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1 GSW… Multipath Channel Models
In the general case, the mobile radio channel is pretty unpleasant: there are a lot of echoes
distorting the received signal, and the impulse response keeps changing. Fortunately, there are
some simplifying assumptions that can often be used to make the mathematical description of
the channel a bit easier, and which allow the determination of few simple parameters that
provide a good indication the sort of problems any given system is likely to have.

This chapter is about these assumptions, and a couple of these simple parameters that can be
derived using them that characterise the quality of a channel: most notably the delay spread
and the coherence bandwidth. There’s also a brief introduction to fading, but there’s much
more about time-varying channels in the next chapter on Time-Variant Multipath Channels.

1.1 The Mobile Radio Channel in General

In the most general case, the mobile radio channel can be characterised either by a time-
dependent impulse response h(, t) or a time-dependent frequency response H(, t), where t is
the time. This is a simple extension of the usual representation of linear time-invariant systems
to the case where the system isn’t time-invariant and the impulse response changes with time.

With time-variant systems, the output of the system for any given input signal x(t) can be
determined using the time-dependent impulse response:

     ,y t h t x t d  




  (0.1)

and in the general case, h(, t) can be anything.

The sort of information we’d like to know is over what range of time will the energy in a
transmitted impulse arrive at the receiver, and how quickly the impulse response changes with
time. Long impulse responses and fast-changing channels both cause problems for receivers.

1.1.1 The Problem of Long Impulse Responses

Long impulse responses (long relative to the length of a symbol) result in intersymbol
interference. Consider a simple channel consisting of two rays, with a delay between them of
just over one symbol period:
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Figure 1-1 Intersymbol Interference Caused by Multipath

At all times, the receiver, which is receiving the sum of the signals from both rays in the
impulse response, is receiving energy from two different symbols. The interference caused by
the echo is known as intersymbol interference, and makes the receiver’s task of working out
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what symbol was transmitted much more difficult. (The part of the receiver with the task of
removing the effects of multipath interference is called the equaliser. This is often the most
difficult task a receiver has to perform.)

However, reduce the delay to one tenth of a symbol period (or alternatively increase the length
of the symbol to ten times the delay between the rays), and the intersymbol interference almost
disappears, as now the receiver is, for almost all of the time, only receiving energy from one
symbol.
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Figure 1-2 Multipath Causing Less Intersymbol Interference

The delay spread of a channel is a measure of the length of time over which the energy
transmitted at one instant arrives at the receiver. It tells you how powerful an equaliser you
will need when you’re transmitting at a certain symbol rate; or alternatively, what symbol rate
you can use without the need for an equaliser.

1.1.2 The Problem of Time-Varying Channels

Knowing how fast the channel is changing can be very useful for a number of reasons. An
equaliser has to work out what the impulse response of the channel is, so it can undo the effects
the multipath interference in the received signal, and this task is much harder if the channel
keeps changing. Systems using equalisers typically work by transmitting a known series of
bits (known as a training sequence or as pilot symbols) that allow the receiver to work out the
impulse response of the channel. The receiver can then adapt the equaliser based on this
channel impulse response.

The problem with using a training sequence is that the receiver works out what the channel
impulse response was during the time when the training sequence is transmitted, not when the
information is being transmitted; and the channel is changing all the time. Know how fast the
impulse response of a channel is changing, and you know how often you need to transmit these
training sequences so that the receiver can keep its equaliser up-to-date1.

1.1.3 The Time-Variant Impulse Response

It’s perhaps interesting to pause and consider what h(, t) is. It’s the impulse response for an
impulse leaving the transmitter at time t. It’s not the impulse response of the channel at time t.
If you took a photograph of the system at any time t1, and then tried to determine the impulse
response h(, t1) just by looking at the photograph, you couldn’t do it.

1 This is perhaps an over-simplification. For example, some designs of equaliser, once set-up using a training
sequence, can track changes in the channel using the received data itself. However the general principle remains
true: it is harder to design an accurate equaliser for a radio channel that is changing quickly.
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Figure 1-3 Path of an Impulse Through a Fast-Moving Channel

For example, consider the case shown in the figure above, where the direct path between the
transmitter and the receiver is obstructed by two large sheets of copper, each with a hole in it.
Both sheets are travelling upwards (very fast), and the holes are arranged so that an impulse
leaving the transmitter at time t1 would go straight through both holes and arrive at the
receiver. However, at any given time, a photograph would show that the holes in the two
sheets of copper are not in line, and that there is never a line-of-sight link between the
transmitter and the receiver. The photograph does not contain enough information to work out
h(, t), you need to know how fast things are moving in the environment as well2.

In most cases, for the mobile radio channels that we’re interested in, this point is largely
academic, since the speed of just about anything in the environment is a very small fraction of
the speed of light. This is the first of the simplifying assumption we can make: the impulse
response does not change over the amount of time taken for an impulse to travel from the
transmitter to a receiver.

This approximation is quite reasonable: consider a 6 km long radio channel (quite long for
mobile radio), so that an impulse travelling at the speed of light would take 20 s to get from
the transmitter to the receiver. Anything travelling more than one millimetre in that time
would be moving at more that 50 m/sec (180 km/hr), and anything moving less than one
millimetre is unlikely to make a significant difference to the channel impulse response at the
frequencies used by mobile phones (with wavelengths typically around 15 cm).

1.2 Clusters of Uncorrelated Scatterers

Another assumption that’s often made is that the receiver receives a finite number of echoes of
a transmitted impulse, and as the objects move in the environment of the transmitter and
receiver, the amplitudes and relative phases of these echoes can change relatively quickly, but
their delays change relatively slowly.

There are two physical models of scattering that predict exactly this. The first assumes that
there are groups of scatterers (objects which reflect radio energy) spread all around the
receiver, sort of like this:

2 The same thing is true for the time-dependent frequency response as well. H( ,t) is the gain of the component at
frequency  of an impulse transmitted at time t, and is the Fourier transform of the time-dependent impulse
response.
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Figure 1-4 Model with Groups of Distributed Scatterers

The second, and in many cases rather more plausible explanation is that there are a lot of local
scatterers around the receiver, and a smaller number of large reflectors spaced all around the
receiver:
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Figure 1-5 Model with Local Scatterers and Distant Reflectors

Both models predict that there will be groups of rays arriving at the receiver, with each group
arriving at about the same time. If the difference in delays between two rays from the same
group is too small, then the receiver cannot resolve these into two separate rays3, they
effectively merge into one ray, with an amplitude and phase given by the sum of the vectors
representing the individual rays in the group. In both cases, the impulse response then looks
something like the following diagram, with the amplitude and relative phases of each of the
groups of rays changing with time:

3 What ultimately determines whether two rays arriving at slightly different times are resolvable or not is the
sampling rate and bandwidth of the receiver. If information about a change in the transmitted signal arrives via two
different rays less than a sample period apart, then the receiver will not be able to distinguish the rays: in one sample
neither has the new information, the next time the receiver ‘looks’, they both have. Receivers typically sample the
incoming signal at between two and four times the transmitted symbol rate, so any rays arriving within a small
fraction of the symbol rate will not be resolved. This means that the number of resolvable multipath rays in a radio
channel is a function of the symbol rate: systems with higher transmitted symbol rates (and hence higher sampling
rates) have more resolvable multipath components in the channel impulse response.
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Figure 1-6 Impulse Response for Groups of Scatterers

In order to change the phase of the received signal from each group of scatterers, the receiver
(or possibly the scatterers themselves) have to move a significant fraction of a wavelength. At
typical mobile phone frequencies (about 2 GHz), this implies a movement of a few
centimetres. That’s all it takes to significantly change the relative phase of the component rays
in any of these group of rays, and hence the amplitude and phase of the resultant of these rays.

However, to change the delay associated with this ray (the time between transmitting the signal
and receiving the energy from this group of scattered rays), the receiver would have to move a
significant distance towards (or away from) the transmitter. Even assuming a fast symbol rate
of 5 Mbaud, to make a significant difference to the delay itself (say, one-tenth of a symbol
period) would require the receiver to move 60 meters. The difference is over three orders of
magnitude: the phase and amplitudes of the resolvable rays arriving at the receivers change
much more rapidly than their delays.

It’s often helpful to plot the impulse responses as a function of time. In the case of the three
clusters of scatterers considered here, we might get something a bit like this:
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Figure 1-7 Example Time-Variant Three-Ray Impulse Response

Note that while the delays of the three rays don’t change very fast with time, the amplitudes of
the rays do change. This is typical of most mobile radio channels.
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1.3 Multipath and the Power Delay Profile

Although the amplitude of each of the resolvable multipath rays in the channel impulse
response is constantly changing, the power received in each ray can usually be averaged over a
time during which the delays of the rays themselves are reasonably constant (as we’ve seen,
the delays usually change much less rapidly than the amplitudes and phases of these rays).

Plotting this average power against delay gives the power delay profile. A typical power delay
profile might look something like:
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Figure 1-8 Sample Power-Delay Profile

(Remember that in this figure the short-term fading has been averaged out over time: this is a
plot of the mean power received in each ray, and remains valid over the length of time that a
receiver moves sufficiently far to change the delays of the rays.) The power-delay profile plot
is useful, since it provides a simple visual image of the average range of times over which the
energy transmitted in one symbol arrives at the receiver, and hence a measure of the
intersymbol interference expected.

Whilst a picture is useful, what would be even more useful is a single number that can be used
to describe this range of times, and tell us how much intersymbol interference to expect from
the channel. The most obvious way to come up with a single number (the difference in time
between the first multipath ray arriving and the last multipath ray arriving) isn’t very helpful,
since in theory at least the multipath rays decay away for ever4. At some point you have to say
“there is so little energy arriving after this time I’m just going to ignore it”.

Two other possibilities are to define the spread of the channel in terms of the range of delays
over which rays arrive within 3 dB or 10 dB of the ray with the maximum power (the ‘3dB
spread’ and ‘10 dB spread’, see the figure above). These have the advantage that they are very
easy to measure from a plot of the power delay profile, but the disadvantage that they can give
misleading answers. For example, consider the following two power delay profiles:

4 Imagine a receiver on a city street between two buildings. In theory, some of the energy arriving at the receiver
will have bounced between the two buildings thousands of times before ending up at the receiver, and have a huge
delay. Of course, the amount of energy that arrives after this length of time is negligible.
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Figure 1-9 Two Power Delay Profiles with the Same 10 dB Delay Spread

Both of these delay profiles have the same 10 dB delay spread, but the second one actually has
most of the received power arriving after a long delay; it’s just that none of these individual
rays quite manages to make it to within 10 dB of the largest beam. Effectively, most of the
received power is being ignored.

It’s a bit of a silly example perhaps, and totally unrealistic, but it does illustrate the point that
the 3 dB or 10 dB delay spread figure completely neglects all of the power arriving outside the
range specified, and there could be a considerable amount of this power, spread out over a
wide range of delays, being ignored. That power could cause a lot of intersymbol interference.

The usual solution is to use the rms delay spread (sometimes just called the delay spread since
it’s so commonly used). This figure includes all of the received power, weighted by what
effect it has on the amount of intersymbol interference it causes: exactly what we want to
know.

1.3.1 The rms Delay Spread

If we normalise the power delay profile by ensuring that the area under the curve is one (or
equivalently that the sum of all the powers in all the rays is one), then we have a probability
density function, describing the probability that any random photon of energy arriving at the
receiver has taken a given length of time to get from the transmitter to the receiver. The
standard deviation of this probability density function is the rms delay spread. It’s a good
measure of the range of delays over which most of the power arrives.

In other words, the rms delay spread is the square root of the mean value of the square of the
difference between the delay experienced by each photon of energy and the average delay. It’s
probably easier to understand in mathematical notation:

 2i i
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 

 




(0.2)

where  is the rms delay spread, Pi is the received power in the ith ray, i is the delay of the ith

ray, and  is the mean delay given by:
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Consider a simple example: the impulse response shown in the figure below:
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Figure 1-10 Simple Power-Delay Profile

This consists of just two rays: arriving at times of 2 and 3 units after the impulse was
transmitted. The first ray arrives with a power of 1, and the second ray arrives with exactly
half this power (it doesn’t matter what the units of power are, they cancel out).

Then, the mean delay is:
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and the rms delay spread is:

 
   

2
2 2

1 2 7 / 3 0.5 3 7 / 3 1/ 9 0.5 4 / 9 2

1 0.5 1 0.5 3

i i
i

i
i

P

P

 
      

    
 




(0.5)

and in both cases the units are whatever units the delays of the original rays were specified in5.

5 There’s another way to do this sum which is often easier, and that’s to use the fact that the variance of a
distribution is the mean of the square of the values minus the square of the mean of the values. Here, this gives:
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1.3.2 Delay Spread of Continuous Power-Delay Profiles

In some cases the power-delay profile doesn’t consist of a finite number of discrete rays,
arriving with different times, but it looks much more like a continuous curve, with some power
occurring with any value of delay. We might get a power-delay profile that looks more like
this:
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Figure 1-11 An Example Continuous Power Delay Profile

where the function plotted is now a power density: the amount of power that arrives within a
small range of delays d centred around a delay , divided by d. This isn’t a problem: we can
calculate a delay spread in exactly the same way: normalise the power-delay profile so that it
has a total received power of one, and then calculate the standard deviation of the resultant
probability density function. The only difference is that we now have to integrate over all
possible delays, rather than just summing over the individual rays:

  

 
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(0.6)

where:
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(0.7)

See the problems for an example of this.

1.3.3 Problems with the rms Delay Spread

Sadly, the rms Delay Spread does have a problem when it is used in real life, and that is noise.
If you try and measure a mobile channel, you’ll get a result that has some noise on it, for
example:
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Figure 12 - Measured Impulse Response with Noise

With the noise, it is not obvious where the impulse response ends. If we include all the noise
in the calculation of the rms Delay Spread, we’d end up with an answer that’s much too big (in
theory, infinite). On the other hand, if we use some ‘noise threshold’ (as shown in the figure
above) and ignore everything below that limit, we would be missing some parts of the real
impulse response, and that would (usually) give an answer that was too low.

Without some knowledge of the shape of the impulse response (for example, that it looks like
an exponential decay), it can be very difficult to estimate a good value for delay spread in cases
where there are a lot of very low energy rays arriving at different times (and hence a lot of
energy arriving below this noise threshold).

1.4 The Coherence Bandwidth

Any parameter or result in signals and systems theory expressed in the time domain has a
corresponding parameter or result in the frequency domain. In the case of the delay spread, the
corresponding parameter in the frequency domain is the coherence bandwidth: the range of
frequencies over which the gain of the channel remains ‘about the same’.

1.4.1 A Simple Example of Coherence Bandwidth

Perhaps a simple example might help to illustrate the concept. About the simplest example I
can think of is a channel impulse response with just two rays in it (one arriving after a delay
time 1, the other after a delay of 2), each with the same amplitude A. Input a single frequency
cosine wave with unit amplitude cos(t) into this channel, and the receiver will receive the
sum of these two delayed rays:

       1 2, cos cosr t A t A t        (0.8)

and using the formula for the sum of two cosines, this can be expressed as:

  1 2 2 1, 2 cos cos
2 2

r t A t
   

   
        

        
       

(0.9)

which represents a cosine wave with an amplitude of:

2 12 cos
2

A
 


  
  

  
(0.10)

and a phase relative to the transmitted signal cos(t) of:
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(at least when cos((2 – 1) / 2) is positive; it’s  greater than this when cos((2 – 1) / 2) is
negative).

If we plotted the impulse response, and the amplitude of the output from this channel as a
function of frequency, we’d get something like this:
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Figure 1-13 Impulse Response and Gain of Simple Channel

Put a second cosine wave at a slightly different frequency  +  through the same channel,
and the amplitude of the received signal becomes:

  2 12 cos
2

A
 

 
  

  
  

(0.12)

The question we need to answer is: how similar is the response of this channel at these two
frequencies? Clearly if  = 0, then the channel has the same gain for both frequencies, but
what if  is a small frequency difference? The channel gain changes smoothly, so the gain
would be similar at two slightly different frequencies, although very different when the
frequencies are more widely separated. Even this very simple case turns out to be rather
awkward to solve, mostly due to the fact that we’re trying to compare two oscillations that can
differ in both amplitude and in phase.

The usual mathematical way of quantifying how similar two variables are is in terms of their
correlation co-efficient, defined as the mean value of the product of the complex conjugate of
one function (minus its mean) with the other function (minus its mean), divided by their
standard deviations6:

    *
E

x y

x x y y


 

 

 (0.13)

6 We have to take the complex conjugate of one of the functions in the case where the functions are complex. Doing
so ensures that the correlation coefficient is one when the two functions are identical, since one number multiplied
by its complex conjugate is always real.
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This gives a value of one if the x and y are perfectly correlated (in the sense that y is identical
to x or at least a constant multiple of x), and zero if the value of y is completely independent of
the value of x.

When the two quantities can differ in both amplitude and phase, the task of deciding how
similar they are has an added complexity. The usual technique is to use complex numbers to
represent each component in the impulse response of the channel: the amplitude and phase of
each oscillation being represented by the amplitude and phase of a complex number. For
example, the signal in the first ray:

    1 1cos cosA t A t      (0.14)

would be represented by a complex number with amplitude A and phase angle –1:

 1expA j (0.15)

and the real signal in this ray can be re-created by multiplying this complex number by a
complex oscillation at the original frequency, and then taking the real part of the result:

        
  

1 1

1

exp exp exp

cos

A j j t A j t

A t

   

 

   

 
(0.16)

Using this notation, we can represent the sum of the two cosine waves in equation (0.9) in
complex form as:

       

       
       

1 2

1 2

1 2

, cos cos

exp exp

exp exp exp

r t A t A t

A j t A j t

A j j j t

    

   

  

   

   

   

(0.17)

and then use the complex representation of this signal:

      1 2, exp expr t A j j     E (0.18)

Similarly, we can use as complex representation of the channel’s output at the higher
frequency +, and use the complex representation of the sum of the two rays at this
frequency:

        1 2, exp expr t A j j             E (0.19)

We then need to find the correlation coefficient between these two complex representations.
One big advantage of this technique is that the mean value of both of these signals is zero: a
complex exponential oscillation has a zero mean, and the mean of the sum of two variables is
the sum of the means of each variable.

This leaves us with the problem of finding the correlation between rE(, t) and rE( , t) as a
function of the frequency difference , averaged over all possible values of . The expectation
value of the product of the complex conjugate of rE(, t) and rE( , t), from equations (0.18)
and (0.19) gives:
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            2
1 2 1 2E exp exp exp expA j j j j             (0.20)

and multiplying out the brackets gives the four terms:

      

      

1 2 1 12

1 2 2 2

exp exp exp
E

exp exp exp

j j j
A

j j j

    

    

        
        

(0.21)

The middle two terms are functions of , and average out to zero, leaving just the first and last
terms when the expectation value is taken:

    2
1 2exp expA j j    (0.22)

Rather than calculate the standard deviations for the denominator of the correlation coefficient,
we can take a short cut: we know the correlation coefficient will be one when  = 0, and when
 = 0 this expectation value is 2A2, so we can write the final correlation coefficient of the
frequency response of the two channels as:

 
    1 2exp exp

2

j j 
 

  
 (0.23)

This is a complex correlation coefficient: if we wanted to know over what range the absolute
magnitude of the correlation coefficient had a value greater than , we’d have to use:

     

         

  

  

2 *

*
1 2 1 2

2 1

2 1

exp exp exp exp

4

2 2cos

4

1 cos

2

j j j j

     

   

  

  



     


 


 


(0.24)

so to determine the range of frequencies over which the channel gain has a correlation with a
magnitude of greater than , we’d have to use:

 21

2 1

cos 2 1


 

 



(0.25)

In this case (two equal powered rays arriving after a delay of 1 and 2 respectively), the delay
spread is:

2 1

2

 
  (0.26)

so we could write:
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 21cos 2 1

2




 



(0.27)

which is interesting, since it shows that the coherence bandwidth is inversely proportional to
the delay spread, the constant of proportionality depending on the correlation coefficient of the
channel gains over the range of frequencies  (in other words, how close to the same you want
the channel response to be at the two frequencies considered).

Putting some numbers into this: consider an impulse response that looks like this:

2 3

delay (s)

p
o

w
er

1

2 3

delay (s)

p
o

w
er

1

Figure 1-14 Simple Two-Ray Power Delay Profile

Then, if we wanted to know what range of frequencies could be used so that there was a
correlation with a magnitude of at least 0.9 between any two frequencies, we could first
calculate the delay spread (0.5 s in this case) and then:

 1 2cos 2 0.9 1
0.902 Mrad/s 144 kHz

2 0.5 μs


  
  


(0.28)

but for a correlation of at least 0.5 between frequencies, the coherence bandwidth increases to:

 1 2cos 2 0.5 1
2.09 Mrad/s 333 kHz

2 0.5μs


  
  


(0.29)

This is a very simple case (two equal powered rays), but the general conclusion remains true
for all other channels: the coherence bandwidth is inversely proportional to the delay spread,
the constant of proportionality depending on the power delay profile of the channel, and the
maximum correlation coefficient required between the channel gain at different frequencies
within the coherence bandwidth.

1.4.2 Calculating the Coherence Bandwidth in the General Case

For the general case, a simple expression for the coherence bandwidth can be determined from
the impulse response of the channel and some results from Fourier theory. Any channel with a
time-dependent impulse response of h(, t) has a time-dependent frequency response of H(, t)
obtained by taking the Fourier transform of the impulse response with respect to the delay , so
we can calculate the channel frequency response at any given frequency using the Fourier
transform integral:



Getting Started with Communications Engineering GSW… Multipath Channel Models

© 2007 Dave Pearce Page 15 18/08/2008

     , , expH t h t j d   




  (0.30)

and the correlation coefficient between the frequency response of the channel at two different
frequencies is then:

 
         

 

*

2
,

E , , , ,

H t

H t H t H t H t



     

 


 
    

  (0.31)

Now for all channels we’re interested in, the mean value of the frequency response is zero (the
phase of the output from each ray constantly rotates in phase as the frequency changes,
averaging out to zero over all frequencies), so we can simplify this to:

 
    

 

*

2
,

E , ,

H t

H t H t



  
 




 (0.32)

and since we know that the correlation co-efficient must be one when  is zero (the same trick
as we used above to avoid having to work out the standard deviation), we can replace the
denominator:

 
    
    

*

*

E , ,

E , ,

H t H t

H t H t

  
 

 


 (0.33)

The next step uses a version of the Wiener-Khinchin theorem from Fourier theory: the
autocorrelation of the frequency response is 2 times the Fourier transform of the square of
the modulus of the impulse response (in other words, of the power delay profile)7:

7 Consider taking the Fourier transform of the autocorrelation of the frequency response (that’s the autocorrelation
function, not the correlation co-efficient), defined as:

     *H H d     




 

Taking the inverse Fourier transform of this autocorrelation function and reversing the order of integration gives:

[continued on next page…]
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       
2* , , 2 , expH t H t d h t j d        

 

 

    (0.34)

Now the expectation value of H*(, t) H(, t) is the mean value of this product over all
possible frequencies, which could be expressed as:

        * *1
, , lim , ,

2

s

s
s

E H t H t H t H t d
s

      




   (0.35)

so we could express our normalised correlation coefficient as:

 
    
    

   

   

*
*

*
*

1
, ,

E , , 2
lim

E , , 1
, ,

2

s

s
ss

s

H t H t d
H t H t s

H t H t
H t H t d

s

   
  

 
 

  










 





(0.36)

which when cancelling out the factors of 2s and using the result from equation (0.34) gives:

 
   

 

2

2

, exp

,

h t j d

h t d

  

 

 
















(0.37)

         

     

        
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1 1
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2 2

1
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1
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2 2
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H H j d d

H H j d j d

H h j d

h H j d

h h h

         
 

     


        


   

   

    

  

  

 

 

 

 


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



 
  

 
 

 

 
    

 
 

 

 

 

  

 

 





and if the inverse Fourier transform of the autocorrelation function is 2 times the power delay profile, then the
autocorrelation function must be the Fourier transform of 2 times power delay profile.

     
2

2 exph j d     




 
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This provides a simple way8 to calculate the coherence bandwidth: all you need to do is take
the Fourier transform of the power delay profile of the channel and then normalise it.

1.4.3 An Example of Coherence Bandwidth

Consider an example: the amplitude of the impulse response, power delay profile, frequency
response and frequency correlation of a radio channel are shown in the figure below:
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Figure 1-15 Correlation Bandwidth of Example Channel

(I’ve plotted the frequency response of this impulse response from 5.5 to 6.5 MHz, rather than
around zero, since to a radio transmission, the only interesting part of the spectrum is around
the carrier frequency, which I’ve assumed here is 6 MHz.)

Of course, this just provides a plot of the coherence between two frequencies. Again, just as
with the delay spread, we’d ideally like a single number giving the range of frequencies over
which the response of the channel is approximately the same. This channel has a delay spread
of about 1.7 s, and the channel changes significantly in gain in around 0.11 MHz (that’s
1/5). It’s clear, I think, that the channel has a completely different (i.e. totally uncorrelated)
gain if you move in frequency by 0.58 MHz (1/). If you want two frequencies that have
approximately the same gain, you can’t move more than about 0.058 (1/50) MHz; see the
expanded figure below:

8 I should apologise to any mathematicians reading this who are probably spitting with fury at this point. I’ve taken
a few short cuts with this derivation, for example, the autocorrelation as I’ve defined it can take infinite values,
which means you can’t take the Fourier transform. However, I hope this simplified derivation at least serves to
indicate where the result comes from. For more discussion on this point, see the chapter on Fourier theory.
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Figure 1-16 Channel Frequency Response and Coherence Bandwidths

Which figure is of the most use depends on what you want to use it for. If you want to know
whether the channel looks flat, then you’ll want a coherence bandwidth over which the gain of
the channel is approximately the same, perhaps with a correlation coefficient of greater than
0.9. If you want to know how by how much you have to change the frequency to be confident
that the gain of the channel has completely changed (perhaps the signal has faded, and you’re
thinking of choosing a new carrier frequency to use), you’ll want a correlation coefficient of
close to zero. If you want to know whether you need to use an equaliser or not, you’ll want a
correlation coefficient of about9 0.5.

The exact relationship between the rms delay spread and the coherence bandwidth is dependent
on the shape of the power delay profile, but in every case, the coherence bandwidth is inversely
proportional to the delay spread. Increase the delay spread, and you reduce the range of
frequencies over which the channel appears to have a similar gain. I’ll finish this chapter with
a summary of some useful approximations:

Approximation
Correlation
coefficient

Notes

1
1

rms

B 


~ 0

The channel gain at frequency  is almost
entirely independent of the gain at 1.

Changing frequency by 1 results in a channel
with a completely different channel gain.

2
1

5 rms

B 


~ 0.5
The channel gain at frequency  is similar to the

gain at 2. If 2 is greater than the
symbol rate, an equaliser may not be required.

3
1

50 rms

B 


> 0.9
The channel gain of frequency  is almost

exactly the same as the gain at 3.

9 This is a rough rule-of-thumb only.
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1.5 Problems

1) A channel has the impulse response shown in the figure below:
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i) What is the mean delay of this channel?
ii) What is the delay spread?
iii) Estimate the coherence bandwidth.

Estimate the maximum symbol rate that can be used through this channel without the need for
an equaliser. (Assume an equaliser is not required if the delay spread is less than one-fifth of
the symbol period.)

2) A radio channel has an impulse response containing two rays of equal power, one with a
delay of 1 s, and the other with a delay of 3 s. Calculate the rms delay spread for this
channel, and hence estimate the difference in frequencies for which the correlation between the
gains is 0.5 by using 1/5. Then calculate the exact difference in frequencies that gives an
expected correlation of 0.5. How accurate is the approximate formula in this case?

What is the actual value of the correlation between two frequencies 1/5 apart in frequency?

3) Repeat question 2 for a radio channel with an impulse response of h() = exp(-a). How
accurate is the approximation in this case?

4) What coherence bandwidth gives a maximum correlation of 0.9 between the channel gains
for the impulse response in question 1?
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