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1 GSW… Noise and IP3 in Receivers
In many cases, the designers of individual receiver components (mostly amplifiers, mixers and
filters) don’t know how any of their customers are going to put them together to make a
receiver. However, the designer of a radio receiver is going to want to calculate the likely
performance of a receiver built from these individual components.

This gives us two problems: how should the individual components be specified, and how do
we combine the specifications of these individual components to produce a specification for
the whole receiver?

1.1 The Parameters: Noise and IP3

In many cases, the two most critical parameters for a receiver are its noise performance (which
determines the sensitivity: the smallest input signal that can be successfully receiver) and its
overall third-order inter-modulation products1 (which determines the largest input signal that
can be successfully received). These parameters tend to be independent: noise is a problem for
very small input signals where the inter-modulation products are so small they can be
neglected; inter-modulation products are a problem for very large input signals where the
signal to noise ratio is so large that noise can be neglected.

Second-order inter-modulation products are easier to prevent, since at least one of the
unwanted input signals required to produce some power at the carrier frequency fc must be at
least fc / 2 away from the carrier, and is therefore easy to filter out; and higher-order inter-
modulation products tend to produce significant problems only at higher input powers that the
third-order effects. In other words, the third-order effects tend to start first: get them under
control and you won’t have to worry too much about any higher-order effects.

There are many other important considerations when designing receivers (perhaps most
notably the power consumption), but these are the two I’ll consider in this chapter.

1.1.1 Noise and Noise Power Spectral Density

Having said that I’ll talk about noise, I should mention that’s it’s often more useful to talk
about the noise power spectral density. Noise (N) is measured in Watts; noise power spectral
density (N0) is measured in Watts per Hertz. N0 is a spectral density, so by definition the
amount of noise within a range of frequencies from f1 to f2 is given by:

 
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N N f df  (0.1)

All the noise considered in this chapter is white, which means that the noise power spectral
density is not a function of frequency, and we can simply write:

1 Third order inter-modulation products are the result of non-linear mixing of two frequencies fc + f and fc + 2f
(where fc is the carrier frequency and f is a small offset frequency, often the channel spacing of the multi-channel
radio system being used). This non-linear mixing produces some power at fc itself, which interferes with the signal
the receiver is trying to receive, and since it’s at the same frequency, it can’t be removed by filtering. For more
details, see the chapter on “Non-Linear Effects”.
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 0 2 1 0N N f f N B   (0.2)

where B is the bandwidth of interest (the frequencies from f1 to f2).

From the point of view of a receiver, the noise power spectral density is actually more
interesting than the total noise power, since the performance of a receiver with a matched
(optimum) filter is a function of Es/N0, where Es is the energy in one symbol, and N0 is the
noise power spectral density.

1.2 Specifying Noise: Noise Temperature and Noise Figure

There are two common ways to specify the amount of noise that a component will introduce
into the signal chain: noise temperature and noise figure. I find noise temperature more
intuitive and easier to understand, but noise figure seems to be more common. They both use
the same model of noise: that of treating the effect of any component as the combination of
adding some noise to the input signal, followed by a perfect (noise-free) gain or loss.

For example, consider a component that when provided with an input signal Sin with an input
noise power Nin produces an output signal Sout and output noise power Nout. Let the power gain
of this component be G, so that:

out

in

S
G

S
 (0.3)

For those who like pictures, it looks like this:

Noise Nout

Signal SoutGain G

Noise Figure F

Signal Sin

Noise Nin

Figure 1-1 One Noisy Component with Gain

We then consider that this component behaves identically to a component that adds a noise
power Ne = Nout / G – Nin to the input signal, and follows this with a perfect, noise-free gain of
G, like this:

Gain G

No Added Noise+
Signal Sin

Noise Nin

Equivalent Input Noise
Ne = Nout / G – Nin

Signal Sout

Noise Nout

Figure 1-2 Equivalent Circuit for One Noisy Component with Gain

The amount of noise added to the input of the component in this model is called the equivalent
input noise of the component. Since by definition:
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 in e outG N N N  (0.4)

it’s straightforward to derive that:

out
e in

N
N N

G
  (0.5)

1.2.1 Noise Temperature

The noise power available from a resistor at a certain temperature T is given by:

N k T B (0.6)

where k is the Boltzmann constant (1.38 x 10-23 J/K), T is the temperature of the resistor (in
Kelvin), and B is the bandwidth2 of the system (in Hz).

This allows a noise power N to be associated with a temperature T. The equivalent noise
temperature Te is the temperature of a resistor that would provide a power equal to the
equivalent input noise power for a component:

e eN k T B (0.7)

Knowing the noise temperature and the gain of the component (as well as the bandwidth of the
signal) together with the input noise is then enough information to calculate the total output
noise power:

   out in e in eN G N N G N k T B    (0.8)

That’s it. It’s quite simple. The only slight problem is if you’re just designing the radio-
frequency stages of a receiver, you might not know what the bandwidth of the signal is likely
to be. In that case we can’t calculate the absolute noise powers, the best we can do is calculate
the noise power spectral densities N0 (in W/Hz), where:

0N B N (0.9)

In this case if we know the input noise power spectral density N0in, and the equivalent input
noise power spectral density N0e, we can calculate the output noise power spectral density N0out

using:

   0 0 0 0out in e in eN G N N G N k T    (0.10)

and pass this information onto the system designer. Often this is what he really wants to know
anyway3.

2 Strictly speaking it’s the noise bandwidth of the system, not the 3-dB bandwidth or any other definition of
bandwidth. The noise bandwidth of a system is the bandwidth of a perfect “brick-wall” filter that would let through
the same amount of noise.
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1.2.2 Noise Figure

The definition of the noise figure is a little less obvious. It’s the ratio of the actual output noise
power to the output noise power due to the input noise alone (i.e. assuming the device itself
does not add any noise), provided the input noise is due to a resistor at 290 K.

To unpick that a bit: suppose a component has a power gain of G, and the output noise power
is Nout. Some of this output noise power will be G times the input noise power, and some will
be due to the additional noise introduced by the component itself.

In terms of the equivalent input noise, we can write:

 out in e in eN G N N GN GN    (0.11)

and note that the noise figure, by definition, is then equal to:

1out in e e

in in in in

N GN GN N
F

GN GN GN N
     (0.12)

and since for the correct value of noise figure, the input noise has to be that due to a resistor at
290 degrees Kelvin:

1 1
290

e e

in

N N
F

N k B
    (0.13)

Also, the amount of equivalent input noise Ne you have to add to a noise-free version of a
component with a noise figure F to get the same output noise can be determined from re-
arranging equation (0.12) to get:

 1e inN N F  (0.14)

So things now look like this (for the equivalent circuit for the noisy component):

Gain G

No Added Noise+
Signal Sin

Noise Nin

Equivalent Input Noise

Ne = Nin / (F – 1)

Signal Sout

Noise Nout

Figure 1-3 – Equivalent Input Noise in Terms of the Noise Figure

3 As noted, it’s the noise power spectral density that determines the minimum bit error rate for a link, not the noise
power within the signal bandwidth (which is hard to define, since many signals have power spectra that gradually
roll-off away from the main lobe, and it’s not always obvious how best to define the bandwidth).
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Another very useful result follows from this definition of the noise figure (in fact, this is why
the noise figure is used so frequently): the noise figure is the ratio of the input signal to noise
ratio to the output signal to noise ratio, again provided the input noise is equal to that due to a
resistor at 290 K, since:

 
1in ein in out in in e e

out in out in in in in

G N NSNR S N S N N N
F

SNR N S GS N N N

 
      (0.15)

1.2.3 The Noise Figure of Passive Components

In most cases, for passive components, the noise figure is the inverse of the gain. Or perhaps I
should say the noise figure is equal to the loss4, since passive components can’t have a gain
greater than one, the output is always smaller than the input.

This isn’t obvious, but the result is fairly easy to derive if you think about things in terms of
equivalent circuits. Consider the following filter:

Noise Nout

Filter
Gain G

Noise Figure F

Figure 1-4 A Passive Filter with Input Tied to Ground

Clearly, the input noise going into this filter is just that due a resistor at 290 K. However,
consider another component following the filter. As far as it is concerned, all it has on its input
is a network of individual resistors, capacitor and inductors all at the same temperature
(290 K). This network could be replaced by an equivalent network composed of an ideal
resistor in series with an ideal capacitor or inductor. Since ideal capacitors and inductors are
noise-free, this means from the noise point of view, the output of the passive component just
looks like a resistor at 290 K.

This is exactly what the input noise looks like to this filter; so the input noise must be equal to
the output noise:

290in outN N k B  (0.16)

But the definition of the noise figure is:

290
out out

in

N N
F

G N G k B
  (0.17)

so here:

4 Where loss is defined as the input divided by the output (in contrast to the gain being the output divided by the
input).
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290 1

290

k B
F

G k B G
  (0.18)

So, for example, a passive filter with a gain of 0.5 would have a noise figure of 2; or in
decibels, a passive filter with a gain of –3 dB has a noise figure of 3 dB.

1.2.4 Noise Figures and Noise Temperatures

Since they are measuring the same thing, knowing the noise temperature of a component
allows you to calculate the noise figure of the same component very easily (and vice versa).
This is often useful: sometimes some components in a receiver are specified in terms of noise
temperatures and others in terms of noise figures.

The relationship between them is simple enough to work out: from equation (0.7) and equation
(0.13), we get:

1 1 1
290 290

e e e

in

N k T B T
F

N k B
      (0.19)

or for going the other way from F to Te:

 290 1eT F  (0.20)

So, for example, the noise temperature of a passive component (like a filter, or a length of
cable with some loss) is related to its gain by:

1
290 1eT

G

 
  

 
(0.21)

For the case of passive components (including cables, which introduce a loss between the
antenna and the first stage of the receiver) this is sometimes expressed in terms of a
transmission factor, defined as:

out

in

S
G

S
   (0.22)

which gives for passive components an equivalent input noise temperature of:

1
290 1eT



 
  

 
(0.23)

1.3 Adding Noise Powers

You might have noticed that in the previous sections, I’ve been adding powers, not amplitudes.
That’s because the noise sources are uncorrelated: the equivalent input noise waveform added
by the component is entirely independent of the incoming noise waveform. They both have a
mean power (Nin and Ne respectively), but the amplitude of these noise contributions at any
time is an uncorrelated random variable. I’ll call these noise amplitudes nin and ne respectively,
with the lower-case n representing the fact that these are amplitudes not powers.
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The total input noise amplitude is then:

in en n n  (0.24)

so the mean value of the power in this total input noise is:

    
 
     

22
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E n n n n

E n E n E n n

 

  

  

(0.25)

where E{} represents the expectation (mean) value. However, since the two noise sources are
completely independent and have a mean value of zero, the product of them is equally likely to
be positive (when both have the same sign) or negative (when they have different signs). So
the expectation value of the product ne nin is zero. That just leaves:

     2 2 2
in eE n E n E n  (0.26)

or in other words: the mean power in the total input noise is the sum of the mean power in the
input noise with the mean power in the equivalent input noise.

ne(t)

nin(t)

ne(t) + nin(t)

ne
2(t)

nin
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(ne(t) + nin(t))2
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Figure 1-5 Adding Noise Contributions

This is a general rule when adding uncorrelated noise signals: always add the powers, not the
amplitudes.

1.4 The Noise Performance of Receivers

To calculate the noise performance of a whole receiver involves combining the noise added by
all the stages in the receiver: the various filters, mixers and amplifiers than make up the
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receiver signal chain. This turns out to be quite simple to do, and the resulting formula has
some very important consequences.

The ‘trick’ is to replace all the noise sources throughout the signal path with equivalent noise
sources at the beginning of the signal path. As we’ve seen, each component can be considered,
in terms of the noise it adds, as if it had a perfect noise-free gain, but an additional noise
component added into the input of (F – 1)Ni.

We can extend this idea to more than one component:

Gain G1

No Added
Noise

+
Signal Sin

Noise Ni

Ni (F1 –1)

Gain G2

No Added
Noise

+
Gain G3

No Added
Noise

+

Ni (F2 –1) Ni (F3 –1)

Figure 1-6 Three Noisy Components in Series

The trick now is to move the additional equivalent noise sources back to the start of the series
of components. This is quite simple to do, all you have to do is divide the equivalent input
noise contributions of each stage by the total gain of the components up to the start of the
component. For example, we can move the second equivalent input noise contribution back to
the start of the series by dividing it by G1, and add an equivalent input noise of Ni(F1 – 1)/G1 to
the input. For the third component, we’ll need to divide the equivalent noise contribution by
G1G2. The equivalent circuit for the series of components now looks like this:

+
Signal Sin

Noise Ni

Ni(F1 – 1)

+

Ni(F2 – 1)/G1

Gain G1G2G3

No Added
Noise

+

Ni(F3 – 1)/G1G2

Figure 1-7 – Moving Noise Contributions to the Input

Note that in both of the above figures, the output noise power is:

     1 2 3 1 2 3 1 2 3 2 3 31 1 1i i i iN G G G N G G G N F G G N F G N F       (0.27)

and the overall gain is G1G2G3. Taking this one stage further, we can add up all these
additional noise contributions, and we’ll get:
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Signal Sin

Noise Ni

Gain G1G2G3

NoAdded
Noise

+

Ni(F1 – 1)

+ Ni(F2 – 1)/G1

+ Ni(F3 – 1)/G1G2

Figure 1-8 Combining Noise Contributions

This suggests we can treat the entire chain of active stages as having a gain of G1G2G3, and a
noise figure of F where:

1 2 1 3 1 2

1 2 1 3 1 2

( 1) ( 1) ( 1) / ( 1) /

( 1) / ( 1) /

i i i iN F N F N F G N F G G

F F F G F G G

      

    
(0.28)

Extending this result to more active stages, we get:

     2 43
1

1 1 2 1 2 3

1 11
...

F FF
F F

G G G G G G

 
     (0.29)

and this is the Friis formula for combining the noise outputs of cascaded stages. Using this
formula, and the gains and noise figures of the stages, we can calculate an overall noise figure
for the whole receiver.

1.4.1 Working with Noise Temperatures

We can do the calculation equally well with noise temperatures. Using the result from
equation (0.19), we can replace all the noise figures with noise temperatures since:

1
290

eT
F   (0.30)

and that turns the Friis formula (equation (0.29)) into:

2 3 4

1

1 1 2 1 2 3

2 3 4
1

1 1 2 1 2 3

1 1 1 1 1 1
290 290 290

1 1 ...
290 290

...

e e e

e e

e e e
e e

T T T

T T

G G G G G G

T T T
T T

G G G G G G

     
          

           

    

(0.31)

where Te is the overall noise temperature for the receiver, and Te1, Te2, Te3 etc are the noise
temperatures of the individual stages. This is perhaps easier to remember (you don’t have to
remember to subtract one from all the noise figures except the first one).
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1.4.2 Receiver Sensitivity

Since the noise in the original input Ni can be taken to be kTB, where k is the Boltzmann
constant (1.38 x 10–23), T is the temperature (conventionally taken to be 290 K) and B is the
bandwidth, all we need to know is the noise bandwidth of the filters, and we can calculate the
total signal to noise ratio at the output of the receiver for any level of input signal.

The smallest value of input signal which provides a certain minimum output signal to noise
ratio is known as the sensitivity of the receiver. Unfortunately, there isn’t a single definition of
sensitivity, since the radio receiver designer often doesn’t know what level of output signal to
noise ratio will be required for the whole system.

A common solution is to define the sensitive of a receiver in terms of the minimum detectable
signal (MDS). This the is the input signal level that results in a signal to noise ratio at the
output of 0 dB (in other words, the same signal power and noise power). Then a system
designer wanting to know what level of input signal would be required to provide a signal to
noise ratio of 6 dB at the output just has to take the MDS and add 6 dB.

1.4.3 Example of Noise Figure Calculation

Consider the dual-conversion superhet receiver shown below:

Local
Oscillator f1

Bandpass
Filter

LNA
Image
Filter

Image
Filter

Amp

Local
Oscillator f2

Image
Filter

Amp
To low-frequency

circuits

Gain (dB)

NF (dB)

IP3 (dBm)

-2.5

2.5

12.0

2.0

10.0

-3.0

3.0

-6.0

12.0

16.0

20.0

3.0

12.0

-2.5

2.5

18.0

12.0

-3.0

3.0

60.0

20.0

26.0

Figure 1-9 - Example Dual-Conversion Super-Heterodyne Receiver

The noise figure, gain, and third-order intermodulation intercept point IP3 is given for all the
relevant components in the design5. (It will be assumed that the low-frequency circuits do not
add significantly to the noise or non-linearity of the receiver.)

This receiver has nine component stages, and we know the noise figure and gain of all of them.
However, since they are all given in decibels, and the Friis formula is in terms of real noise
powers and power ratios, the first thing we need to do is take the gains and noise figures out of
decibels and back into real powers and ratios. This can be conveniently done using a table like
the following (spreadsheets are great at this sort of thing):

5 You might notice that the noise figures of the passive components (filters) are all equal to the loss through the
filters (and therefore minus one times the gain in dB). As discussed, this is a general result for all passive
components.
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Stage Gain
(dB)

Gain up
to this
stage
(dB)

Gain up
to this
stage

(linear)

Noise
Figure
(dB)

Noise
Figure
(linear)

Contribution to Overall
Noise Figure

Bandpass
Filter

–2.5 0.0 1.0 2.5 1.78 1.78

First
Amplifier

(LNA)

12.0 -2.5 0.562 2.0 1.59 (1.585 – 1) / 0.562 = 1.04

First Image
Filter

–3.0 9.5 8.913 3.0 2.00 (2.0 –1) / 8.913 = 0.11

First Mixer –6.0 6.5 4.467 12.0 15.85 (4.57 – 1) / 4.467 = 3.32
Second

Image Filter
–2.5 0.5 1.122 2.5 1.78 (1.78 – 1) / 1.122 = 0.69

Second
Amplifier

20.0 –2.0 0.631 3.0 2.00 (2.00 – 1) / 0.631 = 1.58

Second
Mixer

18.0 18.0 63.1 12.0 15.85 (15.85 – 1) / 63.1 = 0.23

Third Image
Filter

–3.0 36.0 3981 3.0 2.00 (2.0 – 1) / 3981 = 0.00025

Third
Amplifier

60.0 33.0 1995 20.0 100 (100 – 1) / 1995 = 0.05

Then add up all the noise contributions to the overall noise figure:

1.78 1.04 0.11 3.32 0.69 1.58 0.23 0.00025 0.05

8.81

F         


(0.32)

so this receiver has an overall noise figure of 8.81 (which is 9.45 dB).

If the channel bandwidth is 200 kHz, then the noise power at the input is:

23 3 -16= 1.38 10 290 200 10 = 8 10 W 121 dBmkTB        (0.33)

and if we happen to know that the minimum signal-to-noise ratio required to maintain an
acceptable bit error rate at the output of the receiver (the input to the detector stage) is 6 dB (or
3.98 in linear terms), then we can work out the sensitivity of this receiver (and it’s easier to
work in dB here, so we can subtract rather than having to divide):

     

     

     

 

dB dB dB 9.45

dBm dBm dB 9.45

dBm dBm dB 9.45

dBm 121 6 9.45 105.55dBm

in out

in in out

in in out

in

F SNR SNR

S N SNR

S N SNR

S

  

  

  

     

(0.34)

If we didn’t know what minimum signal-to-noise ratio was required for acceptable
performance, all we could do is consider the sensitivity to be the minimum detectable signal
MDS), which is the input signal that gives an output signal power equal to the output noise
power. Using this definition, the sensitivity would be 6 dB less, at –111.55 dBm.
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1.4.4 Comparative Noise Contributions

Looking at the contributions that each individual stage makes to the overall noise figure for the
receiver, the contribution of each stage (except the first stage) could be written as:

1i

j
j i

F

G





(0.35)

in other words the contribution of each stage is its own noise figure minus one, divided by the
total gain up to the input of the stage. After the second amplifier, the combined gain is so high
that it doesn’t really matter whether subsequent stages are low-noise or not, it won’t make
much difference to the overall noise performance of the receiver. Of much more concern are
the first few stages in the receiver chain, where the signal level is low, and there hasn’t been
much gain. That’s where low-noise design is much more important.

In this example, the largest single contribution to the overall noise figure is from the first
mixer, and the second-largest contribution is from the bandpass filter before the front-end low-
noise amplifier. To improve the noise performance of the receiver it would be nice to get rid
of this filter, but that would allow the entire output of the receive antenna to be fed straight into
the input of the sensitive low-noise amplifier: and if there are any strong emitters around (for
example someone with a mobile phone walks past) they might block the wanted signal.

In general, for low-noise design you need as much low-noise gain as early as possible in the
receiver chain. Once the signals are large, you can usually forget about noise.

Exactly the opposite is true for the other problem with receivers discussed in this chapter: the
3rd-order intermodulation products.

1.5 Calculating Intermodulation Distortion

The power of the 3rd-order intermodulation product Id in the output of a non-linear stage fed by
three equal-power inputs is given by6:

3
2

3
d in

G
I S

IP
 (0.36)

where Sin is the power in the input signal (in Watts), G is the power gain of the stage, and IP3 is
the third-order intermodulation intercept point (also in Watts).

If this is the power, then the rms amplitude of this distortion must be:

3/2

3

1
rms d ind I g S

IP

 
   

 
(0.37)

where g is the amplitude gain of the stage, rather than the power gain G. Since the power gain
is the square of the amplitude gain, this means:

6 For the derivation of this formula, see the chapter on non-linear effects.
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2g G (0.38)

A radio receiver with several non-linear elements in series will have contributions to the total
amount of intermodulation distortion from each non-linear stage. Just as before, we can
readily calculate the amplitude of the overall intermodulation product by using the technique of
replacing every real component with an ideal linear component, with an additional
intermodulation term added to the input, replacing something like this:

Interference Iout

Signal Sout
Power Gain G

Amplitude Gain g
IP3 = IP3

Signal Sin

Interference Iin

Figure 1-10 Non-Linear Component Adding Intermodulation Product

with something like this:

Power Gain G

Amplitude Gain g
Linear

(IP3 = infinite)

+
Signal Sin Signal Sout

Interference IoutInterference Iin

Effective

Input
Interference

3/2

3

1
rms inde S

IP

 
  
 

Figure 1-11 Equivalent Model of Non-Linear Component

Note that the amplitude of the required effective input intermodulation product term that’s
added to the input to the non-linear component is:

3/2

3

1rms
rms in

d
de S

g IP

 
   

 
(0.39)

so that when it is multiplied by the amplitude gain of the non-linear stage, we end up with the
result for the output term, given in equation (0.37).

1.5.1 Adding Intermodulation Product Terms

At this point it might be worth pausing to consider why we always work with powers in the
case of noise, but I’m talking about envelopes and rms amplitudes in the case of the
intermodulation products.

The reason is that the intermodulation products are not independent between the different
stages; they all result from the same signals passing through the components. So they all have
the same shape, and that means I have to add them coherently. Consider adding two signals
that are the same shape, se(t) and sin(t). The result is a signal with a magnitude of se(t) + sin(t),
and that has a mean power of:

                
2 2 2 2e in e in e inE s t s t E s t E s t E s t s t    (0.40)
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and this time the final term is not zero (see the figure below). If the signals are exactly the
same shape, then we could write:

   e ins t k s t (0.41)

where k is a constant. In this case, we get:

               
2 2 22 21 1e in e eE s t s t E k s t k E s t     (0.42)

You can’t just add the powers any more, you have to add the amplitudes. That’s why I’m
working with amplitudes here.

se(t)

sin(t)

se(t) + sin(t)

ne
2(t)

sin
2(t)

(se(t) + sin(t))
2

-5

0

5

-5

0

5

-5

0

5

0

5

10

0

5

10

0

5

10

mean
power = 1

mean
power = 1

mean
power = 4

Figure 1-12 Adding Intermodulation Product Contributions

1.5.2 Intermodulation Products and Multi-stage Receivers

We can extend this idea (of replacing real components with ideal linear components with
additional equivalent input intermodulation product terms) to a series of components, just like
we did for noise. For example, suppose we had a chain of components, and two of them had
significant non-linearities:

Signal Sin Gain G1

Linear

Gain G2

Non-Linear
IP3_2

Gain G3

Linear

Gain G4

Non-Linear
IP3_4

Figure 1-13 Sample System with Four Stages, Two Non-Linear

Expressing the non-linear stages in terms of an ideal linear stage and an additional contribution
from the distortion gives:
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+
Signal Sin Gain G1

Linear

Gain G2

Linear

 3/2

1
3 _ 2

1
inG S

IP

+Gain G3

Linear

Gain G4

Linear

 3/2

1 2 3
3 _ 4

1
inG G G S

IP

Figure 1-14 Equivalent System with Two Stages of Non-Linearity

Note the equivalent distortion input to the second stage is:

 
3/2

1

3_ 2

1
inG S

IP
(0.43)

since the signal input at this stage has a power of G1Sin (it’s G1 times more powerful than the
input to the whole chain, since it’s just come through the first stage with a gain of G1).
Similarly, the signal input to the last stage has an equivalent input distortion component of:

 
3/2

1 2 3

3_ 4

1
inG G G S

IP
(0.44)

since the input to this stage has a power of G1G2G3Sin.

Then we move these additional contributions back to the start of the whole system. They are
amplitudes, so moving them back through a component with a power gain of G will reduce the

amplitude by a factor G . Hence the contribution of the second stage becomes:

   
3/2 3/21

1

3_ 2 3_ 21

1 1
in in

G
G S S

IP IPG
 (0.45)

and the contribution of the fourth stage becomes:

   
3/2 3/21 2 3

1 2 3

3_ 4 3_ 41 2 3

1 1
in in

G G G
G G G S S

IP IPG G G
 (0.46)

and that produces an equivalent system that looks like this:

+
Signal Sin Gain G1

Linear

Gain G2

Linear

 3/21

3 _ 2
in

G
S

IP

Gain G3

Linear
Gain G4

Linear+

 3/21 2 3

3 _ 4
in

G G G
S

IP

Figure 1-15 Combining Non-Linear Stages

Comparing this to a one-stage system with intermodulation distortion added to the input:

3/ 2

3

1
in ind S

IP

 
  
 

(0.47)
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suggests that the total amount of intermodulation products added by all the stages is equivalent
to a perfectly linear system with an intermodulation product term added to the input of the
whole series of components, of amplitude:

3/2 3/21 2 31

3 _ 2 3 _ 4

3/21 2 31

3 _ 2 3 _ 4

in in in

in

G G GG
d S S

IP IP

G G GG
S

IP IP

 

 
   
 

(0.48)

This is exactly what would happen if the system were replaced by a single non-linear
component with a gain of G1G2G3G4 and an IP3 of:

3
1 2 31

3_ 2 3 _ 4

1
systemIP

G G GG

IP IP





(0.49)

In other words, we can derive an equivalent IP3 for the whole system, and use this to calculate
the total amount of intermodulation product introduced by all the components in the system.

Note that this formula could be expressed in the form:

3
3 _ 2 3 _ 4

3 _ 2 3 _ 4

1

Gain up tostage with Gain up tostage withsystemIP
IP IP

IP IP





(0.50)

which suggests how it can be expanded for use with any number of non-linear terms:

3
3

3 _

1

Gain up tostage with _system
i

i i

IP
IP

IP




(0.51)

1.5.3 Example of Intermodulation Calculation

Consider the superhet receiver from section 1.4.3:

Local

Oscillator f1

Bandpass

Filter
LNA

Image

Filter

Image

Filter
Amp

Local

Oscillator f2

Image

Filter
Amp

To low-frequency

circuits

Gain (dB)

NF (dB)

IP3 (dBm)

-2.5

2.5

12.0

2.0

10.0

-3.0

3.0

-6.0

12.0

16.0

20.0

3.0

12.0

-2.5

2.5

18.0

12.0

-3.0

3.0

60.0

20.0

26.0

Figure 1-16 - Example Dual-Conversion Super-Heterodyne Receiver (Again)
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This receiver has four stages with significant non-linearities. It’s usually easier to keep the
gain and IP3 in dB and dBm respectively initially since the division then becomes a
subtraction; it’s only when combining the contributions from the different stages that things
have to be taken out of dB so that the contributions can be added together.

Just like with noise, this sort of calculation can be readily done with a spreadsheet, and in this
case the results might look something like this:

Stage
Gain up to this

stage (dB)
IP3 of this

stage (dBm) 10log10
_

3

upto i

i

G

IP

_

3_

upto i

i

G

IP

First LNA –2.5 10.0 –12.5 0.056
First Mixer 6.5 16.0 –9.5 0.112
Second
Amplifier

–2.0 12.0 –14.0 0.040

Second Mixer 18.0 26.0 –8.0 0.158

hence the resultant IP3 of the whole system is:

3

1

0.056 0.112 0.040 0.158

2.73 mW

4.37 dBm

systemIP 
  





(0.52)

(Unlike the noise analysis earlier in the chapter, I’ve only considered here the components with
a significant non-linearity. If you were designing a spreadsheet you might have to consider all
the components, and give a value of infinity to the IP3 of the linear components, but if doing
the calculation by hand we can be a bit more intelligent and just consider the non-linear
components.)

1.5.4 Comparative Intermodulation Contributions

Looking at the contributions that each individual stage makes to the overall IP3 intercept point
for this receiver, the single largest contribution is from the second mixer, even though this
component has by far the largest IP3. This isn’t surprising: the power in the intermodulation
product generated at each stage varies with the cube of the signal power, and it’s the later
stages which tend to have the largest signal powers.

1.5.5 IP3 and Channel Selecting Filters

There is one potential trap when working out the overall IP3 of a receiver, and that is to
remember that in order to generate any intermodulation product at the signal frequency, you
need two other frequencies to be present.

If you’ve filtered out all of the other frequencies, then further non-linear components in the
receiver aren’t going to make any difference. If the third amplifier in the receiver above
actually had an IP3 of 10 dBm:
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then you might think that this would give the entire receiver a very low IP3, since the signal
would be so large at this stage. However, if the image filter just before this amplifier gets rid
of all the signals except the wanted signal, then there aren’t any other signals left to produce
any intermodulation products, and the IP3 of this component can be neglected.

It’s only the non-linear stages up to the filter than selects an individual channel or an individual
carrier frequency that need to be considered when calculating an overall IP3 (after this point
there won’t be any power left at adjacent carrier frequencies that can be mixed together to
create any distortion in the final signal).

1.6 Receiver Dynamic Range

The dynamic range of a receiver is the range of input signals that give acceptable performance.
In general, this is impossible to calculate without knowing what the receiver is going to be
used for, but if we define the lowest signal input power as the minimum detectable signal (the
signal that provides an equal amount of signal power and noise power in the output), and we
define the highest input signal power to be the input signal power that produces a third-order
intermodulation product power equal to the output noise power, then we can produce a figure-
of-merit for the receiver. This is known as the spurious-free dynamic range (SFDR).

It turns out that there is a very simple and memorable formula for the spurious-free dynamic
range in terms of the overall IP3 and the minimum detectable signal (MDS). Equation (0.36)
gives power in the intermodulation product in terms of the input signal powers Sin and the gain
G, and putting this equal to the output given by the MDS (which is just the MDS times the
gain):

3
2

3
d in

G
I S G MDS

IP
   (0.53)

and a bit of algebra on this then gives:

 
1/32

3inS IP MDS  (0.54)

This is the maximum input power for the spurious free dynamic range. The minimum is just
the MDS itself. So the ratio of the two is:

 
1/3

2 2/32/3
3 3 3

2/3

Max Power

Min Power

IP MDS IP IP

MDS MDSMDS

  
    

 
(0.55)
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which in terms of dB is:

      3

2
dB dBm dBm

3
SFDR IP MDS  (0.56)

For the example receiver considered above, this works out to be:

  2
4.37 111.52 77.25 dB

3
    (0.57)

1.7 Tutorial Questions

1) In the example given in the notes, by how much would the noise performance improve if the
second amplifier and the second image filter were the other way around (i.e. the amplifier
came first)?

What would be the disadvantage (if any) of doing this?

2) A passive filter has an insertion loss of 2 dB. What can you deduce about its noise figure
and third-order intercept point?

3) What would happen to the spurious-free dynamic range of this receiver if the gain of the
second amplifier were reduced to 10 dB?

4) Consider the single-conversion superhet design shown below:

Local
Oscillator f1

Bandpass
Filter

LNA
Image
Filter

Image
Filter

Amp

Local
Oscillator f2

Amp
To low-frequency

circuits

Gain (dB)

NF (dB)

IP3 (dBm)

-1.5
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10.0

3.0

10.0
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-8.0

13.0

6.0

20.0

3.0

10.0

-2.5

???

10.0

20.0

60.0

20.0

20.0 40.0

The receiver noise bandwidth is 200 kHz. Calculate:

a) The equivalent receiver noise figure;
b) The expected output noise power if the receive antenna is pointing at the ground;
c) The receiver’s third-order intermodulation intercept point;
d) The spurious-free dynamic range.

Assume all the filters are passive (i.e. they contain no active components).

Why are the first three components in the order they are in? Why not combine the bandpass
filter with the image filter to save costs?

5) Consider the super-heterodyne receive in the example above. If you were asked to change
any one component in order to improve this dynamic range, which component should you
choose?
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