements in x. 

10 If the vector x had two more elements than the vector y, all the solutions would lie on a plane in the vector space 
of x.  If there were three more elements in x than y, all the solutions would lie somewhere in a three-dimensional 
space.  And so on. 
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and we also know that the line from w to x is perpendicular to the line from the origin to x, so: 

 ( ) .H 0− =w x x  (0.54) 

and from these equations, we can derive that: 

 ( ) 1H H −
=x A AA y  (0.55) 

(See the problems and solutions for how this is done.)  This is a general result as well, although 
again it doesn�t work in cases where the rank of the matrix A is less than the number of 
elements in y.  (In these cases there are usually no solutions for x that satisfy y = Ax, and the 
derivation assumed that there were an infinite number of solutions.) 

1.3 Questions 

1) In the taxonomy in this chapter, I didn�t consider the case of fat matrices with redundant or 
contradicting information.  Is this case possible?  How would you approach a system of 
simultaneous linear equations such as these: 

 1 2 3

1 2

1 2
1 2 3

x x x
x x x

= + −

= − − +
 (0.56) 

2) What can you say about the set of simultaneous equations: 

 

1 2 3

1 2 3

1 2

1 2 3

1 2
1 2
3 2 4 2
2 2

x x x
x x x

3x x x
x x x

− = + −

− = − + +

= − − +

= − −

 (0.57) 

Do you have not enough information to solve for x, or too much?  How could you go about 
finding a solution for x in this case? 

3) In the case of a square, invertible matrix A, simplify the normal equation AHy = AHAx. 

4) Suppose you�re given the equations to solve: 

 1 1 2

2 1

1
3 2 4

e x x
e x 2

2
x

− + = +
− + = +

 (0.58) 

and you�re told that the error in the value �1 (e1) has a zero mean and a standard deviation of 
0.1, and the error in the value of �3 (e2) has a zero mean and a standard deviation of 0.5.  
What�s the best guess you can make of the value of x? 

5) Suppose you have a matrix A for which neither AHA nor AAH are invertible.  In terms of the 
geometric interpretation, what is happening here?  How might a least-squares solution be 
found? 

6) Prove that when there are an infinite number of solutions to the equations y = Ax, the 
solution that minimises the length of the vector x is given by: 
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 ( ) 1H H −
=x A AA y  (0.59) 

(Hint: first prove that this is a solution to y = Ax, then show that (w � x)H.x = 0 for all values of 
w that also satisfy y = Aw.) 

7) Show that the pseudoinverse matrix B = (AHA)-1AH satisfies ABA = A, and also that the 
matrix AB is Hermitian (i.e. that AB = (AB)H). 

8) Can B = AH(AAH)-1 also be described as a pseudoinverse?  Does it share the same properties 
as the pseudoinverse (AHA)-1AH?  In what circumstances would each be an appropriate choice? 
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